505 lines
17 KiB
Python
505 lines
17 KiB
Python
|
import itertools as it
|
||
|
|
||
|
from sympy.core.expr import unchanged
|
||
|
from sympy.core.function import Function
|
||
|
from sympy.core.numbers import I, oo, Rational
|
||
|
from sympy.core.power import Pow
|
||
|
from sympy.core.singleton import S
|
||
|
from sympy.core.symbol import Symbol
|
||
|
from sympy.external import import_module
|
||
|
from sympy.functions.elementary.exponential import log
|
||
|
from sympy.functions.elementary.integers import floor, ceiling
|
||
|
from sympy.functions.elementary.miscellaneous import (sqrt, cbrt, root, Min,
|
||
|
Max, real_root, Rem)
|
||
|
from sympy.functions.elementary.trigonometric import cos, sin
|
||
|
from sympy.functions.special.delta_functions import Heaviside
|
||
|
|
||
|
from sympy.utilities.lambdify import lambdify
|
||
|
from sympy.testing.pytest import raises, skip, ignore_warnings
|
||
|
|
||
|
def test_Min():
|
||
|
from sympy.abc import x, y, z
|
||
|
n = Symbol('n', negative=True)
|
||
|
n_ = Symbol('n_', negative=True)
|
||
|
nn = Symbol('nn', nonnegative=True)
|
||
|
nn_ = Symbol('nn_', nonnegative=True)
|
||
|
p = Symbol('p', positive=True)
|
||
|
p_ = Symbol('p_', positive=True)
|
||
|
np = Symbol('np', nonpositive=True)
|
||
|
np_ = Symbol('np_', nonpositive=True)
|
||
|
r = Symbol('r', real=True)
|
||
|
|
||
|
assert Min(5, 4) == 4
|
||
|
assert Min(-oo, -oo) is -oo
|
||
|
assert Min(-oo, n) is -oo
|
||
|
assert Min(n, -oo) is -oo
|
||
|
assert Min(-oo, np) is -oo
|
||
|
assert Min(np, -oo) is -oo
|
||
|
assert Min(-oo, 0) is -oo
|
||
|
assert Min(0, -oo) is -oo
|
||
|
assert Min(-oo, nn) is -oo
|
||
|
assert Min(nn, -oo) is -oo
|
||
|
assert Min(-oo, p) is -oo
|
||
|
assert Min(p, -oo) is -oo
|
||
|
assert Min(-oo, oo) is -oo
|
||
|
assert Min(oo, -oo) is -oo
|
||
|
assert Min(n, n) == n
|
||
|
assert unchanged(Min, n, np)
|
||
|
assert Min(np, n) == Min(n, np)
|
||
|
assert Min(n, 0) == n
|
||
|
assert Min(0, n) == n
|
||
|
assert Min(n, nn) == n
|
||
|
assert Min(nn, n) == n
|
||
|
assert Min(n, p) == n
|
||
|
assert Min(p, n) == n
|
||
|
assert Min(n, oo) == n
|
||
|
assert Min(oo, n) == n
|
||
|
assert Min(np, np) == np
|
||
|
assert Min(np, 0) == np
|
||
|
assert Min(0, np) == np
|
||
|
assert Min(np, nn) == np
|
||
|
assert Min(nn, np) == np
|
||
|
assert Min(np, p) == np
|
||
|
assert Min(p, np) == np
|
||
|
assert Min(np, oo) == np
|
||
|
assert Min(oo, np) == np
|
||
|
assert Min(0, 0) == 0
|
||
|
assert Min(0, nn) == 0
|
||
|
assert Min(nn, 0) == 0
|
||
|
assert Min(0, p) == 0
|
||
|
assert Min(p, 0) == 0
|
||
|
assert Min(0, oo) == 0
|
||
|
assert Min(oo, 0) == 0
|
||
|
assert Min(nn, nn) == nn
|
