1607 lines
60 KiB
Python
1607 lines
60 KiB
Python
|
from sympy.concrete.summations import Sum
|
||
|
from sympy.core.add import Add
|
||
|
from sympy.core.basic import Basic
|
||
|
from sympy.core.containers import Tuple
|
||
|
from sympy.core.expr import unchanged
|
||
|
from sympy.core.function import (Function, diff, expand)
|
||
|
from sympy.core.mul import Mul
|
||
|
from sympy.core.mod import Mod
|
||
|
from sympy.core.numbers import (Float, I, Rational, oo, pi, zoo)
|
||
|
from sympy.core.relational import (Eq, Ge, Gt, Ne)
|
||
|
from sympy.core.singleton import S
|
||
|
from sympy.core.symbol import (Symbol, symbols)
|
||
|
from sympy.functions.combinatorial.factorials import factorial
|
||
|
from sympy.functions.elementary.complexes import (Abs, adjoint, arg, conjugate, im, re, transpose)
|
||
|
from sympy.functions.elementary.exponential import (exp, log)
|
||
|
from sympy.functions.elementary.miscellaneous import (Max, Min, sqrt)
|
||
|
from sympy.functions.elementary.piecewise import (Piecewise,
|
||
|
piecewise_fold, piecewise_exclusive, Undefined, ExprCondPair)
|
||
|
from sympy.functions.elementary.trigonometric import (cos, sin)
|
||
|
from sympy.functions.special.delta_functions import (DiracDelta, Heaviside)
|
||
|
from sympy.functions.special.tensor_functions import KroneckerDelta
|
||
|
from sympy.integrals.integrals import (Integral, integrate)
|
||
|
from sympy.logic.boolalg import (And, ITE, Not, Or)
|
||
|
from sympy.matrices.expressions.matexpr import MatrixSymbol
|
||
|
from sympy.printing import srepr
|
||
|
from sympy.sets.contains import Contains
|
||
|
from sympy.sets.sets import Interval
|
||
|
from sympy.solvers.solvers import solve
|
||
|
from sympy.testing.pytest import raises, slow
|
||
|
from sympy.utilities.lambdify import lambdify
|
||
|
|
||
|
a, b, c, d, x, y = symbols('a:d, x, y')
|
||
|
z = symbols('z', nonzero=True)
|
||
|
|
||
|
|
||
|
def test_piecewise1():
|
||
|
|
||
|
# Test canonicalization
|
||
|
assert unchanged(Piecewise, ExprCondPair(x, x < 1), ExprCondPair(0, True))
|
||
|
assert Piecewise((x, x < 1), (0, True)) == Piecewise(ExprCondPair(x, x < 1),
|
||
|
ExprCondPair(0, True))
|
||
|
assert Piecewise((x, x < 1), (0, True), (1, True)) == \
|
||
|
Piecewise((x, x < 1), (0, True))
|
||
|
assert Piecewise((x, x < 1), (0, False), (-1, 1 > 2)) == \
|
||
|
Piecewise((x, x < 1))
|
||
|
assert Piecewise((x, x < 1), (0, x < 1), (0, True)) == \
|
||
|
Piecewise((x, x < 1), (0, True))
|
||
|
assert Piecewise((x, x < 1), (0, x < 2), (0, True)) == \
|
||
|
Piecewise((x, x < 1), (0, True))
|
||
|
assert Piecewise((x, x < 1), (x, x < 2), (0, True)) == \
|
||
|
Piecewise((x, Or(x < 1, x < 2)), (0, True))
|
||
|
assert Piecewise((x, x < 1), (x, x < 2), (x, True)) == x
|
||
|
assert Piecewise((x, True)) == x
|
||
|
# Explicitly constructed empty Piecewise not accepted
|
||
|
raises(TypeError, lambda: Piecewise())
|
||
|
# False condition is never retained
|
||
|
assert Piecewise((2*x, x < 0), (x, False)) == \
|
||
|
Piecewise((2*x, x < 0), (x, False), evaluate=False) == \
|
||
|
Piecewise((2*x, x < 0))
|
||
|
assert Piecewise((x, False)) == Undefined
|
||
|
raises(TypeError, lambda: Piecewise(x))
|
||
|
assert Piecewise((x, 1)) == x # 1 and 0 are accepted as True/False
|
||
|
raises(TypeError, lambda: Piecewise((x, 2)))
|
||
|
raises(TypeError, lambda: Piecewise((x, x**2)))
|
||
|
raises(TypeError, lambda: Piecewise(([1], True)))
|
||
|
assert Piecewise(((1, 2), True)) == Tuple(1, 2)
|
||
|
cond = (Piecewise((1, x < 0), (2, True)) < y)
|
||
|
assert Piecewise((1, cond)
|
||
|
) == Piecewise((1, ITE(x < 0, y > 1, y > 2)))
|
||
|
|
||
|
assert Piecewise((1, x > 0), (2, And(x <= 0, x > -1))
|
||
|
) == Piecewise((1, x > 0), (2, x > -1))
|
||
|
assert Piecewise((1, x <= 0), (2, (x < 0) & (x > -1))
|
||
|
) == Piecewise((1, x <= 0))
|
||
|
|
||
|
# test for supporting Contains in Piecewise
|
||
|
pwise = Piecewise(
|
||
|
(1, And(x <= 6, x > 1, Contains(x, S.Integers))),
|
||
|
(0, True))
|
||
|
assert pwise.subs(x, pi) == 0
|
||
|
assert pwise.subs(x, 2) == 1
|
||
|
assert pwise.subs(x, 7) == 0
|
||
|
|
||
|
# Test subs
|
||
|
p = Piecewise((-1, x < -1), (x**2, x < 0), (log(x), x >= 0))
|
||
|
p_x2 = Piecewise((-1, x**2 < -1), (x**4, x**2 < 0), (log(x**2), x**2 >= 0))
|
||
|
assert p.subs(x, x**2) == p_x2
|
||
|
assert p.subs(x, -5) == -1
|
||
|
assert p.subs(x, -1) == 1
|
||
|
assert p.subs(x, 1) == log(1)
|
||
|
|
||
|
# More subs tests
|
||
|
p2 = Piecewise((1, x < pi), (-1, x < 2*pi), (0, x > 2*pi))
|
||
|
p3 = Piecewise((1, Eq(x, 0)), (1/x, True))
|
||
|
p4 = Piecewise((1, Eq(x, 0)), (2, 1/x>2))
|
||
|
assert p2.subs(x, 2) == 1
|
||
|
assert p2.subs(x, 4) == -1
|
||
|
assert p2.subs(x, 10) == 0
|
||
|
assert p3.subs(x, 0.0) == 1
|
||
|
assert p4.subs(x, 0.0) == 1
|
||
|
|
||
|
|
||
|
f, g, h = symbols('f,g,h', cls=Function)
|
||
|
pf = Piecewise((f(x), x < -1), (f(x) + h(x) + 2, x <= 1))
|
||
|
pg = Piecewise((g(x), x < -1), (g(x) + h(x) + 2, x <= 1))
|
||
|
assert pg.subs(g, f) == pf
|
||
|
|
||
|
assert Piecewise((1, Eq(x, 0)), (0, True)).subs(x, 0) == 1
|
||
|
assert Piecewise((1, Eq(x, 0)), (0, True)).subs(x, 1) == 0
|
||
|
assert Piecewise((1, Eq(x, y)), (0, True)).subs(x, y) == 1
|
||
|
assert Piecewise((1, Eq(x, z)), (0, True)).subs(x, z) == 1
|
||
|
assert Piecewise((1, Eq(exp(x), cos(z))), (0, True)).subs(x, z) == \
|
||
|
Piecewise((1, Eq(exp(z), cos(z))), (0, True))
|
||
|
|
||
|
p5 = Piecewise( (0, Eq(cos(x) + y, 0)), (1, True))
|
||
|
assert p5.subs(y, 0) == Piecewise( (0, Eq(cos(x), 0)), (1, True))
|
||
|
|
||
|
assert Piecewise((-1, y < 1), (0, x < 0), (1, Eq(x, 0)), (2, True)
|
||
|
).subs(x, 1) == Piecewise((-1, y < 1), (2, True))
|
||
|
assert Piecewise((1, Eq(x**2, -1)), (2, x < 0)).subs(x, I) == 1
|
||
|
|
||
|
p6 = Piecewise((x, x > 0))
|
||
|
n = symbols('n', negative=True)
|
||
|
assert p6.subs(x, n) == Undefined
|
||
|
|
||
|
# Test evalf
|
||
|
assert p.evalf() == Piecewise((-1.0, x < -1), (x**2, x < 0), (log(x), True))
|
||
|
assert p.evalf(subs={x: -2}) == -1.0
|
||
|
assert p.evalf(subs={x: -1}) == 1.0
|
||
|
assert p.evalf(subs={x: 1}) == log(1)
|
||
|
assert p6.evalf(subs={x: -5}) == Undefined
|
||
|
|
||
|
# Test doit
|
||
|
f_int = Piecewise((Integral(x, (x, 0, 1)), x < 1))
|
||
|
assert f_int.doit() == Piecewise( (S.Half, x < 1) )
|
||
|
|
||
|
# Test differentiation
|
||
|
f = x
|
||
|
fp = x*p
|
||
|
dp = Piecewise((0, x < -1), (2*x, x < 0), (1/x, x >= 0))
|
||
|
fp_dx = x*dp + p
|
||
|
assert diff(p, x) == dp
|
||
|
assert diff(f*p, x) == fp_dx
|
||
|
|
||
|
# Test simple arithmetic
|
||
|
assert x*p == fp
|
||
|
assert x*p + p == p + x*p
|
||
|
assert p + f == f + p
|
||
|
assert p + dp == dp + p
|
||
|
assert p - dp == -(dp - p)
|
||
|
|
||
|
# Test power
|
||
|
dp2 = Piecewise((0, x < -1), (4*x**2, x < 0), (1/x**2, x >= 0))
|
||
|
assert dp**2 == dp2
|
||
|
|
||
|
# Test _eval_interval
|
||
|
f1 = x*y + 2
|
||
|
f2 = x*y**2 + 3
|
||
|
peval = Piecewise((f1, x < 0), (f2, x > 0))
|
||
|
peval_interval = f1.subs(
|
||
|
x, 0) - f1.subs(x, -1) + f2.subs(x, 1) - f2.subs(x, 0)
|
||
|
assert peval._eval_interval(x, 0, 0) == 0
|
||
|
assert peval._eval_interval(x, -1, 1) == peval_interval
|
||
|
peval2 = Piecewise((f1, x < 0), (f2, True))
|
||
|
assert peval2._eval_interval(x, 0, 0) == 0
|
||
|
assert peval2._eval_interval(x, 1, -1) == -peval_interval
|
||
|
assert peval2._eval_interval(x, -1, -2) == f1.subs(x, -2) - f1.subs(x, -1)
|
||
|
assert peval2._eval_interval(x, -1, 1) == peval_interval
|
||
|
assert peval2._eval_interval(x, None, 0) == peval2.subs(x, 0)
|
||
|
assert peval2._eval_interval(x, -1, None) == -peval2.subs(x, -1)
|
||
|
|
||
|
# Test integration
|
||
|
assert p.integrate() == Piecewise(
|
||
|
(-x, x < -1),
|
||
|
(x**3/3 + Rational(4, 3), x < 0),
|
||
|
(x*log(x) - x + Rational(4, 3), True))
|
||
|
p = Piecewise((x, x < 1), (x**2, -1 <= x), (x, 3 < x))
|
||
|
assert integrate(p, (x, -2, 2)) == Rational(5, 6)
|
||
|
assert integrate(p, (x, 2, -2)) == Rational(-5, 6)
|
||
|
p = Piecewise((0, x < 0), (1, x < 1), (0, x < 2), (1, x < 3), (0, True))
|
||
|
