300 lines
12 KiB
Python
300 lines
12 KiB
Python
|
from sympy.concrete.summations import Sum
|
||
|
from sympy.core.symbol import symbols, Symbol, Dummy
|
||
|
from sympy.functions.elementary.miscellaneous import sqrt
|
||
|
from sympy.functions.special.tensor_functions import KroneckerDelta
|
||
|
from sympy.matrices.dense import eye
|
||
|
from sympy.matrices.expressions.blockmatrix import BlockMatrix
|
||
|
from sympy.matrices.expressions.hadamard import HadamardPower
|
||
|
from sympy.matrices.expressions.matexpr import (MatrixSymbol,
|
||
|
MatrixExpr, MatrixElement)
|
||
|
from sympy.matrices.expressions.matpow import MatPow
|
||
|
from sympy.matrices.expressions.special import (ZeroMatrix, Identity,
|
||
|
OneMatrix)
|
||
|
from sympy.matrices.expressions.trace import Trace, trace
|
||
|
from sympy.matrices.immutable import ImmutableMatrix
|
||
|
from sympy.tensor.array.expressions.array_expressions import ArrayTensorProduct
|
||
|
from sympy.testing.pytest import XFAIL, raises
|
||
|
|
||
|
k, l, m, n = symbols('k l m n', integer=True)
|
||
|
i, j = symbols('i j', integer=True)
|
||
|
|
||
|
W = MatrixSymbol('W', k, l)
|
||
|
X = MatrixSymbol('X', l, m)
|
||
|
Y = MatrixSymbol('Y', l, m)
|
||
|
Z = MatrixSymbol('Z', m, n)
|
||
|
|
||
|
X1 = MatrixSymbol('X1', m, m)
|
||
|
X2 = MatrixSymbol('X2', m, m)
|
||
|
X3 = MatrixSymbol('X3', m, m)
|
||
|
X4 = MatrixSymbol('X4', m, m)
|
||
|
|
||
|
A = MatrixSymbol('A', 2, 2)
|
||
|
B = MatrixSymbol('B', 2, 2)
|
||
|
x = MatrixSymbol('x', 1, 2)
|
||
|
y = MatrixSymbol('x', 2, 1)
|
||
|
|
||
|
|
||
|
def test_symbolic_indexing():
|
||
|
x12 = X[1, 2]
|
||
|
assert all(s in str(x12) for s in ['1', '2', X.name])
|
||
|
# We don't care about the exact form of this. We do want to make sure
|
||
|
# that all of these features are present
|
||
|
|
||
|
|
||
|
def test_add_index():
|
||
|
assert (X + Y)[i, j] == X[i, j] + Y[i, j]
|
||
|
|
||
|
|
||
|
def test_mul_index():
|
||
|
assert (A*y)[0, 0] == A[0, 0]*y[0, 0] + A[0, 1]*y[1, 0]
|
||
|
assert (A*B).as_mutable() == (A.as_mutable() * B.as_mutable())
|
||
|
X = MatrixSymbol('X', n, m)
|
||
|
Y = MatrixSymbol('Y', m, k)
|
||
|
|
||
|
result = (X*Y)[4,2]
|
||
|
expected = Sum(X[4, i]*Y[i, 2], (i, 0, m - 1))
|
||
|
assert result.args[0].dummy_eq(expected.args[0], i)
|
||
|
assert result.args[1][1:] == expected.args[1][1:]
|
||
|
|
||
|
|
||
|
def test_pow_index():
|
||
|
Q = MatPow(A, 2)
|
||
|
assert Q[0, 0] == A[0, 0]**2 + A[0, 1]*A[1, 0]
|
||
|
n = symbols("n")
|
||
|
Q2 = A**n
|
||
|
assert Q2[0, 0] == 2*(
|
||
|
-sqrt((A[0, 0] + A[1, 1])**2 - 4*A[0, 0]*A[1, 1] +
|
||
|
