ai-content-maker/.venv/Lib/site-packages/sympy/functions/special/spherical_harmonics.py

335 lines
11 KiB
Python
Raw Permalink Normal View History

2024-05-03 04:18:51 +03:00
from sympy.core.expr import Expr
from sympy.core.function import Function, ArgumentIndexError
from sympy.core.numbers import I, pi
from sympy.core.singleton import S
from sympy.core.symbol import Dummy
from sympy.functions import assoc_legendre
from sympy.functions.combinatorial.factorials import factorial
from sympy.functions.elementary.complexes import Abs, conjugate
from sympy.functions.elementary.exponential import exp
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.functions.elementary.trigonometric import sin, cos, cot
_x = Dummy("x")
class Ynm(Function):
r"""
Spherical harmonics defined as
.. math::
Y_n^m(\theta, \varphi) := \sqrt{\frac{(2n+1)(n-m)!}{4\pi(n+m)!}}
\exp(i m \varphi)
\mathrm{P}_n^m\left(\cos(\theta)\right)
Explanation
===========
``Ynm()`` gives the spherical harmonic function of order $n$ and $m$
in $\theta$ and $\varphi$, $Y_n^m(\theta, \varphi)$. The four
parameters are as follows: $n \geq 0$ an integer and $m$ an integer
such that $-n \leq m \leq n$ holds. The two angles are real-valued
with $\theta \in [0, \pi]$ and $\varphi \in [0, 2\pi]$.
Examples
========
>>> from sympy import Ynm, Symbol, simplify
>>> from sympy.abc import n,m
>>> theta = Symbol("theta")
>>> phi = Symbol("phi")
>>> Ynm(n, m, theta, phi)
Ynm(n, m, theta, phi)
Several symmetries are known, for the order:
>>> Ynm(n, -m, theta, phi)
(-1)**m*exp(-2*I*m*phi)*Ynm(n, m, theta, phi)
As well as for the angles:
>>> Ynm(n, m, -theta, phi)
Ynm(n, m, theta, phi)
>>> Ynm(n, m, theta, -phi)
exp(-2*I*m*phi)*Ynm(n, m, theta, phi)
For specific integers $n$ and $m$ we can evaluate the harmonics
to more useful expressions:
>>> simplify(Ynm(0, 0, theta, phi).expand(func=True))
1/(2*sqrt(pi))
>>> simplify(Ynm(1, -1, theta, phi).expand(func=True))
sqrt(6)*exp(-I*phi)*sin(theta)/(4*sqrt(pi))
>>> simplify(Ynm(1, 0, theta, phi).expand(func=True))
sqrt(3)*cos(theta)/(2*sqrt(pi))
>>> simplify(Ynm(1, 1, theta, phi).expand(func=True))
-sqrt(6)*exp(I*phi)*sin(theta)/(4*sqrt(pi))
>>> simplify(Ynm(2, -2, theta, phi).expand(func=True))
sqrt(30)*exp(-2*I*phi)*sin(theta)**2/(8*sqrt(pi))
>>> simplify(Ynm(2, -1, theta, phi).expand(func=True))
sqrt(30)*exp(-I*phi)*sin(2*theta)/(8*sqrt(pi))
>>> simplify(Ynm(2, 0, theta, phi).expand(func=True))
sqrt(5)*(3*cos(theta)**2 - 1)/(4*sqrt(pi))
>>> simplify(Ynm(2, 1, theta, phi).expand(func=True))
-sqrt(30)*exp(I*phi)*sin(2*theta)/(8*sqrt(pi))
>>> simplify(Ynm(2, 2, theta, phi).expand(func=True))
sqrt(30)*exp(2*I*phi)*sin(theta)**2/(8*sqrt(pi))
We can differentiate the functions with respect
to both angles:
>>> from sympy import Ynm, Symbol, diff
>>> from sympy.abc import n,m
>>> theta = Symbol("theta")
>>> phi = Symbol("phi")
>>> diff(Ynm(n, m, theta, phi), theta)
m*cot(theta)*Ynm(n, m, theta, phi) + sqrt((-m + n)*(m + n + 1))*exp(-I*phi)*Ynm(n, m + 1, theta, phi)
>>> diff(Ynm(n, m, theta, phi), phi)
I*m*Ynm(n, m, theta, phi)
Further we can compute the complex conjugation:
>>> from sympy import Ynm, Symbol, conjugate
>>> from sympy.abc import n,m
>>> theta = Symbol("theta")
>>> phi = Symbol("phi")
>>> conjugate(Ynm(n, m, theta, phi))
(-1)**(2*m)*exp(-2*I*m*phi)*Ynm(n, m, theta, phi)
To get back the well known expressions in spherical
coordinates, we use full expansion:
>>> from sympy import Ynm, Symbol, expand_func
>>> from sympy.abc import n,m