assert integrate(p, (x, -oo, oo)) == 2
|
||
|
p = Piecewise((x, x < -10), (x**2, x <= -1), (x, 1 < x))
|
||
|
assert integrate(p, (x, -2, 2)) == Undefined
|
||
|
|
||
|
# Test commutativity
|
||
|
assert isinstance(p, Piecewise) and p.is_commutative is True
|
||
|
|
||
|
|
||
|
def test_piecewise_free_symbols():
|
||
|
f = Piecewise((x, a < 0), (y, True))
|
||
|
assert f.free_symbols == {x, y, a}
|
||
|
|
||
|
|
||
|
def test_piecewise_integrate1():
|
||
|
x, y = symbols('x y', real=True)
|
||
|
|
||
|
f = Piecewise(((x - 2)**2, x >= 0), (1, True))
|
||
|
assert integrate(f, (x, -2, 2)) == Rational(14, 3)
|
||
|
|
||
|
g = Piecewise(((x - 5)**5, x >= 4), (f, True))
|
||
|
assert integrate(g, (x, -2, 2)) == Rational(14, 3)
|
||
|
assert integrate(g, (x, -2, 5)) == Rational(43, 6)
|
||
|
|
||
|
assert g == Piecewise(((x - 5)**5, x >= 4), (f, x < 4))
|
||
|
|
||
|
g = Piecewise(((x - 5)**5, 2 <= x), (f, x < 2))
|
||
|
assert integrate(g, (x, -2, 2)) == Rational(14, 3)
|
||
|
assert integrate(g, (x, -2, 5)) == Rational(-701, 6)
|
||
|
|
||
|
assert g == Piecewise(((x - 5)**5, 2 <= x), (f, True))
|
||
|
|
||
|
g = Piecewise(((x - 5)**5, 2 <= x), (2*f, True))
|
||
|
assert integrate(g, (x, -2, 2)) == Rational(28, 3)
|
||
|
assert integrate(g, (x, -2, 5)) == Rational(-673, 6)
|
||
|
|
||
|
|
||
|
def test_piecewise_integrate1b():
|
||
|
g = Piecewise((1, x > 0), (0, Eq(x, 0)), (-1, x < 0))
|
||
|
assert integrate(g, (x, -1, 1)) == 0
|
||
|
|
||
|
g = Piecewise((1, x - y < 0), (0, True))
|
||
|
assert integrate(g, (y, -oo, 0)) == -Min(0, x)
|
||
|
assert g.subs(x, -3).integrate((y, -oo, 0)) == 3
|
||
|
assert integrate(g, (y, 0, -oo)) == Min(0, x)
|
||
|
assert integrate(g, (y, 0, oo)) == -Max(0, x) + oo
|
||
|
assert integrate(g, (y, -oo, 42)) == -Min(42, x) + 42
|
||
|
assert integrate(g, (y, -oo, oo)) == -x + oo
|
||
|
|
||
|
g = Piecewise((0, x < 0), (x, x <= 1), (1, True))
|
||
|
gy1 = g.integrate((x, y, 1))
|
||
|
g1y = g.integrate((x, 1, y))
|
||
|
for yy in (-1, S.Half, 2):
|
||
|
assert g.integrate((x, yy, 1)) == gy1.subs(y, yy)
|
||
|
assert g.integrate((x, 1, yy)) == g1y.subs(y, yy)
|
||
|
assert gy1 == Piecewise(
|
||
|
(-Min(1, Max(0, y))**2/2 + S.Half, y < 1),
|
||
|
(-y + 1, True))
|
||
|
assert g1y == Piecewise(
|
||
|
(Min(1, Max(0, y))**2/2 - S.Half, y < 1),
|
||
|
(y - 1, True))
|
||
|
|
||
|
|
||
|
@slow
|
||
|
def test_piecewise_integrate1ca():
|
||
|
y = symbols('y', real=True)
|
||
|
g = Piecewise(
|
||
|
(1 - x, Interval(0, 1).contains(x)),
|
||
|
(1 + x, Interval(-1, 0).contains(x)),
|
||
|
(0, True)
|
||
|
)
|
||
|
gy1 = g.integrate((x, y, 1))
|
||
|
g1y = g.integrate((x, 1, y))
|
||
|
|
||
|
assert g.integrate((x, -2, 1)) == gy1.subs(y, -2)
|
||
|
assert g.integrate((x, 1, -2)) == g1y.subs(y, -2)
|
||
|
assert g.integrate((x, 0, 1)) == gy1.subs(y, 0)
|
||
|
assert g.integrate((x, 1, 0)) == g1y.subs(y, 0)
|
||
|
assert g.integrate((x, 2, 1)) == gy1.subs(y, 2)
|
||
|
assert g.integrate((x, 1, 2)) == g1y.subs(y, 2)
|
||
|
assert piecewise_fold(gy1.rewrite(Piecewise)
|
||
|
).simplify() == Piecewise(
|
||
|
(1, y <= -1),
|
||
|
(-y**2/2 - y + S.Half, y <= 0),
|
||
|
(y**2/2 - y + S.Half, y < 1),
|
||
|
(0, True))
|
||
|
assert piecewise_fold(g1y.rewrite(Piecewise)
|
||
|
).simplify() == Piecewise(
|
||
|
(-1, y <= -1),
|
||
|
(y**2/2 + y - S.Half, y <= 0),
|
||
|
(-y**2/2 + y - S.Half, y < 1),
|
||
|
(0, True))
|
||
|
assert gy1 == Piecewise(
|
||
|
(
|
||
|
-Min(1, Max(-1, y))**2/2 - Min(1, Max(-1, y)) +
|
||
|
Min(1, Max(0, y))**2 + S.Half, y < 1),
|
||
|
(0, True)
|
||
|
)
|
||
|
assert g1y == Piecewise(
|
||
|
(
|
||
|
Min(1, Max(-1, y))**2/2 + Min(1, Max(-1, y)) -
|
||
|
Min(1, Max(0, y))**2 - S.Half, y < 1),
|
||
|
(0, True))
|
||
|
|
||
|
|
||
|
@slow
|
||
|
def test_piecewise_integrate1cb():
|
||
|
y = symbols('y', real=True)
|
||
|
g = Piecewise(
|
||
|
(0, Or(x <= -1, x >= 1)),
|
||
|
(1 - x, x > 0),
|
||
|
(1 + x, True)
|
||
|
)
|
||
|
gy1 = g.integrate((x, y, 1))
|
||
|
g1y = g.integrate((x, 1, y))
|
||
|
|
||
|
assert g.integrate((x, -2, 1)) == gy1.subs(y, -2)
|
||
|
assert g.integrate((x, 1, -2)) == g1y.subs(y, -2)
|
||
|
assert g.integrate((x, 0, 1)) == gy1.subs(y, 0)
|
||
|
assert g.integrate((x, 1, 0)) == g1y.subs(y, 0)
|
||
|
assert g.integrate((x, 2, 1)) == gy1.subs(y, 2)
|
||
|
assert g.integrate((x, 1, 2)) == g1y.subs(y, 2)
|
||
|
|
||
|
assert piecewise_fold(gy1.rewrite(Piecewise)
|
||
|
).simplify() == Piecewise(
|
||
|
(1, y <= -1),
|
||
|
(-y**2/2 - y + S.Half, y <= 0),
|
||
|
(y**2/2 - y + S.Half, y < 1),
|
||
|
(0, True))
|
||
|
assert piecewise_fold(g1y.rewrite(Piecewise)
|
||
|
).simplify() == Piecewise(
|
||
|
(-1, y <= -1),
|
||
|
(y**2/2 + y - S.Half, y <= 0),
|
||
|
(-y**2/2 + y - S.Half, y < 1),
|
||
|
(0, True))
|
||
|
|
||
|
# g1y and gy1 should simplify if the condition that y < 1
|
||
|
# is applied, e.g. Min(1, Max(-1, y)) --> Max(-1, y)
|
||
|
assert gy1 == Piecewise(
|
||
|
(
|
||
|
-Min(1, Max(-1, y))**2/2 - Min(1, Max(-1, y)) +
|
||
|
Min(1, Max(0, y))**2 + S.Half, y < 1),
|
||
|
(0, True)
|
||
|
)
|
||
|
assert g1y == Piecewise(
|
||
|
(
|
||
|
Min(1, Max(-1, y))**2/2 + Min(1, Max(-1, y)) -
|
||
|
Min(1, Max(0, y))**2 - S.Half, y < 1),
|
||
|
(0, True))
|
||
|
|
||
|
|
||
|
def test_piecewise_integrate2():
|
||
|
from itertools import permutations
|
||
|
lim = Tuple(x, c, d)
|
||
|
p = Piecewise((1, x < a), (2, x > b), (3, True))
|
||
|
q = p.integrate(lim)
|
||
|
assert q == Piecewise(
|
||
|
(-c + 2*d - 2*Min(d, Max(a, c)) + Min(d, Max(a, b, c)), c < d),
|
||
|
(-2*c + d + 2*Min(c, Max(a, d)) - Min(c, Max(a, b, d)), True))
|
||
|
for v in permutations((1, 2, 3, 4)):
|
||
|
r = dict(zip((a, b, c, d), v))
|
||
|
assert p.subs(r).integrate(lim.subs(r)) == q.subs(r)
|
||
|
|
||
|
|
||
|
def test_meijer_bypass():
|
||
|
# totally bypass meijerg machinery when dealing
|
||
|
# with Piecewise in integrate
|
||
|
assert Piecewise((1, x < 4), (0, True)).integrate((x, oo, 1)) == -3
|
||
|
|
||
|
|
||
|
def test_piecewise_integrate3_inequality_conditions():
|
||
|
from sympy.utilities.iterables import cartes
|
||
|
lim = (x, 0, 5)
|
||
|
# set below includes two pts below range, 2 pts in range,
|
||
|
# 2 pts above range, and the boundaries
|
||
|
N = (-2, -1, 0, 1, 2, 5, 6, 7)
|
||
|
|
||
|
p = Piecewise((1, x > a), (2, x > b), (0, True))
|
||
|
ans = p.integrate(lim)
|
||
|
for i, j in cartes(N, repeat=2):
|
||
|
reps = dict(zip((a, b), (i, j)))
|
||
|
assert ans.subs(reps) == p.subs(reps).integrate(lim)
|
||
|
assert ans.subs(a, 4).subs(b, 1) == 0 + 2*3 + 1
|
||
|
|
||
|
p = Piecewise((1, x > a), (2, x < b), (0, True))
|
||
|
ans = p.integrate(lim)
|
||
|
for i, j in cartes(N, repeat=2):
|
||
|
reps = dict(zip((a, b), (i, j)))
|
||
|
assert ans.subs(reps) == p.subs(reps).integrate(lim)
|
||
|
|
||
|
# delete old tests that involved c1 and c2 since those
|
||
|
# reduce to the above except that a value of 0 was used
|
||
|
# for two expressions whereas the above uses 3 different
|
||
|
# values
|
||
|
|
||
|
|
||
|
@slow
|
||
|
def test_piecewise_integrate4_symbolic_conditions():
|
||
|
a = Symbol('a', real=True)
|
||
|
b = Symbol('b', real=True)
|
||
|
x = Symbol('x', real=True)
|
||
|
y = Symbol('y', real=True)
|
||
|
p0 = Piecewise((0, Or(x < a, x > b)), (1, True))
|
||
|
p1 = Piecewise((0, x < a), (0, x > b), (1, True))
|
||
|
p2 = Piecewise((0, x > b), (0, x < a), (1, True))
|
||
|
p3 = Piecewise((0, x < a), (1, x < b), (0, True))
|
||
|
p4 = Piecewise((0, x > b), (1, x > a), (0, True))
|
||
|
p5 = Piecewise((1, And(a < x, x < b)), (0, True))
|
||
|
|
||
|
# check values of a=1, b=3 (and reversed) with values
|
||
|
# of y of 0, 1, 2, 3, 4
|
||
|
lim = Tuple(x, -oo, y)
|
||
|
for p in (p0, p1, p2, p3, p4, p5):
|
||
|
ans = p.integrate(lim)
|
||
|
for i in range(5):
|
||
|
reps = {a:1, b:3, y:i}
|
||
|
assert ans.subs(reps) == p.subs(reps).integrate(lim.subs(reps))
|
||
|
reps = {a: 3, b:1, y:i}
|
||
|
assert ans.subs(reps) == p.subs(reps).integrate(lim.subs(reps))
|
||
|
lim = Tuple(x, y, oo)
|
||
|
for p in (p0, p1, p2, p3, p4, p5):
|
||
|
ans = p.integrate(lim)
|
||
|
for i in range(5):
|
||
|
reps = {a:1, b:3, y:i}