4*A[0, 1]*A[1, 0])/2 + A[0, 0]/2 + A[1, 1]/2
|
||
|
)**n * \
|
||
|
A[0, 1]*A[1, 0]/(
|
||
|
(sqrt(A[0, 0]**2 - 2*A[0, 0]*A[1, 1] + 4*A[0, 1]*A[1, 0] +
|
||
|
A[1, 1]**2) + A[0, 0] - A[1, 1])*
|
||
|
sqrt(A[0, 0]**2 - 2*A[0, 0]*A[1, 1] + 4*A[0, 1]*A[1, 0] + A[1, 1]**2)
|
||
|
) - 2*(
|
||
|
sqrt((A[0, 0] + A[1, 1])**2 - 4*A[0, 0]*A[1, 1] +
|
||
|
4*A[0, 1]*A[1, 0])/2 + A[0, 0]/2 + A[1, 1]/2
|
||
|
)**n * A[0, 1]*A[1, 0]/(
|
||
|
(-sqrt(A[0, 0]**2 - 2*A[0, 0]*A[1, 1] + 4*A[0, 1]*A[1, 0] +
|
||
|
A[1, 1]**2) + A[0, 0] - A[1, 1])*
|
||
|
sqrt(A[0, 0]**2 - 2*A[0, 0]*A[1, 1] + 4*A[0, 1]*A[1, 0] + A[1, 1]**2)
|
||
|
)
|
||
|
|
||
|
|
||
|
def test_transpose_index():
|
||
|
assert X.T[i, j] == X[j, i]
|
||
|
|
||
|
|
||
|
def test_Identity_index():
|
||
|
I = Identity(3)
|
||
|
assert I[0, 0] == I[1, 1] == I[2, 2] == 1
|
||
|
assert I[1, 0] == I[0, 1] == I[2, 1] == 0
|
||
|
assert I[i, 0].delta_range == (0, 2)
|
||
|
raises(IndexError, lambda: I[3, 3])
|
||
|
|
||
|
|
||
|
def test_block_index():
|
||
|
I = Identity(3)
|
||
|
Z = ZeroMatrix(3, 3)
|
||
|
B = BlockMatrix([[I, I], [I, I]])
|
||
|
e3 = ImmutableMatrix(eye(3))
|
||
|
BB = BlockMatrix([[e3, e3], [e3, e3]])
|
||
|
assert B[0, 0] == B[3, 0] == B[0, 3] == B[3, 3] == 1
|
||
|
assert B[4, 3] == B[5, 1] == 0
|
||
|
|
||
|
BB = BlockMatrix([[e3, e3], [e3, e3]])
|
||
|
assert B.as_explicit() == BB.as_explicit()
|
||
|
|
||
|
BI = BlockMatrix([[I, Z], [Z, I]])
|
||
|
|
||
|
assert BI.as_explicit().equals(eye(6))
|
||
|
|
||
|
|
||
|
def test_block_index_symbolic():
|
||
|
# Note that these matrices may be zero-sized and indices may be negative, which causes
|
||
|
# all naive simplifications given in the comments to be invalid
|
||
|
A1 = MatrixSymbol('A1', n, k)
|
||
|
A2 = MatrixSymbol('A2', n, l)
|
||
|
A3 = MatrixSymbol('A3', m, k)
|
||
|
A4 = MatrixSymbol('A4', m, l)
|
||
|
A = BlockMatrix([[A1, A2], [A3, A4]])
|
||
|
assert A[0, 0] == MatrixElement(A, 0, 0) # Cannot be A1[0, 0]
|
||
|
assert A[n - 1, k - 1] == A1[n - 1, k - 1]
|
||
|
assert A[n, k] == A4[0, 0]
|
||
|
assert A[n + m - 1, 0] == MatrixElement(A, n + m - 1, 0) # Cannot be A3[m - 1, 0]
|
||
|
assert A[0, k + l - 1] == MatrixElement(A, 0, k + l - 1) # Cannot be A2[0, l - 1]
|
||
|
assert A[n + m - 1, k + l - 1] == MatrixElement(A, n + m - 1, k + l - 1) # Cannot be A4[m - 1, l - 1]
|
||
|
assert A[i, j] == MatrixElement(A, i, j)
|
||
|
assert A[n + i, k + j] == MatrixElement(A, n + i, k + j) # Cannot be A4[i, j]
|
||
|
assert A[n - i - 1, k - j - 1] == MatrixElement(A, n - i - 1, k - j - 1) # Cannot be A1[n - i - 1, k - j - 1]
|
||
|
|
||
|
|
||
|
def test_block_index_symbolic_nonzero():
|
||