||
|
assert unchanged(Min, nn, p)
|
||
|
assert Min(p, nn) == Min(nn, p)
|
||
|
assert Min(nn, oo) == nn
|
||
|
assert Min(oo, nn) == nn
|
||
|
assert Min(p, p) == p
|
||
|
assert Min(p, oo) == p
|
||
|
assert Min(oo, p) == p
|
||
|
assert Min(oo, oo) is oo
|
||
|
|
||
|
assert Min(n, n_).func is Min
|
||
|
assert Min(nn, nn_).func is Min
|
||
|
assert Min(np, np_).func is Min
|
||
|
assert Min(p, p_).func is Min
|
||
|
|
||
|
# lists
|
||
|
assert Min() is S.Infinity
|
||
|
assert Min(x) == x
|
||
|
assert Min(x, y) == Min(y, x)
|
||
|
assert Min(x, y, z) == Min(z, y, x)
|
||
|
assert Min(x, Min(y, z)) == Min(z, y, x)
|
||
|
assert Min(x, Max(y, -oo)) == Min(x, y)
|
||
|
assert Min(p, oo, n, p, p, p_) == n
|
||
|
assert Min(p_, n_, p) == n_
|
||
|
assert Min(n, oo, -7, p, p, 2) == Min(n, -7)
|
||
|
assert Min(2, x, p, n, oo, n_, p, 2, -2, -2) == Min(-2, x, n, n_)
|
||
|
assert Min(0, x, 1, y) == Min(0, x, y)
|
||
|
assert Min(1000, 100, -100, x, p, n) == Min(n, x, -100)
|
||
|
assert unchanged(Min, sin(x), cos(x))
|
||
|
assert Min(sin(x), cos(x)) == Min(cos(x), sin(x))
|
||
|
assert Min(cos(x), sin(x)).subs(x, 1) == cos(1)
|
||
|
assert Min(cos(x), sin(x)).subs(x, S.Half) == sin(S.Half)
|
||
|
raises(ValueError, lambda: Min(cos(x), sin(x)).subs(x, I))
|
||
|
raises(ValueError, lambda: Min(I))
|
||
|
raises(ValueError, lambda: Min(I, x))
|
||
|
raises(ValueError, lambda: Min(S.ComplexInfinity, x))
|
||
|
|
||
|
assert Min(1, x).diff(x) == Heaviside(1 - x)
|
||
|
assert Min(x, 1).diff(x) == Heaviside(1 - x)
|
||
|
assert Min(0, -x, 1 - 2*x).diff(x) == -Heaviside(x + Min(0, -2*x + 1)) \
|
||
|
- 2*Heaviside(2*x + Min(0, -x) - 1)
|
||
|
|
||
|
# issue 7619
|
||
|
f = Function('f')
|
||
|
assert Min(1, 2*Min(f(1), 2)) # doesn't fail
|
||
|
|
||
|
# issue 7233
|
||
|
e = Min(0, x)
|
||
|
assert e.n().args == (0, x)
|
||
|
|
||
|
# issue 8643
|
||
|
m = Min(n, p_, n_, r)
|
||
|
assert m.is_positive is False
|
||
|
assert m.is_nonnegative is False
|
||
|
assert m.is_negative is True
|
||
|
|
||
|
m = Min(p, p_)
|
||
|
assert m.is_positive is True
|
||
|
assert m.is_nonnegative is True
|
||
|
assert m.is_negative is False
|
||
|
|
||
|
m = Min(p, nn_, p_)
|
||
|
assert m.is_positive is None
|
||
|
assert m.is_nonnegative is True
|
||
|
assert m.is_negative is False
|
||
|
|
||
|
m = Min(nn, p, r)
|
||
|
assert m.is_positive is None
|
||
|
assert m.is_nonnegative is None
|
||
|
assert m.is_negative is None
|
||
|
|
||
|
|
||
|
def test_Max():
|
||
|
from sympy.abc import x, y, z
|
||
|
n = Symbol('n', negative=True)
|
||
|
n_ = Symbol('n_', negative=True)
|
||
|
nn = Symbol('nn', nonnegative=True)
|
||
|
p = Symbol('p', positive=True)
|
||
|