|
||
|
assert ans.subs(reps) == p.subs(reps).integrate(lim.subs(reps))
|
||
|
reps = {a:3, b:1, y:i}
|
||
|
assert ans.subs(reps) == p.subs(reps).integrate(lim.subs(reps))
|
||
|
|
||
|
ans = Piecewise(
|
||
|
(0, x <= Min(a, b)),
|
||
|
(x - Min(a, b), x <= b),
|
||
|
(b - Min(a, b), True))
|
||
|
for i in (p0, p1, p2, p4):
|
||
|
assert i.integrate(x) == ans
|
||
|
assert p3.integrate(x) == Piecewise(
|
||
|
(0, x < a),
|
||
|
(-a + x, x <= Max(a, b)),
|
||
|
(-a + Max(a, b), True))
|
||
|
assert p5.integrate(x) == Piecewise(
|
||
|
(0, x <= a),
|
||
|
(-a + x, x <= Max(a, b)),
|
||
|
(-a + Max(a, b), True))
|
||
|
|
||
|
p1 = Piecewise((0, x < a), (S.Half, x > b), (1, True))
|
||
|
p2 = Piecewise((S.Half, x > b), (0, x < a), (1, True))
|
||
|
p3 = Piecewise((0, x < a), (1, x < b), (S.Half, True))
|
||
|
p4 = Piecewise((S.Half, x > b), (1, x > a), (0, True))
|
||
|
p5 = Piecewise((1, And(a < x, x < b)), (S.Half, x > b), (0, True))
|
||
|
|
||
|
# check values of a=1, b=3 (and reversed) with values
|
||
|
# of y of 0, 1, 2, 3, 4
|
||
|
lim = Tuple(x, -oo, y)
|
||
|
for p in (p1, p2, p3, p4, p5):
|
||
|
ans = p.integrate(lim)
|
||
|
for i in range(5):
|
||
|
reps = {a:1, b:3, y:i}
|
||
|
assert ans.subs(reps) == p.subs(reps).integrate(lim.subs(reps))
|
||
|
reps = {a: 3, b:1, y:i}
|
||
|
assert ans.subs(reps) == p.subs(reps).integrate(lim.subs(reps))
|
||
|
|
||
|
|
||
|
def test_piecewise_integrate5_independent_conditions():
|
||
|
p = Piecewise((0, Eq(y, 0)), (x*y, True))
|
||
|
assert integrate(p, (x, 1, 3)) == Piecewise((0, Eq(y, 0)), (4*y, True))
|
||
|
|
||
|
|
||
|
def test_issue_22917():
|
||
|
p = (Piecewise((0, ITE((x - y > 1) | (2 * x - 2 * y > 1), False,
|
||
|
ITE(x - y > 1, 2 * y - 2 < -1, 2 * x - 2 * y > 1))),
|
||
|
(Piecewise((0, ITE(x - y > 1, True, 2 * x - 2 * y > 1)),
|
||
|
(2 * Piecewise((0, x - y > 1), (y, True)), True)), True))
|
||
|
+ 2 * Piecewise((1, ITE((x - y > 1) | (2 * x - 2 * y > 1), False,
|
||
|
ITE(x - y > 1, 2 * y - 2 < -1, 2 * x - 2 * y > 1))),
|
||
|
(Piecewise((1, ITE(x - y > 1, True, 2 * x - 2 * y > 1)),
|
||
|
(2 * Piecewise((1, x - y > 1), (x, True)), True)), True)))
|
||
|
assert piecewise_fold(p) == Piecewise((2, (x - y > S.Half) | (x - y > 1)),
|
||
|
(2*y + 4, x - y > 1),
|
||
|
(4*x + 2*y, True))
|
||
|
assert piecewise_fold(p > 1).rewrite(ITE) == ITE((x - y > S.Half) | (x - y > 1), True,
|
||
|
ITE(x - y > 1, 2*y + 4 > 1, 4*x + 2*y > 1))
|
||
|
|
||
|
|
||
|
def test_piecewise_simplify():
|
||
|
p = Piecewise(((x**2 + 1)/x**2, Eq(x*(1 + x) - x**2, 0)),
|
||
|
((-1)**x*(-1), True))
|
||
|
assert p.simplify() == \
|
||
|
Piecewise((zoo, Eq(x, 0)), ((-1)**(x + 1), True))
|
||
|
# simplify when there are Eq in conditions
|
||
|
assert Piecewise(
|
||
|
(a, And(Eq(a, 0), Eq(a + b, 0))), (1, True)).simplify(
|
||
|
) == Piecewise(
|
||
|
(0, And(Eq(a, 0), Eq(b, 0))), (1, True))
|
||
|
assert Piecewise((2*x*factorial(a)/(factorial(y)*factorial(-y + a)),
|
||
|
Eq(y, 0) & Eq(-y + a, 0)), (2*factorial(a)/(factorial(y)*factorial(-y
|
||
|
+ a)), Eq(y, 0) & Eq(-y + a, 1)), (0, True)).simplify(
|
||
|
) == Piecewise(
|
||
|
(2*x, And(Eq(a, 0), Eq(y, 0))),
|
||
|
(2, And(Eq(a, 1), Eq(y, 0))),
|
||
|
(0, True))
|
||
|
args = (2, And(Eq(x, 2), Ge(y, 0))), (x, True)
|
||
|
assert Piecewise(*args).simplify() == Piecewise(*args)
|
||
|
args = (1, Eq(x, 0)), (sin(x)/x, True)
|
||
|
assert Piecewise(*args).simplify() == Piecewise(*args)
|
||
|
assert Piecewise((2 + y, And(Eq(x, 2), Eq(y, 0))), (x, True)
|
||
|
).simplify() == x
|
||
|
# check that x or f(x) are recognized as being Symbol-like for lhs
|
||
|
args = Tuple((1, Eq(x, 0)), (sin(x) + 1 + x, True))
|
||
|
ans = x + sin(x) + 1
|
||
|
f = Function('f')
|
||
|
assert Piecewise(*args).simplify() == ans
|
||
|
assert Piecewise(*args.subs(x, f(x))).simplify() == ans.subs(x, f(x))
|
||
|
|
||
|
# issue 18634
|
||
|
d = Symbol("d", integer=True)
|
||
|
n = Symbol("n", integer=True)
|
||
|
t = Symbol("t", positive=True)
|
||
|
expr = Piecewise((-d + 2*n, Eq(1/t, 1)), (t**(1 - 4*n)*t**(4*n - 1)*(-d + 2*n), True))
|
||
|
assert expr.simplify() == -d + 2*n
|
||
|
|
||
|
# issue 22747
|
||
|
p = Piecewise((0, (t < -2) & (t < -1) & (t < 0)), ((t/2 + 1)*(t +
|
||
|
1)*(t + 2), (t < -1) & (t < 0)), ((S.Half - t/2)*(1 - t)*(t + 1),
|
||
|
(t < -2) & (t < -1) & (t < 1)), ((t + 1)*(-t*(t/2 + 1) + (S.Half
|
||
|
- t/2)*(1 - t)), (t < -2) & (t < -1) & (t < 0) & (t < 1)), ((t +
|
||
|
1)*((S.Half - t/2)*(1 - t) + (t/2 + 1)*(t + 2)), (t < -1) & (t <
|
||
|
1)), ((t + 1)*(-t*(t/2 + 1) + (S.Half - t/2)*(1 - t)), (t < -1) &
|
||
|
(t < 0) & (t < 1)), (0, (t < -2) & (t < -1)), ((t/2 + 1)*(t +
|
||
|
1)*(t + 2), t < -1), ((t + 1)*(-t*(t/2 + 1) + (S.Half - t/2)*(t +
|
||
|
1)), (t < 0) & ((t < -2) | (t < 0))), ((S.Half - t/2)*(1 - t)*(t
|
||
|
+ 1), (t < 1) & ((t < -2) | (t < 1))), (0, True)) + Piecewise((0,
|
||
|
(t < -1) & (t < 0) & (t < 1)), ((1 - t)*(t/2 + S.Half)*(t + 1),
|
||
|
(t < 0) & (t < 1)), ((1 - t)*(1 - t/2)*(2 - t), (t < -1) & (t <
|
||
|
0) & (t < 2)), ((1 - t)*((1 - t)*(t/2 + S.Half) + (1 - t/2)*(2 -
|
||
|
t)), (t < -1) & (t < 0) & (t < 1) & (t < 2)), ((1 - t)*((1 -
|
||
|
t/2)*(2 - t) + (t/2 + S.Half)*(t + 1)), (t < 0) & (t < 2)), ((1 -
|
||
|
t)*((1 - t)*(t/2 + S.Half) + (1 - t/2)*(2 - t)), (t < 0) & (t <
|
||
|
1) & (t < 2)), (0, (t < -1) & (t < 0)), ((1 - t)*(t/2 +
|
||
|
S.Half)*(t + 1), t < 0), ((1 - t)*(t*(1 - t/2) + (1 - t)*(t/2 +
|
||
|
S.Half)), (t < 1) & ((t < -1) | (t < 1))), ((1 - t)*(1 - t/2)*(2
|
||
|
- t), (t < 2) & ((t < -1) | (t < 2))), (0, True))
|
||
|
assert p.simplify() == Piecewise(
|
||
|
(0, t < -2), ((t + 1)*(t + 2)**2/2, t < -1), (-3*t**3/2
|
||
|
- 5*t**2/2 + 1, t < 0), (3*t**3/2 - 5*t**2/2 + 1, t < 1), ((1 -
|
||
|
t)*(t - 2)**2/2, t < 2), (0, True))
|
||
|
|
||
|
# coverage
|
||
|
nan = Undefined
|
||
|
covered = Piecewise((1, x > 3), (2, x < 2), (3, x > 1))
|
||
|
assert covered.simplify().args == covered.args
|
||
|
assert Piecewise((1, x < 2), (2, x < 1), (3, True)).simplify(
|
||
|
) == Piecewise((1, x < 2), (3, True))
|
||
|
assert Piecewise((1, x > 2)).simplify() == Piecewise((1, x > 2),
|
||
|
(nan, True))
|
||
|
assert Piecewise((1, (x >= 2) & (x < oo))
|
||
|
).simplify() == Piecewise((1, (x >= 2) & (x < oo)), (nan, True))
|
||
|
assert Piecewise((1, x < 2), (2, (x > 1) & (x < 3)), (3, True)
|
||
|
). simplify() == Piecewise((1, x < 2), (2, x < 3), (3, True))
|
||
|
assert Piecewise((1, x < 2), (2, (x <= 3) & (x > 1)), (3, True)
|
||
|
).simplify() == Piecewise((1, x < 2), (2, x <= 3), (3, True))
|
||
|
assert Piecewise((1, x < 2), (2, (x > 2) & (x < 3)), (3, True)
|
||
|
).simplify() == Piecewise((1, x < 2), (2, (x > 2) & (x < 3)),
|
||
|
(3, True))
|
||
|
assert Piecewise((1, x < 2), (2, (x >= 1) & (x <= 3)), (3, True)
|
||
|
).simplify() == Piecewise((1, x < 2), (2, x <= 3), (3, True))
|
||
|
assert Piecewise((1, x < 1), (2, (x >= 2) & (x <= 3)), (3, True)
|
||
|
).simplify() == Piecewise((1, x < 1), (2, (x >= 2) & (x <= 3)),
|
||
|
(3, True))
|
||
|
|
||
|
|
||
|
def test_piecewise_solve():
|
||
|
abs2 = Piecewise((-x, x <= 0), (x, x > 0))
|
||
|
f = abs2.subs(x, x - 2)
|
||
|
assert solve(f, x) == [2]
|
||
|
assert solve(f - 1, x) == [1, 3]
|
||
|
|
||
|
f = Piecewise(((x - 2)**2, x >= 0), (1, True))
|
||
|
assert solve(f, x) == [2]
|
||
|
|
||
|
g = Piecewise(((x - 5)**5, x >= 4), (f, True))
|
||
|
assert solve(g, x) == [2, 5]
|
||
|
|
||
|
g = Piecewise(((x - 5)**5, x >= 4), (f, x < 4))
|
||
|
assert solve(g, x) == [2, 5]
|
||
|
|
||
|
g = Piecewise(((x - 5)**5, x >= 2), (f, x < 2))
|
||
|
assert solve(g, x) == [5]
|
||
|
|
||
|
g = Piecewise(((x - 5)**5, x >= 2), (f, True))
|
||
|
assert solve(g, x) == [5]
|
||
|
|
||
|
g = Piecewise(((x - 5)**5, x >= 2), (f, True), (10, False))
|
||
|
assert solve(g, x) == [5]
|
||
|
|
||
|
g = Piecewise(((x - 5)**5, x >= 2),
|
||
|
(-x + 2, x - 2 <= 0), (x - 2, x - 2 > 0))
|
||
|
assert solve(g, x) == [5]
|
||
|
|
||
|
# if no symbol is given the piecewise detection must still work
|
||
|
assert solve(Piecewise((x - 2, x > 2), (2 - x, True)) - 3) == [-1, 5]
|
||
|
|
||
|
f = Piecewise(((x - 2)**2, x >= 0), (0, True))