|
# All invalid simplifications from test_block_index_symbolic() that become valid if all
|
||
|
# matrices have nonzero size and all indices are nonnegative
|
||
|
k, l, m, n = symbols('k l m n', integer=True, positive=True)
|
||
|
i, j = symbols('i j', integer=True, nonnegative=True)
|
||
|
A1 = MatrixSymbol('A1', n, k)
|
||
|
A2 = MatrixSymbol('A2', n, l)
|
||
|
A3 = MatrixSymbol('A3', m, k)
|
||
|
A4 = MatrixSymbol('A4', m, l)
|
||
|
A = BlockMatrix([[A1, A2], [A3, A4]])
|
||
|
assert A[0, 0] == A1[0, 0]
|
||
|
assert A[n + m - 1, 0] == A3[m - 1, 0]
|
||
|
assert A[0, k + l - 1] == A2[0, l - 1]
|
||
|
assert A[n + m - 1, k + l - 1] == A4[m - 1, l - 1]
|
||
|
assert A[i, j] == MatrixElement(A, i, j)
|
||
|
assert A[n + i, k + j] == A4[i, j]
|
||
|
assert A[n - i - 1, k - j - 1] == A1[n - i - 1, k - j - 1]
|
||
|
assert A[2 * n, 2 * k] == A4[n, k]
|
||
|
|
||
|
|
||
|
def test_block_index_large():
|
||
|
n, m, k = symbols('n m k', integer=True, positive=True)
|
||
|
i = symbols('i', integer=True, nonnegative=True)
|
||
|
A1 = MatrixSymbol('A1', n, n)
|
||
|
A2 = MatrixSymbol('A2', n, m)
|
||
|
A3 = MatrixSymbol('A3', n, k)
|
||
|
A4 = MatrixSymbol('A4', m, n)
|
||
|
A5 = MatrixSymbol('A5', m, m)
|
||
|
A6 = MatrixSymbol('A6', m, k)
|
||
|
A7 = MatrixSymbol('A7', k, n)
|
||
|
A8 = MatrixSymbol('A8', k, m)
|
||
|
A9 = MatrixSymbol('A9', k, k)
|
||
|
A = BlockMatrix([[A1, A2, A3], [A4, A5, A6], [A7, A8, A9]])
|
||
|
assert A[n + i, n + i] == MatrixElement(A, n + i, n + i)
|
||
|
|
||
|
|
||
|
@XFAIL
|
||
|
def test_block_index_symbolic_fail():
|
||
|
# To make this work, symbolic matrix dimensions would need to be somehow assumed nonnegative
|
||
|
# even if the symbols aren't specified as such. Then 2 * n < n would correctly evaluate to
|
||
|
# False in BlockMatrix._entry()
|
||
|
A1 = MatrixSymbol('A1', n, 1)
|
||
|
A2 = MatrixSymbol('A2', m, 1)
|
||
|
A = BlockMatrix([[A1], [A2]])
|
||
|
assert A[2 * n, 0] == A2[n, 0]
|
||
|
|
||
|
|
||
|
def test_slicing():
|
||
|
A.as_explicit()[0, :] # does not raise an error
|
||
|
|
||
|
|
||
|
def test_errors():
|
||
|
raises(IndexError, lambda: Identity(2)[1, 2, 3, 4, 5])
|
||
|
raises(IndexError, lambda: Identity(2)[[1, 2, 3, 4, 5]])
|
||
|
|
||
|
|
||
|
def test_matrix_expression_to_indices():
|
||
|
i, j = symbols("i, j")
|
||
|
i1, i2, i3 = symbols("i_1:4")
|
||
|
|
||
|
def replace_dummies(expr):
|
||
|
repl = {i: Symbol(i.name) for i in expr.atoms(Dummy)}
|
||
|
return expr.xreplace(repl)
|
||
|
|
||
|
expr = W*X*Z
|
||
|
assert replace_dummies(expr._entry(i, j)) == \
|
||
|
Sum(W[i, i1]*X[i1, i2]*Z[i2, j], (i1, 0, l-1), (i2, 0, m-1))
