ai-content-maker/.venv/Lib/site-packages/sympy/functions/elementary/tests/test_integers.py

633 lines
20 KiB
Python
Raw Permalink Normal View History

2024-05-03 04:18:51 +03:00
from sympy.calculus.accumulationbounds import AccumBounds
from sympy.core.numbers import (E, Float, I, Rational, nan, oo, pi, zoo)
from sympy.core.relational import (Eq, Ge, Gt, Le, Lt, Ne)
from sympy.core.singleton import S
from sympy.core.symbol import (Symbol, symbols)
from sympy.functions.combinatorial.factorials import factorial
from sympy.functions.elementary.exponential import (exp, log)
from sympy.functions.elementary.integers import (ceiling, floor, frac)
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.functions.elementary.trigonometric import sin, cos, tan
from sympy.core.expr import unchanged
from sympy.testing.pytest import XFAIL
x = Symbol('x')
i = Symbol('i', imaginary=True)
y = Symbol('y', real=True)
k, n = symbols('k,n', integer=True)
def test_floor():
assert floor(nan) is nan
assert floor(oo) is oo
assert floor(-oo) is -oo
assert floor(zoo) is zoo
assert floor(0) == 0
assert floor(1) == 1
assert floor(-1) == -1
assert floor(E) == 2
assert floor(-E) == -3
assert floor(2*E) == 5
assert floor(-2*E) == -6
assert floor(pi) == 3
assert floor(-pi) == -4
assert floor(S.Half) == 0
assert floor(Rational(-1, 2)) == -1
assert floor(Rational(7, 3)) == 2
assert floor(Rational(-7, 3)) == -3
assert floor(-Rational(7, 3)) == -3
assert floor(Float(17.0)) == 17
assert floor(-Float(17.0)) == -17
assert floor(Float(7.69)) == 7
assert floor(-Float(7.69)) == -8
assert floor(I) == I
assert floor(-I) == -I
e = floor(i)
assert e.func is floor and e.args[0] == i
assert floor(oo*I) == oo*I
assert floor(-oo*I) == -oo*I
assert floor(exp(I*pi/4)*oo) == exp(I*pi/4)*oo
assert floor(2*I) == 2*I
assert floor(-2*I) == -2*I
assert floor(I/2) == 0
assert floor(-I/2) == -I
assert floor(E + 17) == 19
assert floor(pi + 2) == 5
assert floor(E + pi) == 5
assert floor(I + pi) == 3 + I
assert floor(floor(pi)) == 3
assert floor(floor(y)) == floor(y)
assert floor(floor(x)) == floor(x)
assert unchanged(floor, x)
assert unchanged(floor, 2*x)
assert unchanged(floor, k*x)
assert floor(k) == k
assert floor(2*k) == 2*k
assert floor(k*n) == k*n
assert unchanged(floor, k/2)
assert unchanged(floor, x + y)
assert floor(x + 3) == floor(x) + 3
assert floor(x + k) == floor(x) + k
assert floor(y + 3) == floor(y) + 3
assert floor(y + k) == floor(y) + k
assert floor(3 + I*y + pi) == 6 + floor(y)*I
assert floor(k + n) == k + n
assert unchanged(floor, x*I)
assert floor(k*I) == k*I
assert floor(Rational(23, 10) - E*I) == 2 - 3*I
assert floor(sin(1)) == 0
assert floor(sin(-1)) == -1
assert floor(exp(2)) == 7
assert floor(log(8)/log(2)) != 2
assert int(floor(log(8)/log(2)).evalf(chop=True)) == 3
assert floor(factorial(50)/exp(1)) == \
11188719610782480504630258070757734324011354208865721592720336800
assert (floor(y) < y) == False
assert (floor(y) <= y) == True
assert (floor(y) > y) == False
assert (floor(y) >= y) == False
assert (floor(x) <= x).is_Relational # x could be non-real
assert (floor(x) > x).is_Relational