p_ = Symbol('p_', positive=True)
|
||
|
r = Symbol('r', real=True)
|
||
|
|
||
|
assert Max(5, 4) == 5
|
||
|
|
||
|
# lists
|
||
|
|
||
|
assert Max() is S.NegativeInfinity
|
||
|
assert Max(x) == x
|
||
|
assert Max(x, y) == Max(y, x)
|
||
|
assert Max(x, y, z) == Max(z, y, x)
|
||
|
assert Max(x, Max(y, z)) == Max(z, y, x)
|
||
|
assert Max(x, Min(y, oo)) == Max(x, y)
|
||
|
assert Max(n, -oo, n_, p, 2) == Max(p, 2)
|
||
|
assert Max(n, -oo, n_, p) == p
|
||
|
assert Max(2, x, p, n, -oo, S.NegativeInfinity, n_, p, 2) == Max(2, x, p)
|
||
|
assert Max(0, x, 1, y) == Max(1, x, y)
|
||
|
assert Max(r, r + 1, r - 1) == 1 + r
|
||
|
assert Max(1000, 100, -100, x, p, n) == Max(p, x, 1000)
|
||
|
assert Max(cos(x), sin(x)) == Max(sin(x), cos(x))
|
||
|
assert Max(cos(x), sin(x)).subs(x, 1) == sin(1)
|
||
|
assert Max(cos(x), sin(x)).subs(x, S.Half) == cos(S.Half)
|
||
|
raises(ValueError, lambda: Max(cos(x), sin(x)).subs(x, I))
|
||
|
raises(ValueError, lambda: Max(I))
|
||
|
raises(ValueError, lambda: Max(I, x))
|
||
|
raises(ValueError, lambda: Max(S.ComplexInfinity, 1))
|
||
|
assert Max(n, -oo, n_, p, 2) == Max(p, 2)
|
||
|
assert Max(n, -oo, n_, p, 1000) == Max(p, 1000)
|
||
|
|
||
|
assert Max(1, x).diff(x) == Heaviside(x - 1)
|
||
|
assert Max(x, 1).diff(x) == Heaviside(x - 1)
|
||
|
assert Max(x**2, 1 + x, 1).diff(x) == \
|
||
|
2*x*Heaviside(x**2 - Max(1, x + 1)) \
|
||
|
+ Heaviside(x - Max(1, x**2) + 1)
|
||
|
|
||
|
e = Max(0, x)
|
||
|
assert e.n().args == (0, x)
|
||
|
|
||
|
# issue 8643
|
||
|
m = Max(p, p_, n, r)
|
||
|
assert m.is_positive is True
|
||
|
assert m.is_nonnegative is True
|
||
|
assert m.is_negative is False
|
||
|
|
||
|
m = Max(n, n_)
|
||
|
assert m.is_positive is False
|
||
|
assert m.is_nonnegative is False
|
||
|
assert m.is_negative is True
|
||
|
|
||
|
m = Max(n, n_, r)
|
||
|
assert m.is_positive is None
|
||
|
assert m.is_nonnegative is None
|
||
|
assert m.is_negative is None
|
||
|
|
||
|
m = Max(n, nn, r)
|
||
|
assert m.is_positive is None
|
||
|
assert m.is_nonnegative is True
|
||
|
assert m.is_negative is False
|
||
|
|
||
|
|
||
|
def test_minmax_assumptions():
|
||
|
r = Symbol('r', real=True)
|
||
|
a = Symbol('a', real=True, algebraic=True)
|
||
|
t = Symbol('t', real=True, transcendental=True)
|
||
|
q = Symbol('q', rational=True)
|
||
|
p = Symbol('p', irrational=True)
|
||
|
n = Symbol('n', rational=True, integer=False)
|
||
|
i = Symbol('i', integer=True)
|
||
|
o = Symbol('o', odd=True)
|
||
|
e = Symbol('e', even=True)
|
||
|
k = Symbol('k', prime=True)
|
||
|
reals = [r, a, t, q, p, n, i, o, e, k]
|
||
|
|
||
|
for ext in (Max, Min):
|
||
|
for x, y in it.product(reals, repeat=2):