|
||
|
assert MatrixExpr.from_index_summation(expr._entry(i, j)) == expr
|
||
|
|
||
|
expr = Z.T*X.T*W.T
|
||
|
assert replace_dummies(expr._entry(i, j)) == \
|
||
|
Sum(W[j, i2]*X[i2, i1]*Z[i1, i], (i1, 0, m-1), (i2, 0, l-1))
|
||
|
assert MatrixExpr.from_index_summation(expr._entry(i, j), i) == expr
|
||
|
|
||
|
expr = W*X*Z + W*Y*Z
|
||
|
assert replace_dummies(expr._entry(i, j)) == \
|
||
|
Sum(W[i, i1]*X[i1, i2]*Z[i2, j], (i1, 0, l-1), (i2, 0, m-1)) +\
|
||
|
Sum(W[i, i1]*Y[i1, i2]*Z[i2, j], (i1, 0, l-1), (i2, 0, m-1))
|
||
|
assert MatrixExpr.from_index_summation(expr._entry(i, j)) == expr
|
||
|
|
||
|
expr = 2*W*X*Z + 3*W*Y*Z
|
||
|
assert replace_dummies(expr._entry(i, j)) == \
|
||
|
2*Sum(W[i, i1]*X[i1, i2]*Z[i2, j], (i1, 0, l-1), (i2, 0, m-1)) +\
|
||
|
3*Sum(W[i, i1]*Y[i1, i2]*Z[i2, j], (i1, 0, l-1), (i2, 0, m-1))
|
||
|
assert MatrixExpr.from_index_summation(expr._entry(i, j)) == expr
|
||
|
|
||
|
expr = W*(X + Y)*Z
|
||
|
assert replace_dummies(expr._entry(i, j)) == \
|
||
|
Sum(W[i, i1]*(X[i1, i2] + Y[i1, i2])*Z[i2, j], (i1, 0, l-1), (i2, 0, m-1))
|
||
|
assert MatrixExpr.from_index_summation(expr._entry(i, j)) == expr
|
||
|
|
||
|
expr = A*B**2*A
|
||
|
#assert replace_dummies(expr._entry(i, j)) == \
|
||
|
# Sum(A[i, i1]*B[i1, i2]*B[i2, i3]*A[i3, j], (i1, 0, 1), (i2, 0, 1), (i3, 0, 1))
|
||
|
|
||
|
# Check that different dummies are used in sub-multiplications:
|
||
|
expr = (X1*X2 + X2*X1)*X3
|
||
|
assert replace_dummies(expr._entry(i, j)) == \
|
||
|
Sum((Sum(X1[i, i2] * X2[i2, i1], (i2, 0, m - 1)) + Sum(X1[i3, i1] * X2[i, i3], (i3, 0, m - 1))) * X3[
|
||
|
i1, j], (i1, 0, m - 1))
|
||
|
|
||
|
|
||
|
def test_matrix_expression_from_index_summation():
|
||
|
from sympy.abc import a,b,c,d
|
||
|
A = MatrixSymbol("A", k, k)
|
||
|
B = MatrixSymbol("B", k, k)
|
||
|
C = MatrixSymbol("C", k, k)
|
||
|
w1 = MatrixSymbol("w1", k, 1)
|
||
|
|
||
|
i0, i1, i2, i3, i4 = symbols("i0:5", cls=Dummy)
|
||
|
|
||
|
expr = Sum(W[a,b]*X[b,c]*Z[c,d], (b, 0, l-1), (c, 0, m-1))
|
||
|
assert MatrixExpr.from_index_summation(expr, a) == W*X*Z
|
||
|
expr = Sum(W.T[b,a]*X[b,c]*Z[c,d], (b, 0, l-1), (c, 0, m-1))
|
||
|
assert MatrixExpr.from_index_summation(expr, a) == W*X*Z
|
||
|
expr = Sum(A[b, a]*B[b, c]*C[c, d], (b, 0, k-1), (c, 0, k-1))
|
||
|
assert MatrixSymbol.from_index_summation(expr, a) == A.T*B*C
|
||
|
expr = Sum(A[b, a]*B[c, b]*C[c, d], (b, 0, k-1), (c, 0, k-1))
|
||
|
assert MatrixSymbol.from_index_summation(expr, a) == A.T*B.T*C
|
||
|
expr = Sum(C[c, d]*A[b, a]*B[c, b], (b, 0, k-1), (c, 0, k-1))
|
||
|
assert MatrixSymbol.from_index_summation(expr, a) == A.T*B.T*C