assert (floor(x) <= y).is_Relational # arg is not same as rhs
assert (floor(x) > y).is_Relational
assert (floor(y) <= oo) == True
assert (floor(y) < oo) == True
assert (floor(y) >= -oo) == True
assert (floor(y) > -oo) == True
assert floor(y).rewrite(frac) == y - frac(y)
assert floor(y).rewrite(ceiling) == -ceiling(-y)
assert floor(y).rewrite(frac).subs(y, -pi) == floor(-pi)
assert floor(y).rewrite(frac).subs(y, E) == floor(E)
assert floor(y).rewrite(ceiling).subs(y, E) == -ceiling(-E)
assert floor(y).rewrite(ceiling).subs(y, -pi) == -ceiling(pi)
assert Eq(floor(y), y - frac(y))
assert Eq(floor(y), -ceiling(-y))
neg = Symbol('neg', negative=True)
nn = Symbol('nn', nonnegative=True)
pos = Symbol('pos', positive=True)
np = Symbol('np', nonpositive=True)
assert (floor(neg) < 0) == True
assert (floor(neg) <= 0) == True
assert (floor(neg) > 0) == False
assert (floor(neg) >= 0) == False
assert (floor(neg) <= -1) == True
assert (floor(neg) >= -3) == (neg >= -3)
assert (floor(neg) < 5) == (neg < 5)
assert (floor(nn) < 0) == False
assert (floor(nn) >= 0) == True
assert (floor(pos) < 0) == False
assert (floor(pos) <= 0) == (pos < 1)
assert (floor(pos) > 0) == (pos >= 1)
assert (floor(pos) >= 0) == True
assert (floor(pos) >= 3) == (pos >= 3)
assert (floor(np) <= 0) == True
assert (floor(np) > 0) == False
assert floor(neg).is_negative == True
assert floor(neg).is_nonnegative == False
assert floor(nn).is_negative == False
assert floor(nn).is_nonnegative == True
assert floor(pos).is_negative == False
assert floor(pos).is_nonnegative == True
assert floor(np).is_negative is None
assert floor(np).is_nonnegative is None
assert (floor(7, evaluate=False) >= 7) == True
assert (floor(7, evaluate=False) > 7) == False
assert (floor(7, evaluate=False) <= 7) == True
assert (floor(7, evaluate=False) < 7) == False
assert (floor(7, evaluate=False) >= 6) == True
assert (floor(7, evaluate=False) > 6) == True
assert (floor(7, evaluate=False) <= 6) == False
assert (floor(7, evaluate=False) < 6) == False
assert (floor(7, evaluate=False) >= 8) == False
assert (floor(7, evaluate=False) > 8) == False
assert (floor(7, evaluate=False) <= 8) == True
assert (floor(7, evaluate=False) < 8) == True
assert (floor(x) <= 5.5) == Le(floor(x), 5.5, evaluate=False)
assert (floor(x) >= -3.2) == Ge(floor(x), -3.2, evaluate=False)
assert (floor(x) < 2.9) == Lt(floor(x), 2.9, evaluate=False)
assert (floor(x) > -1.7) == Gt(floor(x), -1.7, evaluate=False)
assert (floor(y) <= 5.5) == (y < 6)
assert (floor(y) >= -3.2) == (y >= -3)
assert (floor(y) < 2.9) == (y < 3)
assert (floor(y) > -1.7) == (y >= -1)
assert (floor(y) <= n) == (y < n + 1)
assert (floor(y) >= n) == (y >= n)
assert (floor(y) < n) == (y < n)
assert (floor(y) > n) == (y >= n + 1)
def test_ceiling():
assert ceiling(nan) is nan
assert ceiling(oo) is oo
assert ceiling(-oo) is -oo
assert ceiling(zoo) is zoo
assert ceiling(0) == 0
assert ceiling(1) == 1
assert ceiling(-1) == -1
assert ceiling(E) == 3
assert ceiling(-E) == -2
assert ceiling(2*E) == 6
assert ceiling(-2*E) == -5
assert ceiling(pi) == 4
assert ceiling(-pi) == -3