|
||
|
|
||
|
# Must be real
|
||
|
assert ext(x, y).is_real
|
||
|
|
||
|
# Algebraic?
|
||
|
if x.is_algebraic and y.is_algebraic:
|
||
|
assert ext(x, y).is_algebraic
|
||
|
elif x.is_transcendental and y.is_transcendental:
|
||
|
assert ext(x, y).is_transcendental
|
||
|
else:
|
||
|
assert ext(x, y).is_algebraic is None
|
||
|
|
||
|
# Rational?
|
||
|
if x.is_rational and y.is_rational:
|
||
|
assert ext(x, y).is_rational
|
||
|
elif x.is_irrational and y.is_irrational:
|
||
|
assert ext(x, y).is_irrational
|
||
|
else:
|
||
|
assert ext(x, y).is_rational is None
|
||
|
|
||
|
# Integer?
|
||
|
if x.is_integer and y.is_integer:
|
||
|
assert ext(x, y).is_integer
|
||
|
elif x.is_noninteger and y.is_noninteger:
|
||
|
assert ext(x, y).is_noninteger
|
||
|
else:
|
||
|
assert ext(x, y).is_integer is None
|
||
|
|
||
|
# Odd?
|
||
|
if x.is_odd and y.is_odd:
|
||
|
assert ext(x, y).is_odd
|
||
|
elif x.is_odd is False and y.is_odd is False:
|
||
|
assert ext(x, y).is_odd is False
|
||
|
else:
|
||
|
assert ext(x, y).is_odd is None
|
||
|
|
||
|
# Even?
|
||
|
if x.is_even and y.is_even:
|
||
|
assert ext(x, y).is_even
|
||
|
elif x.is_even is False and y.is_even is False:
|
||
|
assert ext(x, y).is_even is False
|
||
|
else:
|
||
|
assert ext(x, y).is_even is None
|
||
|
|
||
|
# Prime?
|
||
|
if x.is_prime and y.is_prime:
|
||
|
assert ext(x, y).is_prime
|
||
|
elif x.is_prime is False and y.is_prime is False:
|
||
|
assert ext(x, y).is_prime is False
|
||
|
else:
|
||
|
assert ext(x, y).is_prime is None
|
||
|
|
||
|
|
||
|
def test_issue_8413():
|
||
|
x = Symbol('x', real=True)
|
||
|
# we can't evaluate in general because non-reals are not
|
||
|
# comparable: Min(floor(3.2 + I), 3.2 + I) -> ValueError
|
||
|
assert Min(floor(x), x) == floor(x)
|
||
|
assert Min(ceiling(x), x) == x
|
||
|
assert Max(floor(x), x) == x
|
||
|
assert Max(ceiling(x), x) == ceiling(x)
|
||
|
|
||
|
|
||
|
def test_root():
|
||
|
from sympy.abc import x
|
||
|
n = Symbol('n', integer=True)
|
||
|
k = Symbol('k', integer=True)
|
||
|
|
||
|
assert root(2, 2) == sqrt(2)
|
||
|
assert root(2, 1) == 2
|
||
|
assert root(2, 3) == 2**Rational(1, 3)
|
||
|
assert root(2, 3) == cbrt(2)
|
||
|
assert root(2, -5) == 2**Rational(4, 5)/2
|
||
|
|
||
|
assert root(-2, 1) == -2
|
||
|
|
||
|
assert root(-2, 2) == sqrt(2)*I
|
||
|
assert root(-2, 1) == -2
|
||
|
|
||
|
assert root(x, 2) == sqrt(x)
|
||
|
assert root(x, 1) == x
|
||
|
assert root(x, 3) == x**Rational(1, 3)
|
||
|
assert root(x, 3) == cbrt(x)
|
||
|
assert root(x, -5) == x**Rational(-1, 5)
|
||
|
|
||
|