|
||
|
raises(NotImplementedError, lambda: solve(f, x))
|
||
|
|
||
|
def nona(ans):
|
||
|
return list(filter(lambda x: x is not S.NaN, ans))
|
||
|
p = Piecewise((x**2 - 4, x < y), (x - 2, True))
|
||
|
ans = solve(p, x)
|
||
|
assert nona([i.subs(y, -2) for i in ans]) == [2]
|
||
|
assert nona([i.subs(y, 2) for i in ans]) == [-2, 2]
|
||
|
assert nona([i.subs(y, 3) for i in ans]) == [-2, 2]
|
||
|
assert ans == [
|
||
|
Piecewise((-2, y > -2), (S.NaN, True)),
|
||
|
Piecewise((2, y <= 2), (S.NaN, True)),
|
||
|
Piecewise((2, y > 2), (S.NaN, True))]
|
||
|
|
||
|
# issue 6060
|
||
|
absxm3 = Piecewise(
|
||
|
(x - 3, 0 <= x - 3),
|
||
|
(3 - x, 0 > x - 3)
|
||
|
)
|
||
|
assert solve(absxm3 - y, x) == [
|
||
|
Piecewise((-y + 3, -y < 0), (S.NaN, True)),
|
||
|
Piecewise((y + 3, y >= 0), (S.NaN, True))]
|
||
|
p = Symbol('p', positive=True)
|
||
|
assert solve(absxm3 - p, x) == [-p + 3, p + 3]
|
||
|
|
||
|
# issue 6989
|
||
|
f = Function('f')
|
||
|
assert solve(Eq(-f(x), Piecewise((1, x > 0), (0, True))), f(x)) == \
|
||
|
[Piecewise((-1, x > 0), (0, True))]
|
||
|
|
||
|
# issue 8587
|
||
|
f = Piecewise((2*x**2, And(0 < x, x < 1)), (2, True))
|
||
|
assert solve(f - 1) == [1/sqrt(2)]
|
||
|
|
||
|
|
||
|
def test_piecewise_fold():
|
||
|
p = Piecewise((x, x < 1), (1, 1 <= x))
|
||
|
|
||
|
assert piecewise_fold(x*p) == Piecewise((x**2, x < 1), (x, 1 <= x))
|
||
|
assert piecewise_fold(p + p) == Piecewise((2*x, x < 1), (2, 1 <= x))
|
||
|
assert piecewise_fold(Piecewise((1, x < 0), (2, True))
|
||
|
+ Piecewise((10, x < 0), (-10, True))) == \
|
||
|
Piecewise((11, x < 0), (-8, True))
|
||
|
|
||
|
p1 = Piecewise((0, x < 0), (x, x <= 1), (0, True))
|
||
|
p2 = Piecewise((0, x < 0), (1 - x, x <= 1), (0, True))
|
||
|
|
||
|
p = 4*p1 + 2*p2
|
||
|
assert integrate(
|
||
|
piecewise_fold(p), (x, -oo, oo)) == integrate(2*x + 2, (x, 0, 1))
|
||
|
|
||
|
assert piecewise_fold(
|
||
|
Piecewise((1, y <= 0), (-Piecewise((2, y >= 0)), True)
|
||
|
)) == Piecewise((1, y <= 0), (-2, y >= 0))
|
||
|
|
||
|
assert piecewise_fold(Piecewise((x, ITE(x > 0, y < 1, y > 1)))
|
||
|
) == Piecewise((x, ((x <= 0) | (y < 1)) & ((x > 0) | (y > 1))))
|
||
|
|
||
|
a, b = (Piecewise((2, Eq(x, 0)), (0, True)),
|
||
|
Piecewise((x, Eq(-x + y, 0)), (1, Eq(-x + y, 1)), (0, True)))
|
||
|
assert piecewise_fold(Mul(a, b, evaluate=False)
|
||
|
) == piecewise_fold(Mul(b, a, evaluate=False))
|
||
|
|
||
|
|
||
|
def test_piecewise_fold_piecewise_in_cond():
|
||
|
p1 = Piecewise((cos(x), x < 0), (0, True))
|
||
|
p2 = Piecewise((0, Eq(p1, 0)), (p1 / Abs(p1), True))
|
||
|
assert p2.subs(x, -pi/2) == 0
|
||
|
assert p2.subs(x, 1) == 0
|
||
|
assert p2.subs(x, -pi/4) == 1
|
||
|
p4 = Piecewise((0, Eq(p1, 0)), (1,True))
|
||
|
ans = piecewise_fold(p4)
|
||
|
for i in range(-1, 1):
|
||
|
assert ans.subs(x, i) == p4.subs(x, i)
|
||
|
|
||
|
r1 = 1 < Piecewise((1, x < 1), (3, True))
|
||
|
ans = piecewise_fold(r1)
|
||
|
for i in range(2):
|
||
|
assert ans.subs(x, i) == r1.subs(x, i)
|
||
|
|
||
|
p5 = Piecewise((1, x < 0), (3, True))
|
||
|
p6 = Piecewise((1, x < 1), (3, True))
|
||
|
p7 = Piecewise((1, p5 < p6), (0, True))
|
||
|
ans = piecewise_fold(p7)
|
||
|
for i in range(-1, 2):
|
||
|
assert ans.subs(x, i) == p7.subs(x, i)
|
||
|
|
||
|
|
||
|
def test_piecewise_fold_piecewise_in_cond_2():
|
||
|
p1 = Piecewise((cos(x), x < 0), (0, True))
|
||
|
p2 = Piecewise((0, Eq(p1, 0)), (1 / p1, True))
|
||
|
p3 = Piecewise(
|
||
|
(0, (x >= 0) | Eq(cos(x), 0)),
|
||
|
(1/cos(x), x < 0),
|
||
|
(zoo, True)) # redundant b/c all x are already covered
|
||
|
assert(piecewise_fold(p2) == p3)
|
||
|
|
||
|
|
||
|
def test_piecewise_fold_expand():
|
||
|
p1 = Piecewise((1, Interval(0, 1, False, True).contains(x)), (0, True))
|
||
|
|
||
|
p2 = piecewise_fold(expand((1 - x)*p1))
|
||
|
cond = ((x >= 0) & (x < 1))
|
||
|
assert piecewise_fold(expand((1 - x)*p1), evaluate=False
|
||
|
) == Piecewise((1 - x, cond), (-x, cond), (1, cond), (0, True), evaluate=False)
|
||
|
assert piecewise_fold(expand((1 - x)*p1), evaluate=None
|
||
|
) == Piecewise((1 - x, cond), (0, True))
|
||
|
assert p2 == Piecewise((1 - x, cond), (0, True))
|
||
|
assert p2 == expand(piecewise_fold((1 - x)*p1))
|
||
|
|
||
|
|
||
|
def test_piecewise_duplicate():
|
||
|
p = Piecewise((x, x < -10), (x**2, x <= -1), (x, 1 < x))
|
||
|
assert p == Piecewise(*p.args)
|
||
|
|
||
|
|
||
|
def test_doit():
|
||
|
p1 = Piecewise((x, x < 1), (x**2, -1 <= x), (x, 3 < x))
|
||
|
p2 = Piecewise((x, x < 1), (Integral(2 * x), -1 <= x), (x, 3 < x))
|
||
|
assert p2.doit() == p1
|
||
|
assert p2.doit(deep=False) == p2
|
||
|
# issue 17165
|
||
|
p1 = Sum(y**x, (x, -1, oo)).doit()
|
||
|
assert p1.doit() == p1
|
||
|
|
||
|
|
||
|
def test_piecewise_interval():
|
||
|
p1 = Piecewise((x, Interval(0, 1).contains(x)), (0, True))
|
||
|
assert p1.subs(x, -0.5) == 0
|
||
|
assert p1.subs(x, 0.5) == 0.5
|
||
|
assert p1.diff(x) == Piecewise((1, Interval(0, 1).contains(x)), (0, True))
|
||
|
assert integrate(p1, x) == Piecewise(
|
||
|
(0, x <= 0),
|
||
|
(x**2/2, x <= 1),
|
||
|
(S.Half, True))
|
||
|
|
||
|
|
||
|
def test_piecewise_exclusive():
|
||
|
p = Piecewise((0, x < 0), (S.Half, x <= 0), (1, True))
|
||
|
assert piecewise_exclusive(p) == Piecewise((0, x < 0), (S.Half, Eq(x, 0)),
|
||
|
(1, x > 0), evaluate=False)
|
||
|
assert piecewise_exclusive(p + 2) == Piecewise((0, x < 0), (S.Half, Eq(x, 0)),
|
||
|
(1, x > 0), evaluate=False) + 2
|
||
|
assert piecewise_exclusive(Piecewise((1, y <= 0),
|
||
|
(-Piecewise((2, y >= 0)), True))) == \
|
||
|
Piecewise((1, y <= 0),
|
||
|
(-Piecewise((2, y >= 0),
|
||
|
(S.NaN, y < 0), evaluate=False), y > 0), evaluate=False)
|
||
|
assert piecewise_exclusive(Piecewise((1, x > y))) == Piecewise((1, x > y),
|
||
|
(S.NaN, x <= y),
|
||
|
evaluate=False)
|
||
|
assert piecewise_exclusive(Piecewise((1, x > y)),
|
||
|
skip_nan=True) == Piecewise((1, x > y))
|
||
|
|
||
|
xr, yr = symbols('xr, yr', real=True)
|
||
|
|
||
|
p1 = Piecewise((1, xr < 0), (2, True), evaluate=False)
|
||
|
p1x = Piecewise((1, xr < 0), (2, xr >= 0), evaluate=False)
|
||
|
|
||
|
p2 = Piecewise((p1, yr < 0), (3, True), evaluate=False)
|
||
|
p2x = Piecewise((p1, yr < 0), (3, yr >= 0), evaluate=False)
|
||
|
p2xx = Piecewise((p1x, yr < 0), (3, yr >= 0), evaluate=False)
|
||
|
|
||
|
assert piecewise_exclusive(p2) == p2xx
|
||
|
assert piecewise_exclusive(p2, deep=False) == p2x
|
||
|
|
||
|
|
||
|
def test_piecewise_collapse():
|
||
|
assert Piecewise((x, True)) == x
|
||
|
a = x < 1
|
||
|
assert Piecewise((x, a), (x + 1, a)) == Piecewise((x, a))
|
||
|
assert Piecewise((x, a), (x + 1, a.reversed)) == Piecewise((x, a))
|
||
|
b = x < 5
|
||
|
def canonical(i):
|
||
|
if isinstance(i, Piecewise):
|
||
|
return Piecewise(*i.args)
|
||
|
return i
|
||
|
for args in [
|
||
|
((1, a), (Piecewise((2, a), (3, b)), b)),
|
||
|
((1, a), (Piecewise((2, a), (3, b.reversed)), b)),
|
||
|
((1, a), (Piecewise((2, a), (3, b)), b), (4, True)),
|
||
|
((1, a), (Piecewise((2, a), (3, b), (4, True)), b)),
|
||
|
((1, a), (Piecewise((2, a), (3, b), (4, True)), b), (5, True))]:
|
||
|
for i in (0, 2, 10):
|
||
|
assert canonical(
|
||
|
Piecewise(*args, evaluate=False).subs(x, i)
|
||
|
) == canonical(Piecewise(*args).subs(x, i))
|
||
|
r1, r2, r3, r4 = symbols('r1:5')
|
||
|
a = x < r1
|
||
|
b = x < r2
|
||
|
c = x < r3
|
||
|
d = x < r4
|
||
|
assert Piecewise((1, a), (Piecewise(
|
||
|
(2, a), (3, b), (4, c)), b), (5, c)
|
||
|
) == Piecewise((1, a), (3, b), (5, c))
|
||
|
assert Piecewise((1, a), (Piecewise(
|
||
|
(2, a), (3, b), (4, c), (6, True)), c), (5, d)
|
||
|
) == Piecewise((1, a), (Piecewise(
|
||
|
(3, b), (4, c)), c), (5, d))
|
||
|
assert Piecewise((1, Or(a, d)), (Piecewise(
|
||
|
(2, d), (3, b), (4, c)), b), (5, c)
|
||
|
) == Piecewise((1, Or(a, d)), (Piecewise(
|
||
|
(2, d), (3, b)), b), (5, c))
|
||
|
assert Piecewise((1, c), (2, ~c), (3, S.true)
|
||
|
) == Piecewise((1, c), (2, S.true))
|
||
|
assert Piecewise((1, c), (2, And(~c, b)), (3,True)
|
||
|
) == Piecewise((1, c), (2, b), (3, True))
|
||
|