assert ceiling(S.Half) == 1
assert ceiling(Rational(-1, 2)) == 0
assert ceiling(Rational(7, 3)) == 3
assert ceiling(-Rational(7, 3)) == -2
assert ceiling(Float(17.0)) == 17
assert ceiling(-Float(17.0)) == -17
assert ceiling(Float(7.69)) == 8
assert ceiling(-Float(7.69)) == -7
assert ceiling(I) == I
assert ceiling(-I) == -I
e = ceiling(i)
assert e.func is ceiling and e.args[0] == i
assert ceiling(oo*I) == oo*I
assert ceiling(-oo*I) == -oo*I
assert ceiling(exp(I*pi/4)*oo) == exp(I*pi/4)*oo
assert ceiling(2*I) == 2*I
assert ceiling(-2*I) == -2*I
assert ceiling(I/2) == I
assert ceiling(-I/2) == 0
assert ceiling(E + 17) == 20
assert ceiling(pi + 2) == 6
assert ceiling(E + pi) == 6
assert ceiling(I + pi) == I + 4
assert ceiling(ceiling(pi)) == 4
assert ceiling(ceiling(y)) == ceiling(y)
assert ceiling(ceiling(x)) == ceiling(x)
assert unchanged(ceiling, x)
assert unchanged(ceiling, 2*x)
assert unchanged(ceiling, k*x)
assert ceiling(k) == k
assert ceiling(2*k) == 2*k
assert ceiling(k*n) == k*n
assert unchanged(ceiling, k/2)
assert unchanged(ceiling, x + y)
assert ceiling(x + 3) == ceiling(x) + 3
assert ceiling(x + k) == ceiling(x) + k
assert ceiling(y + 3) == ceiling(y) + 3
assert ceiling(y + k) == ceiling(y) + k
assert ceiling(3 + pi + y*I) == 7 + ceiling(y)*I
assert ceiling(k + n) == k + n
assert unchanged(ceiling, x*I)
assert ceiling(k*I) == k*I
assert ceiling(Rational(23, 10) - E*I) == 3 - 2*I
assert ceiling(sin(1)) == 1
assert ceiling(sin(-1)) == 0
assert ceiling(exp(2)) == 8
assert ceiling(-log(8)/log(2)) != -2
assert int(ceiling(-log(8)/log(2)).evalf(chop=True)) == -3
assert ceiling(factorial(50)/exp(1)) == \
11188719610782480504630258070757734324011354208865721592720336801
assert (ceiling(y) >= y) == True
assert (ceiling(y) > y) == False
assert (ceiling(y) < y) == False
assert (ceiling(y) <= y) == False
assert (ceiling(x) >= x).is_Relational # x could be non-real
assert (ceiling(x) < x).is_Relational
assert (ceiling(x) >= y).is_Relational # arg is not same as rhs
assert (ceiling(x) < y).is_Relational
assert (ceiling(y) >= -oo) == True
assert (ceiling(y) > -oo) == True
assert (ceiling(y) <= oo) == True
assert (ceiling(y) < oo) == True
assert ceiling(y).rewrite(floor) == -floor(-y)
assert ceiling(y).rewrite(frac) == y + frac(-y)
assert ceiling(y).rewrite(floor).subs(y, -pi) == -floor(pi)
assert ceiling(y).rewrite(floor).subs(y, E) == -floor(-E)
assert ceiling(y).rewrite(frac).subs(y, pi) == ceiling(pi)
assert ceiling(y).rewrite(frac).subs(y, -E) == ceiling(-E)
assert Eq(ceiling(y), y + frac(-y))
assert Eq(ceiling(y), -floor(-y))
neg = Symbol('neg', negative=True)
nn = Symbol('nn', nonnegative=True)
pos = Symbol('pos', positive=True)
np = Symbol('np', nonpositive=True)
assert (ceiling(neg) <= 0) == True
assert (ceiling(neg) < 0) == (neg <= -1)
assert (ceiling(neg) > 0) == False
assert (ceiling(neg) >= 0) == (neg > -1)
assert (ceiling(neg) > -3) == (neg > -3)
assert (ceiling(neg) <= 10) == (neg <= 10)
assert (ceiling(nn) < 0) == False
assert (ceiling(nn) >= 0) == True
assert (ceiling(pos) < 0) == False
assert (ceiling(pos) <= 0) == False