assert root(x, n) == x**(1/n)
|
||
|
assert root(x, -n) == x**(-1/n)
|
||
|
|
||
|
assert root(x, n, k) == (-1)**(2*k/n)*x**(1/n)
|
||
|
|
||
|
|
||
|
def test_real_root():
|
||
|
assert real_root(-8, 3) == -2
|
||
|
assert real_root(-16, 4) == root(-16, 4)
|
||
|
r = root(-7, 4)
|
||
|
assert real_root(r) == r
|
||
|
r1 = root(-1, 3)
|
||
|
r2 = r1**2
|
||
|
r3 = root(-1, 4)
|
||
|
assert real_root(r1 + r2 + r3) == -1 + r2 + r3
|
||
|
assert real_root(root(-2, 3)) == -root(2, 3)
|
||
|
assert real_root(-8., 3) == -2.0
|
||
|
x = Symbol('x')
|
||
|
n = Symbol('n')
|
||
|
g = real_root(x, n)
|
||
|
assert g.subs({"x": -8, "n": 3}) == -2
|
||
|
assert g.subs({"x": 8, "n": 3}) == 2
|
||
|
# give principle root if there is no real root -- if this is not desired
|
||
|
# then maybe a Root class is needed to raise an error instead
|
||
|
assert g.subs({"x": I, "n": 3}) == cbrt(I)
|
||
|
assert g.subs({"x": -8, "n": 2}) == sqrt(-8)
|
||
|
assert g.subs({"x": I, "n": 2}) == sqrt(I)
|
||
|
|
||
|
|
||
|
def test_issue_11463():
|
||
|
numpy = import_module('numpy')
|
||
|
if not numpy:
|
||
|
skip("numpy not installed.")
|
||
|
x = Symbol('x')
|
||
|
f = lambdify(x, real_root((log(x/(x-2))), 3), 'numpy')
|
||
|
# numpy.select evaluates all options before considering conditions,
|
||
|
# so it raises a warning about root of negative number which does
|
||
|
# not affect the outcome. This warning is suppressed here
|
||
|
with ignore_warnings(RuntimeWarning):
|
||
|
assert f(numpy.array(-1)) < -1
|
||
|
|
||
|
|
||
|
def test_rewrite_MaxMin_as_Heaviside():
|
||
|
from sympy.abc import x
|
||
|
assert Max(0, x).rewrite(Heaviside) == x*Heaviside(x)
|
||
|
assert Max(3, x).rewrite(Heaviside) == x*Heaviside(x - 3) + \
|
||
|
3*Heaviside(-x + 3)
|
||
|
assert Max(0, x+2, 2*x).rewrite(Heaviside) == \
|
||
|
2*x*Heaviside(2*x)*Heaviside(x - 2) + \
|
||
|
(x + 2)*Heaviside(-x + 2)*Heaviside(x + 2)
|
||
|
|
||
|
assert Min(0, x).rewrite(Heaviside) == x*Heaviside(-x)
|
||
|
assert Min(3, x).rewrite(Heaviside) == x*Heaviside(-x + 3) + \
|
||
|
3*Heaviside(x - 3)
|
||
|
assert Min(x, -x, -2).rewrite(Heaviside) == \
|
||
|
x*Heaviside(-2*x)*Heaviside(-x - 2) - \
|
||
|
x*Heaviside(2*x)*Heaviside(x - 2) \
|
||
|
- 2*Heaviside(-x + 2)*Heaviside(x + 2)
|
||
|
|
||
|
|
||
|
def test_rewrite_MaxMin_as_Piecewise():
|
||
|
from sympy.core.symbol import symbols
|
||
|
from sympy.functions.elementary.piecewise import Piecewise
|
||
|
x, y, z, a, b = symbols('x y z a b', real=True)
|
||
|
vx, vy, va = symbols('vx vy va')
|
||
|
assert Max(a, b).rewrite(Piecewise) == Piecewise((a, a >= b), (b, True))