assert Piecewise((1, c), (2, Or(~c, b)), (3,True)
|
||
|
).subs(dict(zip((r1, r2, r3, r4, x), (1, 2, 3, 4, 3.5)))) == 2
|
||
|
assert Piecewise((1, c), (2, ~c)) == Piecewise((1, c), (2, True))
|
||
|
|
||
|
|
||
|
def test_piecewise_lambdify():
|
||
|
p = Piecewise(
|
||
|
(x**2, x < 0),
|
||
|
(x, Interval(0, 1, False, True).contains(x)),
|
||
|
(2 - x, x >= 1),
|
||
|
(0, True)
|
||
|
)
|
||
|
|
||
|
f = lambdify(x, p)
|
||
|
assert f(-2.0) == 4.0
|
||
|
assert f(0.0) == 0.0
|
||
|
assert f(0.5) == 0.5
|
||
|
assert f(2.0) == 0.0
|
||
|
|
||
|
|
||
|
def test_piecewise_series():
|
||
|
from sympy.series.order import O
|
||
|
p1 = Piecewise((sin(x), x < 0), (cos(x), x > 0))
|
||
|
p2 = Piecewise((x + O(x**2), x < 0), (1 + O(x**2), x > 0))
|
||
|
assert p1.nseries(x, n=2) == p2
|
||
|
|
||
|
|
||
|
def test_piecewise_as_leading_term():
|
||
|
p1 = Piecewise((1/x, x > 1), (0, True))
|
||
|
p2 = Piecewise((x, x > 1), (0, True))
|
||
|
p3 = Piecewise((1/x, x > 1), (x, True))
|
||
|
p4 = Piecewise((x, x > 1), (1/x, True))
|
||
|
p5 = Piecewise((1/x, x > 1), (x, True))
|
||
|
p6 = Piecewise((1/x, x < 1), (x, True))
|
||
|
p7 = Piecewise((x, x < 1), (1/x, True))
|
||
|
p8 = Piecewise((x, x > 1), (1/x, True))
|
||
|
assert p1.as_leading_term(x) == 0
|
||
|
assert p2.as_leading_term(x) == 0
|
||
|
assert p3.as_leading_term(x) == x
|
||
|
assert p4.as_leading_term(x) == 1/x
|
||
|
assert p5.as_leading_term(x) == x
|
||
|
assert p6.as_leading_term(x) == 1/x
|
||
|
assert p7.as_leading_term(x) == x
|
||
|
assert p8.as_leading_term(x) == 1/x
|
||
|
|
||
|
|
||
|
def test_piecewise_complex():
|
||
|
p1 = Piecewise((2, x < 0), (1, 0 <= x))
|
||
|
p2 = Piecewise((2*I, x < 0), (I, 0 <= x))
|
||
|
p3 = Piecewise((I*x, x > 1), (1 + I, True))
|
||
|
p4 = Piecewise((-I*conjugate(x), x > 1), (1 - I, True))
|
||
|
|
||
|
assert conjugate(p1) == p1
|
||
|
assert conjugate(p2) == piecewise_fold(-p2)
|
||
|
assert conjugate(p3) == p4
|
||
|
|
||
|
assert p1.is_imaginary is False
|
||
|
assert p1.is_real is True
|
||
|
assert p2.is_imaginary is True
|
||
|
assert p2.is_real is False
|
||
|
assert p3.is_imaginary is None
|
||
|
assert p3.is_real is None
|
||
|
|
||
|
assert p1.as_real_imag() == (p1, 0)
|
||
|
assert p2.as_real_imag() == (0, -I*p2)
|
||
|
|
||
|
|
||
|
def test_conjugate_transpose():
|
||
|
A, B = symbols("A B", commutative=False)
|
||
|
p = Piecewise((A*B**2, x > 0), (A**2*B, True))
|
||
|
assert p.adjoint() == \
|
||
|
Piecewise((adjoint(A*B**2), x > 0), (adjoint(A**2*B), True))
|
||
|
assert p.conjugate() == \
|
||
|
Piecewise((conjugate(A*B**2), x > 0), (conjugate(A**2*B), True))
|
||
|
assert p.transpose() == \
|
||
|
Piecewise((transpose(A*B**2), x > 0), (transpose(A**2*B), True))
|
||
|
|
||
|
|
||
|
def test_piecewise_evaluate():
|
||
|
assert Piecewise((x, True)) == x
|
||
|
assert Piecewise((x, True), evaluate=True) == x
|
||
|
assert Piecewise((1, Eq(1, x))).args == ((1, Eq(x, 1)),)
|
||
|
assert Piecewise((1, Eq(1, x)), evaluate=False).args == (
|
||
|
(1, Eq(1, x)),)
|
||
|
# like the additive and multiplicative identities that
|
||
|
# cannot be kept in Add/Mul, we also do not keep a single True
|
||
|
p = Piecewise((x, True), evaluate=False)
|
||
|
assert p == x
|
||
|
|
||
|
|
||
|
def test_as_expr_set_pairs():
|
||
|
assert Piecewise((x, x > 0), (-x, x <= 0)).as_expr_set_pairs() == \
|
||
|
[(x, Interval(0, oo, True, True)), (-x, Interval(-oo, 0))]
|
||
|
|
||
|
assert Piecewise(((x - 2)**2, x >= 0), (0, True)).as_expr_set_pairs() == \
|
||
|
[((x - 2)**2, Interval(0, oo)), (0, Interval(-oo, 0, True, True))]
|
||
|
|
||
|
|
||
|
def test_S_srepr_is_identity():
|
||
|
p = Piecewise((10, Eq(x, 0)), (12, True))
|
||
|
q = S(srepr(p))
|
||
|
assert p == q
|
||
|
|
||
|
|
||
|
def test_issue_12587():
|
||
|
# sort holes into intervals
|
||
|
p = Piecewise((1, x > 4), (2, Not((x <= 3) & (x > -1))), (3, True))
|
||
|
assert p.integrate((x, -5, 5)) == 23
|
||
|
p = Piecewise((1, x > 1), (2, x < y), (3, True))
|
||
|
lim = x, -3, 3
|
||
|
ans = p.integrate(lim)
|
||
|
for i in range(-1, 3):
|
||
|
assert ans.subs(y, i) == p.subs(y, i).integrate(lim)
|
||
|
|
||
|
|
||
|
def test_issue_11045():
|
||
|
assert integrate(1/(x*sqrt(x**2 - 1)), (x, 1, 2)) == pi/3
|
||
|
|
||
|
# handle And with Or arguments
|
||
|
assert Piecewise((1, And(Or(x < 1, x > 3), x < 2)), (0, True)
|
||
|
).integrate((x, 0, 3)) == 1
|
||
|
|
||
|
# hidden false
|
||
|
assert Piecewise((1, x > 1), (2, x > x + 1), (3, True)
|
||
|
).integrate((x, 0, 3)) == 5
|
||
|
# targetcond is Eq
|
||
|
assert Piecewise((1, x > 1), (2, Eq(1, x)), (3, True)
|
||
|
).integrate((x, 0, 4)) == 6
|
||
|
# And has Relational needing to be solved
|
||
|
assert Piecewise((1, And(2*x > x + 1, x < 2)), (0, True)
|
||
|
).integrate((x, 0, 3)) == 1
|
||
|
# Or has Relational needing to be solved
|
||
|
assert Piecewise((1, Or(2*x > x + 2, x < 1)), (0, True)
|
||
|
).integrate((x, 0, 3)) == 2
|
||
|
# ignore hidden false (handled in canonicalization)
|
||
|
assert Piecewise((1, x > 1), (2, x > x + 1), (3, True)
|
||
|
).integrate((x, 0, 3)) == 5
|
||
|
# watch for hidden True Piecewise
|
||
|
assert Piecewise((2, Eq(1 - x, x*(1/x - 1))), (0, True)
|
||
|
).integrate((x, 0, 3)) == 6
|
||
|
|
||
|
# overlapping conditions of targetcond are recognized and ignored;
|
||
|
# the condition x > 3 will be pre-empted by the first condition
|
||
|
assert Piecewise((1, Or(x < 1, x > 2)), (2, x > 3), (3, True)
|
||
|
).integrate((x, 0, 4)) == 6
|
||
|
|
||
|
# convert Ne to Or
|
||
|
assert Piecewise((1, Ne(x, 0)), (2, True)
|
||
|
).integrate((x, -1, 1)) == 2
|
||
|
|
||
|
# no default but well defined
|
||
|
assert Piecewise((x, (x > 1) & (x < 3)), (1, (x < 4))
|
||
|
).integrate((x, 1, 4)) == 5
|
||
|
|
||
|
p = Piecewise((x, (x > 1) & (x < 3)), (1, (x < 4)))
|
||
|
nan = Undefined
|
||
|
i = p.integrate((x, 1, y))
|
||
|
assert i == Piecewise(
|
||
|
(y - 1, y < 1),
|
||
|
(Min(3, y)**2/2 - Min(3, y) + Min(4, y) - S.Half,
|
||
|
y <= Min(4, y)),
|
||
|
(nan, True))
|
||
|
assert p.integrate((x, 1, -1)) == i.subs(y, -1)
|
||
|
assert p.integrate((x, 1, 4)) == 5
|
||
|
assert p.integrate((x, 1, 5)) is nan
|
||
|
|
||
|
# handle Not
|
||
|
p = Piecewise((1, x > 1), (2, Not(And(x > 1, x< 3))), (3, True))
|
||
|
assert p.integrate((x, 0, 3)) == 4
|
||
|
|
||
|
# handle updating of int_expr when there is overlap
|
||
|
p = Piecewise(
|
||
|
(1, And(5 > x, x > 1)),
|
||
|
(2, Or(x < 3, x > 7)),
|
||
|
(4, x < 8))
|
||
|
assert p.integrate((x, 0, 10)) == 20
|
||
|
|
||
|
# And with Eq arg handling
|
||
|
assert Piecewise((1, x < 1), (2, And(Eq(x, 3), x > 1))
|
||
|
).integrate((x, 0, 3)) is S.NaN
|
||
|
assert Piecewise((1, x < 1), (2, And(Eq(x, 3), x > 1)), (3, True)
|
||
|
).integrate((x, 0, 3)) == 7
|
||
|
assert Piecewise((1, x < 0), (2, And(Eq(x, 3), x < 1)), (3, True)
|
||
|
).integrate((x, -1, 1)) == 4
|
||
|
# middle condition doesn't matter: it's a zero width interval
|
||
|
assert Piecewise((1, x < 1), (2, Eq(x, 3) & (y < x)), (3, True)
|
||
|
).integrate((x, 0, 3)) == 7
|
||
|
|
||
|
|
||
|
def test_holes():
|
||
|
nan = Undefined
|
||
|
assert Piecewise((1, x < 2)).integrate(x) == Piecewise(
|
||
|
(x, x < 2), (nan, True))
|
||
|
assert Piecewise((1, And(x > 1, x < 2))).integrate(x) == Piecewise(
|
||
|
(nan, x < 1), (x, x < 2), (nan, True))
|
||
|
assert Piecewise((1, And(x > 1, x < 2))).integrate((x, 0, 3)) is nan
|
||
|
assert Piecewise((1, And(x > 0, x < 4))).integrate((x, 1, 3)) == 2
|
||
|
|
||
|
# this also tests that the integrate method is used on non-Piecwise
|
||
|
# arguments in _eval_integral
|
||
|
A, B = symbols("A B")
|
||
|
a, b = symbols('a b', real=True)
|
||
|
assert Piecewise((A, And(x < 0, a < 1)), (B, Or(x < 1, a > 2))
|
||
|
).integrate(x) == Piecewise(
|
||
|
(B*x, (a > 2)),
|
||
|
(Piecewise((A*x, x < 0), (B*x, x < 1), (nan, True)), a < 1),
|
||
|
(Piecewise((B*x, x < 1), (nan, True)), True))
|
||
|
|
||
|
|
||
|
def test_issue_11922():
|
||
|
def f(x):
|
||
|
return Piecewise((0, x < -1), (1 - x**2, x < 1), (0, True))
|
||
|
autocorr = lambda k: (
|
||
|
f(x) * f(x + k)).integrate((x, -1, 1))
|
||
|