assert (ceiling(pos) > 0) == True
assert (ceiling(pos) >= 0) == True
assert (ceiling(pos) >= 1) == True
assert (ceiling(pos) > 5) == (pos > 5)
assert (ceiling(np) <= 0) == True
assert (ceiling(np) > 0) == False
assert ceiling(neg).is_positive == False
assert ceiling(neg).is_nonpositive == True
assert ceiling(nn).is_positive is None
assert ceiling(nn).is_nonpositive is None
assert ceiling(pos).is_positive == True
assert ceiling(pos).is_nonpositive == False
assert ceiling(np).is_positive == False
assert ceiling(np).is_nonpositive == True
assert (ceiling(7, evaluate=False) >= 7) == True
assert (ceiling(7, evaluate=False) > 7) == False
assert (ceiling(7, evaluate=False) <= 7) == True
assert (ceiling(7, evaluate=False) < 7) == False
assert (ceiling(7, evaluate=False) >= 6) == True
assert (ceiling(7, evaluate=False) > 6) == True
assert (ceiling(7, evaluate=False) <= 6) == False
assert (ceiling(7, evaluate=False) < 6) == False
assert (ceiling(7, evaluate=False) >= 8) == False
assert (ceiling(7, evaluate=False) > 8) == False
assert (ceiling(7, evaluate=False) <= 8) == True
assert (ceiling(7, evaluate=False) < 8) == True
assert (ceiling(x) <= 5.5) == Le(ceiling(x), 5.5, evaluate=False)
assert (ceiling(x) >= -3.2) == Ge(ceiling(x), -3.2, evaluate=False)
assert (ceiling(x) < 2.9) == Lt(ceiling(x), 2.9, evaluate=False)
assert (ceiling(x) > -1.7) == Gt(ceiling(x), -1.7, evaluate=False)
assert (ceiling(y) <= 5.5) == (y <= 5)
assert (ceiling(y) >= -3.2) == (y > -4)
assert (ceiling(y) < 2.9) == (y <= 2)
assert (ceiling(y) > -1.7) == (y > -2)
assert (ceiling(y) <= n) == (y <= n)
assert (ceiling(y) >= n) == (y > n - 1)
assert (ceiling(y) < n) == (y <= n - 1)
assert (ceiling(y) > n) == (y > n)
def test_frac():
assert isinstance(frac(x), frac)
assert frac(oo) == AccumBounds(0, 1)
assert frac(-oo) == AccumBounds(0, 1)
assert frac(zoo) is nan
assert frac(n) == 0
assert frac(nan) is nan
assert frac(Rational(4, 3)) == Rational(1, 3)
assert frac(-Rational(4, 3)) == Rational(2, 3)
assert frac(Rational(-4, 3)) == Rational(2, 3)
r = Symbol('r', real=True)
assert frac(I*r) == I*frac(r)
assert frac(1 + I*r) == I*frac(r)
assert frac(0.5 + I*r) == 0.5 + I*frac(r)
assert frac(n + I*r) == I*frac(r)
assert frac(n + I*k) == 0
assert unchanged(frac, x + I*x)
assert frac(x + I*n) == frac(x)
assert frac(x).rewrite(floor) == x - floor(x)
assert frac(x).rewrite(ceiling) == x + ceiling(-x)
assert frac(y).rewrite(floor).subs(y, pi) == frac(pi)
assert frac(y).rewrite(floor).subs(y, -E) == frac(-E)
assert frac(y).rewrite(ceiling).subs(y, -pi) == frac(-pi)
assert frac(y).rewrite(ceiling).subs(y, E) == frac(E)
assert Eq(frac(y), y - floor(y))
assert Eq(frac(y), y + ceiling(-y))
r = Symbol('r', real=True)
p_i = Symbol('p_i', integer=True, positive=True)
n_i = Symbol('p_i', integer=True, negative=True)
np_i = Symbol('np_i', integer=True, nonpositive=True)
nn_i = Symbol('nn_i', integer=True, nonnegative=True)
p_r = Symbol('p_r', positive=True)
n_r = Symbol('n_r', negative=True)
np_r = Symbol('np_r', real=True, nonpositive=True)
nn_r = Symbol('nn_r', real=True, nonnegative=True)