|
||
|
assert Max(x, y, z).rewrite(Piecewise) == Piecewise((x, (x >= y) & (x >= z)), (y, y >= z), (z, True))
|
||
|
assert Max(x, y, a, b).rewrite(Piecewise) == Piecewise((a, (a >= b) & (a >= x) & (a >= y)),
|
||
|
(b, (b >= x) & (b >= y)), (x, x >= y), (y, True))
|
||
|
assert Min(a, b).rewrite(Piecewise) == Piecewise((a, a <= b), (b, True))
|
||
|
assert Min(x, y, z).rewrite(Piecewise) == Piecewise((x, (x <= y) & (x <= z)), (y, y <= z), (z, True))
|
||
|
assert Min(x, y, a, b).rewrite(Piecewise) == Piecewise((a, (a <= b) & (a <= x) & (a <= y)),
|
||
|
(b, (b <= x) & (b <= y)), (x, x <= y), (y, True))
|
||
|
|
||
|
# Piecewise rewriting of Min/Max does also takes place for not explicitly real arguments
|
||
|
assert Max(vx, vy).rewrite(Piecewise) == Piecewise((vx, vx >= vy), (vy, True))
|
||
|
assert Min(va, vx, vy).rewrite(Piecewise) == Piecewise((va, (va <= vx) & (va <= vy)), (vx, vx <= vy), (vy, True))
|
||
|
|
||
|
|
||
|
def test_issue_11099():
|
||
|
from sympy.abc import x, y
|
||
|
# some fixed value tests
|
||
|
fixed_test_data = {x: -2, y: 3}
|
||
|
assert Min(x, y).evalf(subs=fixed_test_data) == \
|
||
|
Min(x, y).subs(fixed_test_data).evalf()
|
||
|
assert Max(x, y).evalf(subs=fixed_test_data) == \
|
||
|
Max(x, y).subs(fixed_test_data).evalf()
|
||
|
# randomly generate some test data
|
||
|
from sympy.core.random import randint
|
||
|
for i in range(20):
|
||
|
random_test_data = {x: randint(-100, 100), y: randint(-100, 100)}
|
||
|
assert Min(x, y).evalf(subs=random_test_data) == \
|
||
|
Min(x, y).subs(random_test_data).evalf()
|
||
|
assert Max(x, y).evalf(subs=random_test_data) == \
|
||
|
Max(x, y).subs(random_test_data).evalf()
|
||
|
|
||
|
|
||
|
def test_issue_12638():
|
||
|
from sympy.abc import a, b, c
|
||
|
assert Min(a, b, c, Max(a, b)) == Min(a, b, c)
|
||
|
assert Min(a, b, Max(a, b, c)) == Min(a, b)
|
||
|
assert Min(a, b, Max(a, c)) == Min(a, b)
|
||
|
|
||
|
def test_issue_21399():
|
||
|
from sympy.abc import a, b, c
|
||
|
assert Max(Min(a, b), Min(a, b, c)) == Min(a, b)
|
||
|
|
||
|
|
||
|
def test_instantiation_evaluation():
|
||
|
from sympy.abc import v, w, x, y, z
|
||
|
assert Min(1, Max(2, x)) == 1
|
||
|
assert Max(3, Min(2, x)) == 3
|
||
|
assert Min(Max(x, y), Max(x, z)) == Max(x, Min(y, z))
|
||
|
assert set(Min(Max(w, x), Max(y, z)).args) == {
|
||
|
Max(w, x), Max(y, z)}
|
||
|
assert Min(Max(x, y), Max(x, z), w) == Min(
|
||
|
w, Max(x, Min(y, z)))
|
||
|
A, B = Min, Max
|
||
|
for i in range(2):
|
||
|
assert A(x, B(x, y)) == x
|
||
|
assert A(x, B(y, A(x, w, z))) == A(x, B(y, A(w, z)))