assert autocorr(1.9) > 0
|
||
|
k = symbols('k')
|
||
|
good_autocorr = lambda k: (
|
||
|
(1 - x**2) * f(x + k)).integrate((x, -1, 1))
|
||
|
a = good_autocorr(k)
|
||
|
assert a.subs(k, 3) == 0
|
||
|
k = symbols('k', positive=True)
|
||
|
a = good_autocorr(k)
|
||
|
assert a.subs(k, 3) == 0
|
||
|
assert Piecewise((0, x < 1), (10, (x >= 1))
|
||
|
).integrate() == Piecewise((0, x < 1), (10*x - 10, True))
|
||
|
|
||
|
|
||
|
def test_issue_5227():
|
||
|
f = 0.0032513612725229*Piecewise((0, x < -80.8461538461539),
|
||
|
(-0.0160799238820171*x + 1.33215984776403, x < 2),
|
||
|
(Piecewise((0.3, x > 123), (0.7, True)) +
|
||
|
Piecewise((0.4, x > 2), (0.6, True)), x <=
|
||
|
123), (-0.00817409766454352*x + 2.10541401273885, x <
|
||
|
380.571428571429), (0, True))
|
||
|
i = integrate(f, (x, -oo, oo))
|
||
|
assert i == Integral(f, (x, -oo, oo)).doit()
|
||
|
assert str(i) == '1.00195081676351'
|
||
|
assert Piecewise((1, x - y < 0), (0, True)
|
||
|
).integrate(y) == Piecewise((0, y <= x), (-x + y, True))
|
||
|
|
||
|
|
||
|
def test_issue_10137():
|
||
|
a = Symbol('a', real=True)
|
||
|
b = Symbol('b', real=True)
|
||
|
x = Symbol('x', real=True)
|
||
|
y = Symbol('y', real=True)
|
||
|
p0 = Piecewise((0, Or(x < a, x > b)), (1, True))
|
||
|
p1 = Piecewise((0, Or(a > x, b < x)), (1, True))
|
||
|
assert integrate(p0, (x, y, oo)) == integrate(p1, (x, y, oo))
|
||
|
p3 = Piecewise((1, And(0 < x, x < a)), (0, True))
|
||
|
p4 = Piecewise((1, And(a > x, x > 0)), (0, True))
|
||
|
ip3 = integrate(p3, x)
|
||
|
assert ip3 == Piecewise(
|
||
|
(0, x <= 0),
|
||
|
(x, x <= Max(0, a)),
|
||
|
(Max(0, a), True))
|
||
|
ip4 = integrate(p4, x)
|
||
|
assert ip4 == ip3
|
||
|
assert p3.integrate((x, 2, 4)) == Min(4, Max(2, a)) - 2
|
||
|
assert p4.integrate((x, 2, 4)) == Min(4, Max(2, a)) - 2
|
||
|
|
||
|
|
||
|
def test_stackoverflow_43852159():
|
||
|
f = lambda x: Piecewise((1, (x >= -1) & (x <= 1)), (0, True))
|
||
|
Conv = lambda x: integrate(f(x - y)*f(y), (y, -oo, +oo))
|
||
|
cx = Conv(x)
|
||
|
assert cx.subs(x, -1.5) == cx.subs(x, 1.5)
|
||
|
assert cx.subs(x, 3) == 0
|
||
|
assert piecewise_fold(f(x - y)*f(y)) == Piecewise(
|
||
|
(1, (y >= -1) & (y <= 1) & (x - y >= -1) & (x - y <= 1)),
|
||
|
(0, True))
|
||
|
|
||
|
|
||
|
def test_issue_12557():
|
||
|
'''
|
||
|
# 3200 seconds to compute the fourier part of issue
|
||
|
import sympy as sym
|
||
|
x,y,z,t = sym.symbols('x y z t')
|
||
|
k = sym.symbols("k", integer=True)
|
||
|
fourier = sym.fourier_series(sym.cos(k*x)*sym.sqrt(x**2),
|
||
|
(x, -sym.pi, sym.pi))
|
||
|
assert fourier == FourierSeries(
|
||
|
sqrt(x**2)*cos(k*x), (x, -pi, pi), (Piecewise((pi**2,
|
||
|
Eq(k, 0)), (2*(-1)**k/k**2 - 2/k**2, True))/(2*pi),
|
||
|
SeqFormula(Piecewise((pi**2, (Eq(_n, 0) & Eq(k, 0)) | (Eq(_n, 0) &
|
||
|
Eq(_n, k) & Eq(k, 0)) | (Eq(_n, 0) & Eq(k, 0) & Eq(_n, -k)) | (Eq(_n,
|
||
|
0) & Eq(_n, k) & Eq(k, 0) & Eq(_n, -k))), (pi**2/2, Eq(_n, k) | Eq(_n,
|
||
|
-k) | (Eq(_n, 0) & Eq(_n, k)) | (Eq(_n, k) & Eq(k, 0)) | (Eq(_n, 0) &
|
||
|
Eq(_n, -k)) | (Eq(_n, k) & Eq(_n, -k)) | (Eq(k, 0) & Eq(_n, -k)) |
|
||
|
(Eq(_n, 0) & Eq(_n, k) & Eq(_n, -k)) | (Eq(_n, k) & Eq(k, 0) & Eq(_n,
|
||
|
-k))), ((-1)**k*pi**2*_n**3*sin(pi*_n)/(pi*_n**4 - 2*pi*_n**2*k**2 +
|
||
|
pi*k**4) - (-1)**k*pi**2*_n**3*sin(pi*_n)/(-pi*_n**4 + 2*pi*_n**2*k**2
|
||
|
- pi*k**4) + (-1)**k*pi*_n**2*cos(pi*_n)/(pi*_n**4 - 2*pi*_n**2*k**2 +
|
||
|
pi*k**4) - (-1)**k*pi*_n**2*cos(pi*_n)/(-pi*_n**4 + 2*pi*_n**2*k**2 -
|
||
|
pi*k**4) - (-1)**k*pi**2*_n*k**2*sin(pi*_n)/(pi*_n**4 -
|
||
|
2*pi*_n**2*k**2 + pi*k**4) +
|
||
|
(-1)**k*pi**2*_n*k**2*sin(pi*_n)/(-pi*_n**4 + 2*pi*_n**2*k**2 -
|
||
|
pi*k**4) + (-1)**k*pi*k**2*cos(pi*_n)/(pi*_n**4 - 2*pi*_n**2*k**2 +
|
||
|
pi*k**4) - (-1)**k*pi*k**2*cos(pi*_n)/(-pi*_n**4 + 2*pi*_n**2*k**2 -
|
||
|
pi*k**4) - (2*_n**2 + 2*k**2)/(_n**4 - 2*_n**2*k**2 + k**4),
|
||
|
True))*cos(_n*x)/pi, (_n, 1, oo)), SeqFormula(0, (_k, 1, oo))))
|
||
|
'''
|
||
|
x = symbols("x", real=True)
|
||
|
k = symbols('k', integer=True, finite=True)
|
||
|
abs2 = lambda x: Piecewise((-x, x <= 0), (x, x > 0))
|
||
|
assert integrate(abs2(x), (x, -pi, pi)) == pi**2
|
||
|
func = cos(k*x)*sqrt(x**2)
|
||
|
assert integrate(func, (x, -pi, pi)) == Piecewise(
|
||
|
(2*(-1)**k/k**2 - 2/k**2, Ne(k, 0)), (pi**2, True))
|
||
|
|
||
|
def test_issue_6900():
|
||
|
from itertools import permutations
|
||
|
t0, t1, T, t = symbols('t0, t1 T t')
|
||
|
f = Piecewise((0, t < t0), (x, And(t0 <= t, t < t1)), (0, t >= t1))
|
||
|
g = f.integrate(t)
|
||
|
assert g == Piecewise(
|
||
|
(0, t <= t0),
|
||
|
(t*x - t0*x, t <= Max(t0, t1)),
|
||
|
(-t0*x + x*Max(t0, t1), True))
|
||
|
for i in permutations(range(2)):
|
||
|
reps = dict(zip((t0,t1), i))
|
||
|
for tt in range(-1,3):
|
||
|
assert (g.xreplace(reps).subs(t,tt) ==
|
||
|
f.xreplace(reps).integrate(t).subs(t,tt))
|
||
|
lim = Tuple(t, t0, T)
|
||
|
g = f.integrate(lim)
|
||
|
ans = Piecewise(
|
||
|
(-t0*x + x*Min(T, Max(t0, t1)), T > t0),
|
||
|
(0, True))
|
||
|
for i in permutations(range(3)):
|
||
|
reps = dict(zip((t0,t1,T), i))
|
||
|
tru = f.xreplace(reps).integrate(lim.xreplace(reps))
|
||
|
assert tru == ans.xreplace(reps)
|
||
|
assert g == ans
|
||
|
|
||
|
|
||
|
def test_issue_10122():
|
||
|
assert solve(abs(x) + abs(x - 1) - 1 > 0, x
|
||
|
) == Or(And(-oo < x, x < S.Zero), And(S.One < x, x < oo))
|
||
|
|
||
|
|
||
|
def test_issue_4313():
|
||
|
u = Piecewise((0, x <= 0), (1, x >= a), (x/a, True))
|
||
|
e = (u - u.subs(x, y))**2/(x - y)**2
|
||
|
M = Max(0, a)
|
||
|
assert integrate(e, x).expand() == Piecewise(
|
||
|
(Piecewise(
|
||
|
(0, x <= 0),
|
||
|
(-y**2/(a**2*x - a**2*y) + x/a**2 - 2*y*log(-y)/a**2 +
|
||
|
2*y*log(x - y)/a**2 - y/a**2, x <= M),
|
||
|
(-y**2/(-a**2*y + a**2*M) + 1/(-y + M) -
|
||
|
1/(x - y) - 2*y*log(-y)/a**2 + 2*y*log(-y +
|
||
|
M)/a**2 - y/a**2 + M/a**2, True)),
|
||
|
((a <= y) & (y <= 0)) | ((y <= 0) & (y > -oo))),
|
||
|
(Piecewise(
|
||
|
(-1/(x - y), x <= 0),
|
||
|
(-a**2/(a**2*x - a**2*y) + 2*a*y/(a**2*x - a**2*y) -
|
||
|
y**2/(a**2*x - a**2*y) + 2*log(-y)/a - 2*log(x - y)/a +
|
||
|
2/a + x/a**2 - 2*y*log(-y)/a**2 + 2*y*log(x - y)/a**2 -
|
||
|
y/a**2, x <= M),
|
||
|
(-a**2/(-a**2*y + a**2*M) + 2*a*y/(-a**2*y +
|
||
|
a**2*M) - y**2/(-a**2*y + a**2*M) +
|
||
|
2*log(-y)/a - 2*log(-y + M)/a + 2/a -
|
||
|
2*y*log(-y)/a**2 + 2*y*log(-y + M)/a**2 -
|
||
|
y/a**2 + M/a**2, True)),
|
||
|
a <= y),
|
||
|
(Piecewise(
|
||
|
(-y**2/(a**2*x - a**2*y), x <= 0),
|
||
|
(x/a**2 + y/a**2, x <= M),
|
||
|
(a**2/(-a**2*y + a**2*M) -
|
||
|
a**2/(a**2*x - a**2*y) - 2*a*y/(-a**2*y + a**2*M) +
|
||
|
2*a*y/(a**2*x - a**2*y) + y**2/(-a**2*y + a**2*M) -
|
||
|
y**2/(a**2*x - a**2*y) + y/a**2 + M/a**2, True)),
|
||
|
True))
|
||
|
|
||
|
|
||
|
def test__intervals():
|
||
|
assert Piecewise((x + 2, Eq(x, 3)))._intervals(x) == (True, [])
|
||
|
assert Piecewise(
|
||
|
(1, x > x + 1),
|
||
|
(Piecewise((1, x < x + 1)), 2*x < 2*x + 1),
|
||
|
(1, True))._intervals(x) == (True, [(-oo, oo, 1, 1)])
|
||
|
assert Piecewise((1, Ne(x, I)), (0, True))._intervals(x) == (True,
|
||
|
[(-oo, oo, 1, 0)])
|
||
|
assert Piecewise((-cos(x), sin(x) >= 0), (cos(x), True)
|
||
|
)._intervals(x) == (True,
|
||
|
[(0, pi, -cos(x), 0), (-oo, oo, cos(x), 1)])
|
||
|
# the following tests that duplicates are removed and that non-Eq
|
||
|
# generated zero-width intervals are removed
|
||
|
assert Piecewise((1, Abs(x**(-2)) > 1), (0, True)
|
||
|
)._intervals(x) == (True,
|
||
|
[(-1, 0, 1, 0), (0, 1, 1, 0), (-oo, oo, 0, 1)])
|
||
|
|
||
|
|
||
|
def test_containment():
|
||
|
a, b, c, d, e = [1, 2, 3, 4, 5]
|
||
|
p = (Piecewise((d, x > 1), (e, True))*
|
||
|
Piecewise((a, Abs(x - 1) < 1), (b, Abs(x - 2) < 2), (c, True)))
|
||
|
assert p.integrate(x).diff(x) == Piecewise(
|
||
|
(c*e, x <= 0),
|
||
|
(a*e, x <= 1),
|
||
|
(a*d, x < 2), # this is what we want to get right
|
||
|
(b*d, x < 4),
|
||
|
(c*d, True))
|
||
|
|
||
|
|
||
|
def test_piecewise_with_DiracDelta():
|
||
|
d1 = DiracDelta(x - 1)
|
||
|
assert integrate(d1, (x, -oo, oo)) == 1
|
||
|
assert integrate(d1, (x, 0, 2)) == 1