# Real frac argument, integer rhs
assert frac(r) <= p_i
assert not frac(r) <= n_i
assert (frac(r) <= np_i).has(Le)
assert (frac(r) <= nn_i).has(Le)
assert frac(r) < p_i
assert not frac(r) < n_i
assert not frac(r) < np_i
assert (frac(r) < nn_i).has(Lt)
assert not frac(r) >= p_i
assert frac(r) >= n_i
assert frac(r) >= np_i
assert (frac(r) >= nn_i).has(Ge)
assert not frac(r) > p_i
assert frac(r) > n_i
assert (frac(r) > np_i).has(Gt)
assert (frac(r) > nn_i).has(Gt)
assert not Eq(frac(r), p_i)
assert not Eq(frac(r), n_i)
assert Eq(frac(r), np_i).has(Eq)
assert Eq(frac(r), nn_i).has(Eq)
assert Ne(frac(r), p_i)
assert Ne(frac(r), n_i)
assert Ne(frac(r), np_i).has(Ne)
assert Ne(frac(r), nn_i).has(Ne)
# Real frac argument, real rhs
assert (frac(r) <= p_r).has(Le)
assert not frac(r) <= n_r
assert (frac(r) <= np_r).has(Le)
assert (frac(r) <= nn_r).has(Le)
assert (frac(r) < p_r).has(Lt)
assert not frac(r) < n_r
assert not frac(r) < np_r
assert (frac(r) < nn_r).has(Lt)
assert (frac(r) >= p_r).has(Ge)
assert frac(r) >= n_r
assert frac(r) >= np_r
assert (frac(r) >= nn_r).has(Ge)
assert (frac(r) > p_r).has(Gt)
assert frac(r) > n_r
assert (frac(r) > np_r).has(Gt)
assert (frac(r) > nn_r).has(Gt)
assert not Eq(frac(r), n_r)
assert Eq(frac(r), p_r).has(Eq)
assert Eq(frac(r), np_r).has(Eq)
assert Eq(frac(r), nn_r).has(Eq)
assert Ne(frac(r), p_r).has(Ne)
assert Ne(frac(r), n_r)
assert Ne(frac(r), np_r).has(Ne)
assert Ne(frac(r), nn_r).has(Ne)
# Real frac argument, +/- oo rhs
assert frac(r) < oo
assert frac(r) <= oo
assert not frac(r) > oo
assert not frac(r) >= oo
assert not frac(r) < -oo
assert not frac(r) <= -oo
assert frac(r) > -oo
assert frac(r) >= -oo
assert frac(r) < 1
assert frac(r) <= 1
assert not frac(r) > 1
assert not frac(r) >= 1
assert not frac(r) < 0
assert (frac(r) <= 0).has(Le)
assert (frac(r) > 0).has(Gt)
assert frac(r) >= 0
# Some test for numbers
assert frac(r) <= sqrt(2)
assert (frac(r) <= sqrt(3) - sqrt(2)).has(Le)
assert not frac(r) <= sqrt(2) - sqrt(3)
assert not frac(r) >= sqrt(2)
assert (frac(r) >= sqrt(3) - sqrt(2)).has(Ge)
assert frac(r) >= sqrt(2) - sqrt(3)
assert not Eq(frac(r), sqrt(2))
assert Eq(frac(r), sqrt(3) - sqrt(2)).has(Eq)
assert not Eq(frac(r), sqrt(2) - sqrt(3))
assert Ne(frac(r), sqrt(2))
assert Ne(frac(r), sqrt(3) - sqrt(2)).has(Ne)
assert Ne(frac(r), sqrt(2) - sqrt(3))
assert frac(p_i, evaluate=False).is_zero
assert frac(p_i, evaluate=False).is_finite
assert frac(p_i, evaluate=False).is_integer
assert frac(p_i, evaluate=False).is_real
assert frac(r).is_finite
assert frac(r).is_real
assert frac(r).is_zero is None
assert frac(r).is_integer is None
assert frac(oo).is_finite
assert frac(oo).is_real
def test_series():
x, y = symbols('x,y')
assert floor(x).nseries(x, y, 100) == floor(y)
assert ceiling(x).nseries(x, y, 100) == ceiling(y)
assert floor(x).nseries(x, pi, 100) == 3
assert ceiling(x).nseries(x, pi, 100) == 4
assert floor(x).nseries(x, 0, 100) == 0
assert ceiling(x).nseries(x, 0, 100) == 1
assert floor(-x).nseries(x, 0, 100) == -1
assert ceiling(-x).nseries(x, 0, 100) == 0
def test_issue_14355():