|
||
|
A, B = B, A
|
||
|
assert Min(w, Max(x, y), Max(v, x, z)) == Min(
|
||
|
w, Max(x, Min(y, Max(v, z))))
|
||
|
|
||
|
def test_rewrite_as_Abs():
|
||
|
from itertools import permutations
|
||
|
from sympy.functions.elementary.complexes import Abs
|
||
|
from sympy.abc import x, y, z, w
|
||
|
def test(e):
|
||
|
free = e.free_symbols
|
||
|
a = e.rewrite(Abs)
|
||
|
assert not a.has(Min, Max)
|
||
|
for i in permutations(range(len(free))):
|
||
|
reps = dict(zip(free, i))
|
||
|
assert a.xreplace(reps) == e.xreplace(reps)
|
||
|
test(Min(x, y))
|
||
|
test(Max(x, y))
|
||
|
test(Min(x, y, z))
|
||
|
test(Min(Max(w, x), Max(y, z)))
|
||
|
|
||
|
def test_issue_14000():
|
||
|
assert isinstance(sqrt(4, evaluate=False), Pow) == True
|
||
|
assert isinstance(cbrt(3.5, evaluate=False), Pow) == True
|
||
|
assert isinstance(root(16, 4, evaluate=False), Pow) == True
|
||
|
|
||
|
assert sqrt(4, evaluate=False) == Pow(4, S.Half, evaluate=False)
|
||
|
assert cbrt(3.5, evaluate=False) == Pow(3.5, Rational(1, 3), evaluate=False)
|
||
|
assert root(4, 2, evaluate=False) == Pow(4, S.Half, evaluate=False)
|
||
|
|
||
|
assert root(16, 4, 2, evaluate=False).has(Pow) == True
|
||
|
assert real_root(-8, 3, evaluate=False).has(Pow) == True
|
||
|
|
||
|
def test_issue_6899():
|
||
|
from sympy.core.function import Lambda
|
||
|
x = Symbol('x')
|
||
|
eqn = Lambda(x, x)
|
||
|
assert eqn.func(*eqn.args) == eqn
|
||
|
|
||
|
def test_Rem():
|
||
|
from sympy.abc import x, y
|
||
|
assert Rem(5, 3) == 2
|
||
|
assert Rem(-5, 3) == -2
|
||
|
assert Rem(5, -3) == 2
|
||
|
assert Rem(-5, -3) == -2
|
||
|
assert Rem(x**3, y) == Rem(x**3, y)
|
||
|
assert Rem(Rem(-5, 3) + 3, 3) == 1
|
||
|
|
||
|
|
||
|
def test_minmax_no_evaluate():
|
||
|
from sympy import evaluate
|
||
|
p = Symbol('p', positive=True)
|
||
|
|
||
|
assert Max(1, 3) == 3
|
||
|
assert Max(1, 3).args == ()
|
||
|
assert Max(0, p) == p
|
||
|
assert Max(0, p).args == ()
|
||
|
assert Min(0, p) == 0
|
||
|
assert Min(0, p).args == ()
|
||
|
|
||
|
assert Max(1, 3, evaluate=False) != 3
|
||
|
assert Max(1, 3, evaluate=False).args == (1, 3)
|
||
|
assert Max(0, p, evaluate=False) != p
|
||
|
assert Max(0, p, evaluate=False).args == (0, p)
|
||
|
assert Min(0, p, evaluate=False) != 0
|
||
|
assert Min(0, p, evaluate=False).args == (0, p)
|
||
|
|
||
|
with evaluate(False):
|
||
|
assert Max(1, 3) != 3
|
||
|
assert Max(1, 3).args == (1, 3)
|
||
|
assert Max(0, p) != p
|
||
|
assert Max(0, p).args == (0, p)
|
||
|
assert Min(0, p) != 0
|
||
|
assert Min(0, p).args == (0, p)
|