>>> theta = Symbol("theta")
>>> phi = Symbol("phi")
>>> expand_func(Ynm(n, m, theta, phi))
sqrt((2*n + 1)*factorial(-m + n)/factorial(m + n))*exp(I*m*phi)*assoc_legendre(n, m, cos(theta))/(2*sqrt(pi))
See Also
========
Ynm_c, Znm
References
==========
.. [1] https://en.wikipedia.org/wiki/Spherical_harmonics
.. [2] https://mathworld.wolfram.com/SphericalHarmonic.html
.. [3] https://functions.wolfram.com/Polynomials/SphericalHarmonicY/
.. [4] https://dlmf.nist.gov/14.30
"""
@classmethod
def eval(cls, n, m, theta, phi):
# Handle negative index m and arguments theta, phi
if m.could_extract_minus_sign():
m = -m
return S.NegativeOne**m * exp(-2*I*m*phi) * Ynm(n, m, theta, phi)
if theta.could_extract_minus_sign():
theta = -theta
return Ynm(n, m, theta, phi)
if phi.could_extract_minus_sign():
phi = -phi
return exp(-2*I*m*phi) * Ynm(n, m, theta, phi)
# TODO Add more simplififcation here
def _eval_expand_func(self, **hints):
n, m, theta, phi = self.args
rv = (sqrt((2*n + 1)/(4*pi) * factorial(n - m)/factorial(n + m)) *
exp(I*m*phi) * assoc_legendre(n, m, cos(theta)))
# We can do this because of the range of theta
return rv.subs(sqrt(-cos(theta)**2 + 1), sin(theta))
def fdiff(self, argindex=4):
if argindex == 1:
# Diff wrt n
raise ArgumentIndexError(self, argindex)
elif argindex == 2:
# Diff wrt m
raise ArgumentIndexError(self, argindex)
elif argindex == 3:
# Diff wrt theta
n, m, theta, phi = self.args
return (m * cot(theta) * Ynm(n, m, theta, phi) +
sqrt((n - m)*(n + m + 1)) * exp(-I*phi) * Ynm(n, m + 1, theta, phi))
elif argindex == 4:
# Diff wrt phi
n, m, theta, phi = self.args
return I * m * Ynm(n, m, theta, phi)
else:
raise ArgumentIndexError(self, argindex)
def _eval_rewrite_as_polynomial(self, n, m, theta, phi, **kwargs):
# TODO: Make sure n \in N
# TODO: Assert |m| <= n ortherwise we should return 0
return self.expand(func=True)
def _eval_rewrite_as_sin(self, n, m, theta, phi, **kwargs):
return self.rewrite(cos)
def _eval_rewrite_as_cos(self, n, m, theta, phi, **kwargs):
# This method can be expensive due to extensive use of simplification!
from sympy.simplify import simplify, trigsimp
# TODO: Make sure n \in N
# TODO: Assert |m| <= n ortherwise we should return 0
term = simplify(self.expand(func=True))
# We can do this because of the range of theta
term = term.xreplace({Abs(sin(theta)):sin(theta)})
return simplify(trigsimp(term))
def _eval_conjugate(self):
# TODO: Make sure theta \in R and phi \in R
n, m, theta, phi = self.args
return S.NegativeOne**m * self.func(n, -m, theta, phi)
def as_real_imag(self, deep=True, **hints):
# TODO: Handle deep and hints
n, m, theta, phi = self.args
re = (sqrt((2*n + 1)/(4*pi) * factorial(n - m)/factorial(n + m)) *
cos(m*phi) * assoc_legendre(n, m, cos(theta)))
im = (sqrt((2*n + 1)/(4*pi) * factorial(n - m)/factorial(n + m)) *
sin(m*phi) * assoc_legendre(n, m, cos(theta)))
return (re, im)
def _eval_evalf(self, prec):
# Note: works without this function by just calling
# mpmath for Legendre polynomials. But using
# the dedicated function directly is cleaner.
from mpmath import mp, workprec
n = self.args[0]._to_mpmath(prec)
m = self.args[1]._to_mpmath(prec)
theta = self.args[2]._to_mpmath(prec)
phi = self.args[3]._to_mpmath(prec)
with workprec(prec):
res = mp.spherharm(n, m, theta, phi)
return Expr._from_mpmath(res, prec)
def Ynm_c(n, m, theta, phi):
r"""
Conjugate spherical harmonics defined as
.. math::
\overline{Y_n^m(\theta, \varphi)} := (-1)^m Y_n^{-m}(\theta, \varphi).