# This test checks the leading term and series for the floor and ceil
# function when arg0 evaluates to S.NaN.
assert floor((x**3 + x)/(x**2 - x)).as_leading_term(x, cdir = 1) == -2
assert floor((x**3 + x)/(x**2 - x)).as_leading_term(x, cdir = -1) == -1
assert floor((cos(x) - 1)/x).as_leading_term(x, cdir = 1) == -1
assert floor((cos(x) - 1)/x).as_leading_term(x, cdir = -1) == 0
assert floor(sin(x)/x).as_leading_term(x, cdir = 1) == 0
assert floor(sin(x)/x).as_leading_term(x, cdir = -1) == 0
assert floor(-tan(x)/x).as_leading_term(x, cdir = 1) == -2
assert floor(-tan(x)/x).as_leading_term(x, cdir = -1) == -2
assert floor(sin(x)/x/3).as_leading_term(x, cdir = 1) == 0
assert floor(sin(x)/x/3).as_leading_term(x, cdir = -1) == 0
assert ceiling((x**3 + x)/(x**2 - x)).as_leading_term(x, cdir = 1) == -1
assert ceiling((x**3 + x)/(x**2 - x)).as_leading_term(x, cdir = -1) == 0
assert ceiling((cos(x) - 1)/x).as_leading_term(x, cdir = 1) == 0
assert ceiling((cos(x) - 1)/x).as_leading_term(x, cdir = -1) == 1
assert ceiling(sin(x)/x).as_leading_term(x, cdir = 1) == 1
assert ceiling(sin(x)/x).as_leading_term(x, cdir = -1) == 1
assert ceiling(-tan(x)/x).as_leading_term(x, cdir = 1) == -1
assert ceiling(-tan(x)/x).as_leading_term(x, cdir = 1) == -1
assert ceiling(sin(x)/x/3).as_leading_term(x, cdir = 1) == 1
assert ceiling(sin(x)/x/3).as_leading_term(x, cdir = -1) == 1
# test for series
assert floor(sin(x)/x).series(x, 0, 100, cdir = 1) == 0
assert floor(sin(x)/x).series(x, 0, 100, cdir = 1) == 0
assert floor((x**3 + x)/(x**2 - x)).series(x, 0, 100, cdir = 1) == -2
assert floor((x**3 + x)/(x**2 - x)).series(x, 0, 100, cdir = -1) == -1
assert ceiling(sin(x)/x).series(x, 0, 100, cdir = 1) == 1
assert ceiling(sin(x)/x).series(x, 0, 100, cdir = -1) == 1
assert ceiling((x**3 + x)/(x**2 - x)).series(x, 0, 100, cdir = 1) == -1
assert ceiling((x**3 + x)/(x**2 - x)).series(x, 0, 100, cdir = -1) == 0
def test_frac_leading_term():
assert frac(x).as_leading_term(x) == x
assert frac(x).as_leading_term(x, cdir = 1) == x
assert frac(x).as_leading_term(x, cdir = -1) == 1
assert frac(x + S.Half).as_leading_term(x, cdir = 1) == S.Half
assert frac(x + S.Half).as_leading_term(x, cdir = -1) == S.Half
assert frac(-2*x + 1).as_leading_term(x, cdir = 1) == S.One
assert frac(-2*x + 1).as_leading_term(x, cdir = -1) == -2*x
assert frac(sin(x) + 5).as_leading_term(x, cdir = 1) == x
assert frac(sin(x) + 5).as_leading_term(x, cdir = -1) == S.One
assert frac(sin(x**2) + 5).as_leading_term(x, cdir = 1) == x**2
assert frac(sin(x**2) + 5).as_leading_term(x, cdir = -1) == x**2
@XFAIL
def test_issue_4149():
assert floor(3 + pi*I + y*I) == 3 + floor(pi + y)*I
assert floor(3*I + pi*I + y*I) == floor(3 + pi + y)*I
assert floor(3 + E + pi*I + y*I) == 5 + floor(pi + y)*I
def test_issue_21651():
k = Symbol('k', positive=True, integer=True)
exp = 2*2**(-k)
assert isinstance(floor(exp), floor)
def test_issue_11207():
assert floor(floor(x)) == floor(x)
assert floor(ceiling(x)) == ceiling(x)
assert ceiling(floor(x)) == floor(x)
assert ceiling(ceiling(x)) == ceiling(x)
def test_nested_floor_ceiling():
assert floor(-floor(ceiling(x**3)/y)) == -floor(ceiling(x**3)/y)
assert ceiling(-floor(ceiling(x**3)/y)) == -floor(ceiling(x**3)/y)
assert floor(ceiling(-floor(x**Rational(7, 2)/y))) == -floor(x**Rational(7, 2)/y)
assert -ceiling(-ceiling(floor(x)/y)) == ceiling(floor(x)/y)
def test_issue_18689():
assert floor(floor(floor(x)) + 3) == floor(x) + 3
assert ceiling(ceiling(ceiling(x)) + 1) == ceiling(x) + 1
assert ceiling(ceiling(floor(x)) + 3) == floor(x) + 3
def test_issue_18421():
assert floor(float(0)) is S.Zero
assert ceiling(float(0)) is S.Zero