|
||
|
expr = Sum(A[a, b] + B[a, b], (a, 0, k-1), (b, 0, k-1))
|
||
|
assert MatrixExpr.from_index_summation(expr, a) == OneMatrix(1, k)*A*OneMatrix(k, 1) + OneMatrix(1, k)*B*OneMatrix(k, 1)
|
||
|
expr = Sum(A[a, b]**2, (a, 0, k - 1), (b, 0, k - 1))
|
||
|
assert MatrixExpr.from_index_summation(expr, a) == Trace(A * A.T)
|
||
|
expr = Sum(A[a, b]**3, (a, 0, k - 1), (b, 0, k - 1))
|
||
|
assert MatrixExpr.from_index_summation(expr, a) == Trace(HadamardPower(A.T, 2) * A)
|
||
|
expr = Sum((A[a, b] + B[a, b])*C[b, c], (b, 0, k-1))
|
||
|
assert MatrixExpr.from_index_summation(expr, a) == (A+B)*C
|
||
|
expr = Sum((A[a, b] + B[b, a])*C[b, c], (b, 0, k-1))
|
||
|
assert MatrixExpr.from_index_summation(expr, a) == (A+B.T)*C
|
||
|
expr = Sum(A[a, b]*A[b, c]*A[c, d], (b, 0, k-1), (c, 0, k-1))
|
||
|
assert MatrixExpr.from_index_summation(expr, a) == A**3
|
||
|
expr = Sum(A[a, b]*A[b, c]*B[c, d], (b, 0, k-1), (c, 0, k-1))
|
||
|
assert MatrixExpr.from_index_summation(expr, a) == A**2*B
|
||
|
|
||
|
# Parse the trace of a matrix:
|
||
|
|
||
|
expr = Sum(A[a, a], (a, 0, k-1))
|
||
|
assert MatrixExpr.from_index_summation(expr, None) == trace(A)
|
||
|
expr = Sum(A[a, a]*B[b, c]*C[c, d], (a, 0, k-1), (c, 0, k-1))
|
||
|
assert MatrixExpr.from_index_summation(expr, b) == trace(A)*B*C
|
||
|
|
||
|
# Check wrong sum ranges (should raise an exception):
|
||
|
|
||
|
## Case 1: 0 to m instead of 0 to m-1
|
||
|
expr = Sum(W[a,b]*X[b,c]*Z[c,d], (b, 0, l-1), (c, 0, m))
|
||
|
raises(ValueError, lambda: MatrixExpr.from_index_summation(expr, a))
|
||
|
## Case 2: 1 to m-1 instead of 0 to m-1
|
||
|
expr = Sum(W[a,b]*X[b,c]*Z[c,d], (b, 0, l-1), (c, 1, m-1))
|
||
|
raises(ValueError, lambda: MatrixExpr.from_index_summation(expr, a))
|
||
|
|
||
|
# Parse nested sums:
|
||
|
expr = Sum(A[a, b]*Sum(B[b, c]*C[c, d], (c, 0, k-1)), (b, 0, k-1))
|
||
|
assert MatrixExpr.from_index_summation(expr, a) == A*B*C
|
||
|
|
||
|
# Test Kronecker delta:
|
||
|
expr = Sum(A[a, b]*KroneckerDelta(b, c)*B[c, d], (b, 0, k-1), (c, 0, k-1))
|
||
|
assert MatrixExpr.from_index_summation(expr, a) == A*B
|
||
|
|
||
|
expr = Sum(KroneckerDelta(i1, m)*KroneckerDelta(i2, n)*A[i, i1]*A[j, i2], (i1, 0, k-1), (i2, 0, k-1))
|
||
|
assert MatrixExpr.from_index_summation(expr, m) == ArrayTensorProduct(A.T, A)
|
||
|
|
||
|
# Test numbered indices:
|
||
|
expr = Sum(A[i1, i2]*w1[i2, 0], (i2, 0, k-1))
|
||
|
assert MatrixExpr.from_index_summation(expr, i1) == MatrixElement(A*w1, i1, 0)
|
||
|
|
||
|
expr = Sum(A[i1, i2]*B[i2, 0], (i2, 0, k-1))
|
||
|
assert MatrixExpr.from_index_summation(expr, i1) == MatrixElement(A*B, i1, 0)
|