ai-content-maker/.venv/Lib/site-packages/sympy/diffgeom/tests/test_hyperbolic_space.py

92 lines
2.5 KiB
Python
Raw Permalink Normal View History

2024-05-03 04:18:51 +03:00
r'''
unit test describing the hyperbolic half-plane with the Poincare metric. This
is a basic model of hyperbolic geometry on the (positive) half-space
{(x,y) \in R^2 | y > 0}
with the Riemannian metric
ds^2 = (dx^2 + dy^2)/y^2
It has constant negative scalar curvature = -2
https://en.wikipedia.org/wiki/Poincare_half-plane_model
'''
from sympy.matrices.dense import diag
from sympy.diffgeom import (twoform_to_matrix,
metric_to_Christoffel_1st, metric_to_Christoffel_2nd,
metric_to_Riemann_components, metric_to_Ricci_components)
import sympy.diffgeom.rn
from sympy.tensor.array import ImmutableDenseNDimArray
def test_H2():
TP = sympy.diffgeom.TensorProduct
R2 = sympy.diffgeom.rn.R2
y = R2.y
dy = R2.dy
dx = R2.dx
g = (TP(dx, dx) + TP(dy, dy))*y**(-2)
automat = twoform_to_matrix(g)
mat = diag(y**(-2), y**(-2))
assert mat == automat
gamma1 = metric_to_Christoffel_1st(g)
assert gamma1[0, 0, 0] == 0
assert gamma1[0, 0, 1] == -y**(-3)
assert gamma1[0, 1, 0] == -y**(-3)
assert gamma1[0, 1, 1] == 0
assert gamma1[1, 1, 1] == -y**(-3)
assert gamma1[1, 1, 0] == 0
assert gamma1[1, 0, 1] == 0
assert gamma1[1, 0, 0] == y**(-3)
gamma2 = metric_to_Christoffel_2nd(g)
assert gamma2[0, 0, 0] == 0
assert gamma2[0, 0, 1] == -y**(-1)
assert gamma2[0, 1, 0] == -y**(-1)
assert gamma2[0, 1, 1] == 0
assert gamma2[1, 1, 1] == -y**(-1)
assert gamma2[1, 1, 0] == 0
assert gamma2[1, 0, 1] == 0
assert gamma2[1, 0, 0] == y**(-1)
Rm = metric_to_Riemann_components(g)
assert Rm[0, 0, 0, 0] == 0
assert Rm[0, 0, 0, 1] == 0
assert Rm[0, 0, 1, 0] == 0
assert Rm[0, 0, 1, 1] == 0
assert Rm[0, 1, 0, 0] == 0
assert Rm[0, 1, 0, 1] == -y**(-2)
assert Rm[0, 1, 1, 0] == y**(-2)
assert Rm[0, 1, 1, 1] == 0
assert Rm[1, 0, 0, 0] == 0
assert Rm[1, 0, 0, 1] == y**(-2)
assert Rm[1, 0, 1, 0] == -y**(-2)
assert Rm[1, 0, 1, 1] == 0
assert Rm[1, 1, 0, 0] == 0
assert Rm[1, 1, 0, 1] == 0
assert Rm[1, 1, 1, 0] == 0
assert Rm[1, 1, 1, 1] == 0
Ric = metric_to_Ricci_components(g)
assert Ric[0, 0] == -y**(-2)
assert Ric[0, 1] == 0
assert Ric[1, 0] == 0
assert Ric[0, 0] == -y**(-2)
assert Ric == ImmutableDenseNDimArray([-y**(-2), 0, 0, -y**(-2)], (2, 2))
## scalar curvature is -2
#TODO - it would be nice to have index contraction built-in
R = (Ric[0, 0] + Ric[1, 1])*y**2
assert R == -2
## Gauss curvature is -1
assert R/2 == -1