|
||
|
assert Piecewise((d1, Eq(x, 2)), (0, True)).integrate(x) == 0
|
||
|
assert Piecewise((d1, x < 2), (0, True)).integrate(x) == Piecewise(
|
||
|
(Heaviside(x - 1), x < 2), (1, True))
|
||
|
# TODO raise error if function is discontinuous at limit of
|
||
|
# integration, e.g. integrate(d1, (x, -2, 1)) or Piecewise(
|
||
|
# (d1, Eq(x, 1)
|
||
|
|
||
|
|
||
|
def test_issue_10258():
|
||
|
assert Piecewise((0, x < 1), (1, True)).is_zero is None
|
||
|
assert Piecewise((-1, x < 1), (1, True)).is_zero is False
|
||
|
a = Symbol('a', zero=True)
|
||
|
assert Piecewise((0, x < 1), (a, True)).is_zero
|
||
|
assert Piecewise((1, x < 1), (a, x < 3)).is_zero is None
|
||
|
a = Symbol('a')
|
||
|
assert Piecewise((0, x < 1), (a, True)).is_zero is None
|
||
|
assert Piecewise((0, x < 1), (1, True)).is_nonzero is None
|
||
|
assert Piecewise((1, x < 1), (2, True)).is_nonzero
|
||
|
assert Piecewise((0, x < 1), (oo, True)).is_finite is None
|
||
|
assert Piecewise((0, x < 1), (1, True)).is_finite
|
||
|
b = Basic()
|
||
|
assert Piecewise((b, x < 1)).is_finite is None
|
||
|
|
||
|
# 10258
|
||
|
c = Piecewise((1, x < 0), (2, True)) < 3
|
||
|
assert c != True
|
||
|
assert piecewise_fold(c) == True
|
||
|
|
||
|
|
||
|
def test_issue_10087():
|
||
|
a, b = Piecewise((x, x > 1), (2, True)), Piecewise((x, x > 3), (3, True))
|
||
|
m = a*b
|
||
|
f = piecewise_fold(m)
|
||
|
for i in (0, 2, 4):
|
||
|
assert m.subs(x, i) == f.subs(x, i)
|
||
|
m = a + b
|
||
|
f = piecewise_fold(m)
|
||
|
for i in (0, 2, 4):
|
||
|
assert m.subs(x, i) == f.subs(x, i)
|
||
|
|
||
|
|
||
|
def test_issue_8919():
|
||
|
c = symbols('c:5')
|
||
|
x = symbols("x")
|
||
|
f1 = Piecewise((c[1], x < 1), (c[2], True))
|
||
|
f2 = Piecewise((c[3], x < Rational(1, 3)), (c[4], True))
|
||
|
assert integrate(f1*f2, (x, 0, 2)
|
||
|
) == c[1]*c[3]/3 + 2*c[1]*c[4]/3 + c[2]*c[4]
|
||
|
f1 = Piecewise((0, x < 1), (2, True))
|
||
|
f2 = Piecewise((3, x < 2), (0, True))
|
||
|
assert integrate(f1*f2, (x, 0, 3)) == 6
|
||
|
|
||
|
y = symbols("y", positive=True)
|
||
|
a, b, c, x, z = symbols("a,b,c,x,z", real=True)
|
||
|
I = Integral(Piecewise(
|
||
|
(0, (x >= y) | (x < 0) | (b > c)),
|
||
|
(a, True)), (x, 0, z))
|
||
|
ans = I.doit()
|
||
|
assert ans == Piecewise((0, b > c), (a*Min(y, z) - a*Min(0, z), True))
|
||
|
for cond in (True, False):
|
||
|
for yy in range(1, 3):
|
||
|
for zz in range(-yy, 0, yy):
|
||
|
reps = [(b > c, cond), (y, yy), (z, zz)]
|
||
|
assert ans.subs(reps) == I.subs(reps).doit()
|
||
|
|
||
|
|
||
|
def test_unevaluated_integrals():
|
||
|
f = Function('f')
|
||
|
p = Piecewise((1, Eq(f(x) - 1, 0)), (2, x - 10 < 0), (0, True))
|
||
|
assert p.integrate(x) == Integral(p, x)
|
||
|
assert p.integrate((x, 0, 5)) == Integral(p, (x, 0, 5))
|
||
|
# test it by replacing f(x) with x%2 which will not
|
||
|
# affect the answer: the integrand is essentially 2 over
|
||
|
# the domain of integration
|
||
|
assert Integral(p, (x, 0, 5)).subs(f(x), x%2).n() == 10.0
|
||
|
|
||
|
# this is a test of using _solve_inequality when
|
||
|
# solve_univariate_inequality fails
|
||
|
assert p.integrate(y) == Piecewise(
|
||
|
(y, Eq(f(x), 1) | ((x < 10) & Eq(f(x), 1))),
|
||
|
(2*y, (x > -oo) & (x < 10)), (0, True))
|
||
|
|
||
|
|
||
|
def test_conditions_as_alternate_booleans():
|
||
|
a, b, c = symbols('a:c')
|
||
|
assert Piecewise((x, Piecewise((y < 1, x > 0), (y > 1, True)))
|
||
|
) == Piecewise((x, ITE(x > 0, y < 1, y > 1)))
|
||
|
|
||
|
|
||
|
def test_Piecewise_rewrite_as_ITE():
|
||
|
a, b, c, d = symbols('a:d')
|
||
|
|
||
|
def _ITE(*args):
|
||
|
return Piecewise(*args).rewrite(ITE)
|
||
|
|
||
|
assert _ITE((a, x < 1), (b, x >= 1)) == ITE(x < 1, a, b)
|
||
|
assert _ITE((a, x < 1), (b, x < oo)) == ITE(x < 1, a, b)
|
||
|
assert _ITE((a, x < 1), (b, Or(y < 1, x < oo)), (c, y > 0)
|
||
|
) == ITE(x < 1, a, b)
|
||
|
assert _ITE((a, x < 1), (b, True)) == ITE(x < 1, a, b)
|
||
|
assert _ITE((a, x < 1), (b, x < 2), (c, True)
|
||
|
) == ITE(x < 1, a, ITE(x < 2, b, c))
|
||
|
assert _ITE((a, x < 1), (b, y < 2), (c, True)
|
||
|
) == ITE(x < 1, a, ITE(y < 2, b, c))
|
||
|
assert _ITE((a, x < 1), (b, x < oo), (c, y < 1)
|
||
|
) == ITE(x < 1, a, b)
|
||
|
assert _ITE((a, x < 1), (c, y < 1), (b, x < oo), (d, True)
|
||
|
) == ITE(x < 1, a, ITE(y < 1, c, b))
|
||
|
assert _ITE((a, x < 0), (b, Or(x < oo, y < 1))
|
||
|
) == ITE(x < 0, a, b)
|
||
|
raises(TypeError, lambda: _ITE((x + 1, x < 1), (x, True)))
|
||
|
# if `a` in the following were replaced with y then the coverage
|
||
|
# is complete but something other than as_set would need to be
|
||
|
# used to detect this
|
||
|
raises(NotImplementedError, lambda: _ITE((x, x < y), (y, x >= a)))
|
||
|
raises(ValueError, lambda: _ITE((a, x < 2), (b, x > 3)))
|
||
|
|
||
|
|
||
|
def test_issue_14052():
|
||
|
assert integrate(abs(sin(x)), (x, 0, 2*pi)) == 4
|
||
|
|
||
|
|
||
|
def test_issue_14240():
|
||
|
assert piecewise_fold(
|
||
|
Piecewise((1, a), (2, b), (4, True)) +
|
||
|
Piecewise((8, a), (16, True))
|
||
|
) == Piecewise((9, a), (18, b), (20, True))
|
||
|
assert piecewise_fold(
|
||
|
Piecewise((2, a), (3, b), (5, True)) *
|
||
|
Piecewise((7, a), (11, True))
|
||
|
) == Piecewise((14, a), (33, b), (55, True))
|
||
|
# these will hang if naive folding is used
|
||
|
assert piecewise_fold(Add(*[
|
||
|
Piecewise((i, a), (0, True)) for i in range(40)])
|
||
|
) == Piecewise((780, a), (0, True))
|
||
|
assert piecewise_fold(Mul(*[
|
||
|
Piecewise((i, a), (0, True)) for i in range(1, 41)])
|
||
|
) == Piecewise((factorial(40), a), (0, True))
|
||
|
|
||
|
|
||
|
def test_issue_14787():
|
||
|
x = Symbol('x')
|
||
|
f = Piecewise((x, x < 1), ((S(58) / 7), True))
|
||
|
assert str(f.evalf()) == "Piecewise((x, x < 1), (8.28571428571429, True))"
|
||
|
|
||
|
def test_issue_21481():
|
||
|
b, e = symbols('b e')
|
||
|
C = Piecewise(
|
||
|
(2,
|
||
|
((b > 1) & (e > 0)) |
|
||
|
((b > 0) & (b < 1) & (e < 0)) |
|
||
|
((e >= 2) & (b < -1) & Eq(Mod(e, 2), 0)) |
|
||
|
((e <= -2) & (b > -1) & (b < 0) & Eq(Mod(e, 2), 0))),
|
||
|
(S.Half,
|
||
|
((b > 1) & (e < 0)) |
|
||
|
((b > 0) & (e > 0) & (b < 1)) |
|
||
|
((e <= -2) & (b < -1) & Eq(Mod(e, 2), 0)) |
|
||
|
((e >= 2) & (b > -1) & (b < 0) & Eq(Mod(e, 2), 0))),
|
||
|
(-S.Half,
|
||
|
Eq(Mod(e, 2), 1) &
|
||
|
(((e <= -1) & (b < -1)) | ((e >= 1) & (b > -1) & (b < 0)))),
|
||
|
(-2,
|
||
|
((e >= 1) & (b < -1) & Eq(Mod(e, 2), 1)) |
|
||
|
((e <= -1) & (b > -1) & (b < 0) & Eq(Mod(e, 2), 1)))
|
||
|
)
|
||
|
A = Piecewise(
|
||
|
(1, Eq(b, 1) | Eq(e, 0) | (Eq(b, -1) & Eq(Mod(e, 2), 0))),
|
||
|
(0, Eq(b, 0) & (e > 0)),
|
||
|
(-1, Eq(b, -1) & Eq(Mod(e, 2), 1)),
|
||
|
(C, Eq(im(b), 0) & Eq(im(e), 0))
|
||
|
)
|
||
|
|
||
|
B = piecewise_fold(A)
|
||
|
sa = A.simplify()
|
||
|
sb = B.simplify()
|
||
|
v = (-2, -1, -S.Half, 0, S.Half, 1, 2)
|
||
|
for i in v:
|
||
|
for j in v:
|
||
|
r = {b:i, e:j}
|
||
|
ok = [k.xreplace(r) for k in (A, B, sa, sb)]
|
||
|
assert len(set(ok)) == 1
|
||
|
|
||
|
|
||
|
def test_issue_8458():
|
||
|
x, y = symbols('x y')
|
||
|
# Original issue
|
||
|
p1 = Piecewise((0, Eq(x, 0)), (sin(x), True))
|
||
|
assert p1.simplify() == sin(x)
|
||
|
# Slightly larger variant
|
||
|
p2 = Piecewise((x, Eq(x, 0)), (4*x + (y-2)**4, Eq(x, 0) & Eq(x+y, 2)), (sin(x), True))
|
||
|
assert p2.simplify() == sin(x)
|
||
|
# Test for problem highlighted during review
|
||
|
p3 = Piecewise((x+1, Eq(x, -1)), (4*x + (y-2)**4, Eq(x, 0) & Eq(x+y, 2)), (sin(x), True))
|
||
|
assert p3.simplify() == Piecewise((0, Eq(x, -1)), (sin(x), True))
|
||
|
|
||
|
|
||
|
def test_issue_16417():
|
||
|
z = Symbol('z')
|
||
|
assert unchanged(Piecewise, (1, Or(Eq(im(z), 0), Gt(re(z), 0))), (2, True))
|
||
|
|
||
|
x = Symbol('x')
|
||
|
assert unchanged(Piecewise, (S.Pi, re(x) < 0),
|
||
|
(0, Or(re(x) > 0, Ne(im(x), 0))),
|
||
|
(S.NaN, True))
|
||
|
r = Symbol('r', real=True)
|
||
|
p = Piecewise((S.Pi, re(r) < 0),
|
||
|
(0, Or(re(r) > 0, Ne(im(r), 0))),
|
||
|
(S.NaN, True))
|
||
|
assert p == Piecewise((S.Pi, r < 0),
|
||
|
(0, r > 0),
|
||
|
(S.NaN, True), evaluate=False)