Examples
========
>>> from sympy import Ynm_c, Symbol, simplify
>>> from sympy.abc import n,m
>>> theta = Symbol("theta")
>>> phi = Symbol("phi")
>>> Ynm_c(n, m, theta, phi)
(-1)**(2*m)*exp(-2*I*m*phi)*Ynm(n, m, theta, phi)
>>> Ynm_c(n, m, -theta, phi)
(-1)**(2*m)*exp(-2*I*m*phi)*Ynm(n, m, theta, phi)
For specific integers $n$ and $m$ we can evaluate the harmonics
to more useful expressions:
>>> simplify(Ynm_c(0, 0, theta, phi).expand(func=True))
1/(2*sqrt(pi))
>>> simplify(Ynm_c(1, -1, theta, phi).expand(func=True))
sqrt(6)*exp(I*(-phi + 2*conjugate(phi)))*sin(theta)/(4*sqrt(pi))
See Also
========
Ynm, Znm
References
==========
.. [1] https://en.wikipedia.org/wiki/Spherical_harmonics
.. [2] https://mathworld.wolfram.com/SphericalHarmonic.html
.. [3] https://functions.wolfram.com/Polynomials/SphericalHarmonicY/
"""
return conjugate(Ynm(n, m, theta, phi))
class Znm(Function):
r"""
Real spherical harmonics defined as
.. math::
Z_n^m(\theta, \varphi) :=
\begin{cases}
\frac{Y_n^m(\theta, \varphi) + \overline{Y_n^m(\theta, \varphi)}}{\sqrt{2}} &\quad m > 0 \\
Y_n^m(\theta, \varphi) &\quad m = 0 \\
\frac{Y_n^m(\theta, \varphi) - \overline{Y_n^m(\theta, \varphi)}}{i \sqrt{2}} &\quad m < 0 \\
\end{cases}
which gives in simplified form
.. math::
Z_n^m(\theta, \varphi) =
\begin{cases}
\frac{Y_n^m(\theta, \varphi) + (-1)^m Y_n^{-m}(\theta, \varphi)}{\sqrt{2}} &\quad m > 0 \\
Y_n^m(\theta, \varphi) &\quad m = 0 \\
\frac{Y_n^m(\theta, \varphi) - (-1)^m Y_n^{-m}(\theta, \varphi)}{i \sqrt{2}} &\quad m < 0 \\
\end{cases}
Examples
========
>>> from sympy import Znm, Symbol, simplify
>>> from sympy.abc import n, m
>>> theta = Symbol("theta")
>>> phi = Symbol("phi")
>>> Znm(n, m, theta, phi)
Znm(n, m, theta, phi)
For specific integers n and m we can evaluate the harmonics
to more useful expressions:
>>> simplify(Znm(0, 0, theta, phi).expand(func=True))
1/(2*sqrt(pi))
>>> simplify(Znm(1, 1, theta, phi).expand(func=True))
-sqrt(3)*sin(theta)*cos(phi)/(2*sqrt(pi))
>>> simplify(Znm(2, 1, theta, phi).expand(func=True))
-sqrt(15)*sin(2*theta)*cos(phi)/(4*sqrt(pi))
See Also
========
Ynm, Ynm_c
References
==========
.. [1] https://en.wikipedia.org/wiki/Spherical_harmonics
.. [2] https://mathworld.wolfram.com/SphericalHarmonic.html
.. [3] https://functions.wolfram.com/Polynomials/SphericalHarmonicY/
"""
@classmethod
def eval(cls, n, m, theta, phi):
if m.is_positive:
zz = (Ynm(n, m, theta, phi) + Ynm_c(n, m, theta, phi)) / sqrt(2)
return zz
elif m.is_zero:
return Ynm(n, m, theta, phi)
elif m.is_negative:
zz = (Ynm(n, m, theta, phi) - Ynm_c(n, m, theta, phi)) / (sqrt(2)*I)
return zz