|
||
|
# Does not work since imaginary != 0...
|
||
|
#i = Symbol('i', imaginary=True)
|
||
|
#p = Piecewise((S.Pi, re(i) < 0),
|
||
|
# (0, Or(re(i) > 0, Ne(im(i), 0))),
|
||
|
# (S.NaN, True))
|
||
|
#assert p == Piecewise((0, Ne(im(i), 0)),
|
||
|
# (S.NaN, True), evaluate=False)
|
||
|
i = I*r
|
||
|
p = Piecewise((S.Pi, re(i) < 0),
|
||
|
(0, Or(re(i) > 0, Ne(im(i), 0))),
|
||
|
(S.NaN, True))
|
||
|
assert p == Piecewise((0, Ne(im(i), 0)),
|
||
|
(S.NaN, True), evaluate=False)
|
||
|
assert p == Piecewise((0, Ne(r, 0)),
|
||
|
(S.NaN, True), evaluate=False)
|
||
|
|
||
|
|
||
|
def test_eval_rewrite_as_KroneckerDelta():
|
||
|
x, y, z, n, t, m = symbols('x y z n t m')
|
||
|
K = KroneckerDelta
|
||
|
f = lambda p: expand(p.rewrite(K))
|
||
|
|
||
|
p1 = Piecewise((0, Eq(x, y)), (1, True))
|
||
|
assert f(p1) == 1 - K(x, y)
|
||
|
|
||
|
p2 = Piecewise((x, Eq(y,0)), (z, Eq(t,0)), (n, True))
|
||
|
assert f(p2) == n*K(0, t)*K(0, y) - n*K(0, t) - n*K(0, y) + n + \
|
||
|
x*K(0, y) - z*K(0, t)*K(0, y) + z*K(0, t)
|
||
|
|
||
|
p3 = Piecewise((1, Ne(x, y)), (0, True))
|
||
|
assert f(p3) == 1 - K(x, y)
|
||
|
|
||
|
p4 = Piecewise((1, Eq(x, 3)), (4, True), (5, True))
|
||
|
assert f(p4) == 4 - 3*K(3, x)
|
||
|
|
||
|
p5 = Piecewise((3, Ne(x, 2)), (4, Eq(y, 2)), (5, True))
|
||
|
assert f(p5) == -K(2, x)*K(2, y) + 2*K(2, x) + 3
|
||
|
|
||
|
p6 = Piecewise((0, Ne(x, 1) & Ne(y, 4)), (1, True))
|
||
|
assert f(p6) == -K(1, x)*K(4, y) + K(1, x) + K(4, y)
|
||
|
|
||
|
p7 = Piecewise((2, Eq(y, 3) & Ne(x, 2)), (1, True))
|
||
|
assert f(p7) == -K(2, x)*K(3, y) + K(3, y) + 1
|
||
|
|
||
|
p8 = Piecewise((4, Eq(x, 3) & Ne(y, 2)), (1, True))
|
||
|
assert f(p8) == -3*K(2, y)*K(3, x) + 3*K(3, x) + 1
|
||
|
|
||
|
p9 = Piecewise((6, Eq(x, 4) & Eq(y, 1)), (1, True))
|
||
|
assert f(p9) == 5 * K(1, y) * K(4, x) + 1
|
||
|
|
||
|
p10 = Piecewise((4, Ne(x, -4) | Ne(y, 1)), (1, True))
|
||
|
assert f(p10) == -3 * K(-4, x) * K(1, y) + 4
|
||
|
|
||
|
p11 = Piecewise((1, Eq(y, 2) | Ne(x, -3)), (2, True))
|
||
|
assert f(p11) == -K(-3, x)*K(2, y) + K(-3, x) + 1
|
||
|
|
||
|
p12 = Piecewise((-1, Eq(x, 1) | Ne(y, 3)), (1, True))
|
||
|
assert f(p12) == -2*K(1, x)*K(3, y) + 2*K(3, y) - 1
|
||
|
|
||
|
p13 = Piecewise((3, Eq(x, 2) | Eq(y, 4)), (1, True))
|
||
|
assert f(p13) == -2*K(2, x)*K(4, y) + 2*K(2, x) + 2*K(4, y) + 1
|
||
|
|
||
|
p14 = Piecewise((1, Ne(x, 0) | Ne(y, 1)), (3, True))
|
||
|
assert f(p14) == 2 * K(0, x) * K(1, y) + 1
|
||
|
|
||
|
p15 = Piecewise((2, Eq(x, 3) | Ne(y, 2)), (3, Eq(x, 4) & Eq(y, 5)), (1, True))
|
||
|
assert f(p15) == -2*K(2, y)*K(3, x)*K(4, x)*K(5, y) + K(2, y)*K(3, x) + \
|
||
|
2*K(2, y)*K(4, x)*K(5, y) - K(2, y) + 2
|
||
|
|
||
|
p16 = Piecewise((0, Ne(m, n)), (1, True))*Piecewise((0, Ne(n, t)), (1, True))\
|
||
|
*Piecewise((0, Ne(n, x)), (1, True)) - Piecewise((0, Ne(t, x)), (1, True))
|
||
|
assert f(p16) == K(m, n)*K(n, t)*K(n, x) - K(t, x)
|
||
|
|
||
|
p17 = Piecewise((0, Ne(t, x) & (Ne(m, n) | Ne(n, t) | Ne(n, x))),
|
||
|
(1, Ne(t, x)), (-1, Ne(m, n) | Ne(n, t) | Ne(n, x)), (0, True))
|
||
|
assert f(p17) == K(m, n)*K(n, t)*K(n, x) - K(t, x)
|
||
|
|
||
|
p18 = Piecewise((-4, Eq(y, 1) | (Eq(x, -5) & Eq(x, z))), (4, True))
|
||
|
assert f(p18) == 8*K(-5, x)*K(1, y)*K(x, z) - 8*K(-5, x)*K(x, z) - 8*K(1, y) + 4
|
||
|
|
||
|
p19 = Piecewise((0, x > 2), (1, True))
|
||
|
assert f(p19) == p19
|
||
|
|
||
|
p20 = Piecewise((0, And(x < 2, x > -5)), (1, True))
|
||
|
assert f(p20) == p20
|
||
|
|
||
|
p21 = Piecewise((0, Or(x > 1, x < 0)), (1, True))
|
||
|
assert f(p21) == p21
|
||
|
|
||
|
p22 = Piecewise((0, ~((Eq(y, -1) | Ne(x, 0)) & (Ne(x, 1) | Ne(y, -1)))), (1, True))
|
||
|
assert f(p22) == K(-1, y)*K(0, x) - K(-1, y)*K(1, x) - K(0, x) + 1
|
||
|
|
||
|
|
||
|
@slow
|
||
|
def test_identical_conds_issue():
|
||
|
from sympy.stats import Uniform, density
|
||
|
u1 = Uniform('u1', 0, 1)
|
||
|
u2 = Uniform('u2', 0, 1)
|
||
|
# Result is quite big, so not really important here (and should ideally be
|
||
|
# simpler). Should not give an exception though.
|
||
|
density(u1 + u2)
|
||
|
|
||
|
|
||
|
def test_issue_7370():
|
||
|
f = Piecewise((1, x <= 2400))
|
||
|
v = integrate(f, (x, 0, Float("252.4", 30)))
|
||
|
assert str(v) == '252.400000000000000000000000000'
|
||
|
|
||
|
|
||
|
def test_issue_14933():
|
||
|
x = Symbol('x')
|
||
|
y = Symbol('y')
|
||
|
|
||
|
inp = MatrixSymbol('inp', 1, 1)
|
||
|
rep_dict = {y: inp[0, 0], x: inp[0, 0]}
|
||
|
|
||
|
p = Piecewise((1, ITE(y > 0, x < 0, True)))
|
||
|
assert p.xreplace(rep_dict) == Piecewise((1, ITE(inp[0, 0] > 0, inp[0, 0] < 0, True)))
|
||
|
|
||
|
|
||
|
def test_issue_16715():
|
||
|
raises(NotImplementedError, lambda: Piecewise((x, x<0), (0, y>1)).as_expr_set_pairs())
|
||
|
|
||
|
|
||
|
def test_issue_20360():
|
||
|
t, tau = symbols("t tau", real=True)
|
||
|
n = symbols("n", integer=True)
|
||
|
lam = pi * (n - S.Half)
|
||
|
eq = integrate(exp(lam * tau), (tau, 0, t))
|
||
|
assert eq.simplify() == (2*exp(pi*t*(2*n - 1)/2) - 2)/(pi*(2*n - 1))
|
||
|
|
||
|
|
||
|
def test_piecewise_eval():
|
||
|
# XXX these tests might need modification if this
|
||
|
# simplification is moved out of eval and into
|
||
|
# boolalg or Piecewise simplification functions
|
||
|
f = lambda x: x.args[0].cond
|
||
|
# unsimplified
|
||
|
assert f(Piecewise((x, (x > -oo) & (x < 3)))
|
||
|
) == ((x > -oo) & (x < 3))
|
||
|
assert f(Piecewise((x, (x > -oo) & (x < oo)))
|
||
|
) == ((x > -oo) & (x < oo))
|
||
|
assert f(Piecewise((x, (x > -3) & (x < 3)))
|
||
|
) == ((x > -3) & (x < 3))
|
||
|
assert f(Piecewise((x, (x > -3) & (x < oo)))
|
||
|
) == ((x > -3) & (x < oo))
|
||
|
assert f(Piecewise((x, (x <= 3) & (x > -oo)))
|
||
|
) == ((x <= 3) & (x > -oo))
|
||
|
assert f(Piecewise((x, (x <= 3) & (x > -3)))
|
||
|
) == ((x <= 3) & (x > -3))
|
||
|
assert f(Piecewise((x, (x >= -3) & (x < 3)))
|
||
|
) == ((x >= -3) & (x < 3))
|
||
|
assert f(Piecewise((x, (x >= -3) & (x < oo)))
|
||
|
) == ((x >= -3) & (x < oo))
|
||
|
assert f(Piecewise((x, (x >= -3) & (x <= 3)))
|
||
|
) == ((x >= -3) & (x <= 3))
|
||
|
# could simplify by keeping only the first
|
||
|
# arg of result
|
||
|
assert f(Piecewise((x, (x <= oo) & (x > -oo)))
|
||
|
) == (x > -oo) & (x <= oo)
|
||
|
assert f(Piecewise((x, (x <= oo) & (x > -3)))
|
||
|
) == (x > -3) & (x <= oo)
|
||
|
assert f(Piecewise((x, (x >= -oo) & (x < 3)))
|
||
|
) == (x < 3) & (x >= -oo)
|
||
|
assert f(Piecewise((x, (x >= -oo) & (x < oo)))
|
||
|
) == (x < oo) & (x >= -oo)
|
||
|
assert f(Piecewise((x, (x >= -oo) & (x <= 3)))
|
||
|
) == (x <= 3) & (x >= -oo)
|
||
|
assert f(Piecewise((x, (x >= -oo) & (x <= oo)))
|
||
|
) == (x <= oo) & (x >= -oo) # but cannot be True unless x is real
|
||
|
assert f(Piecewise((x, (x >= -3) & (x <= oo)))
|
||
|
) == (x >= -3) & (x <= oo)
|
||
|
assert f(Piecewise((x, (Abs(arg(a)) <= 1) | (Abs(arg(a)) < 1)))
|
||
|
) == (Abs(arg(a)) <= 1) | (Abs(arg(a)) < 1)
|
||
|
|
||
|
|
||
|
def test_issue_22533():
|
||
|
x = Symbol('x', real=True)
|
||
|
f = Piecewise((-1 / x, x <= 0), (1 / x, True))
|
||
|
assert integrate(f, x) == Piecewise((-log(x), x <= 0), (log(x), True))
|
||
|
|
||
|
|
||
|
def test_issue_24072():
|
||
|
assert Piecewise((1, x > 1), (2, x <= 1), (3, x <= 1)
|
||
|
) == Piecewise((1, x > 1), (2, True))
|
||
|
|
||
|
|
||
|
def test_piecewise__eval_is_meromorphic():
|
||
|
""" Issue 24127: Tests eval_is_meromorphic auxiliary method """
|
||
|
x = symbols('x', real=True)
|
||
|
f = Piecewise((1, x < 0), (sqrt(1 - x), True))
|
||
|
assert f.is_meromorphic(x, I) is None
|
||
|
assert f.is_meromorphic(x, -1) == True
|
||
|
assert f.is_meromorphic(x, 0) == None
|
||
|
assert f.is_meromorphic(x, 1) == False
|
||
|
assert f.is_meromorphic(x, 2) == True
|
||
|
assert f.is_meromorphic(x, Symbol('a')) == None
|
||
|
assert f.is_meromorphic(x, Symbol('a', real=True)) == None
|