287 lines
13 KiB
Python
287 lines
13 KiB
Python
|
from collections import defaultdict
|
||
|
from sympy.core.containers import Tuple
|
||
|
from sympy.core.singleton import S
|
||
|
from sympy.core.symbol import (Dummy, Symbol)
|
||
|
|
||
|
from sympy.ntheory import n_order, is_primitive_root, is_quad_residue, \
|
||
|
legendre_symbol, jacobi_symbol, totient, primerange, sqrt_mod, \
|
||
|
primitive_root, quadratic_residues, is_nthpow_residue, nthroot_mod, \
|
||
|
sqrt_mod_iter, mobius, discrete_log, quadratic_congruence, \
|
||
|
polynomial_congruence
|
||
|
from sympy.ntheory.residue_ntheory import _primitive_root_prime_iter, \
|
||
|
_discrete_log_trial_mul, _discrete_log_shanks_steps, \
|
||
|
_discrete_log_pollard_rho, _discrete_log_pohlig_hellman
|
||
|
from sympy.polys.domains import ZZ
|
||
|
from sympy.testing.pytest import raises
|
||
|
|
||
|
|
||
|
def test_residue():
|
||
|
assert n_order(2, 13) == 12
|
||
|
assert [n_order(a, 7) for a in range(1, 7)] == \
|
||
|
[1, 3, 6, 3, 6, 2]
|
||
|
assert n_order(5, 17) == 16
|
||
|
assert n_order(17, 11) == n_order(6, 11)
|
||
|
assert n_order(101, 119) == 6
|
||
|
assert n_order(11, (10**50 + 151)**2) == 10000000000000000000000000000000000000000000000030100000000000000000000000000000000000000000000022650
|
||
|
raises(ValueError, lambda: n_order(6, 9))
|
||
|
|
||
|
assert is_primitive_root(2, 7) is False
|
||
|
assert is_primitive_root(3, 8) is False
|
||
|
assert is_primitive_root(11, 14) is False
|
||
|
assert is_primitive_root(12, 17) == is_primitive_root(29, 17)
|
||
|
raises(ValueError, lambda: is_primitive_root(3, 6))
|
||
|
|
||
|
for p in primerange(3, 100):
|
||
|
it = _primitive_root_prime_iter(p)
|
||
|
assert len(list(it)) == totient(totient(p))
|
||
|
assert primitive_root(97) == 5
|
||
|
assert primitive_root(97**2) == 5
|
||
|
assert primitive_root(40487) == 5
|
||
|
# note that primitive_root(40487) + 40487 = 40492 is a primitive root
|
||
|
# of 40487**2, but it is not the smallest
|
||
|
assert primitive_root(40487**2) == 10
|
||
|
assert primitive_root(82) == 7
|
||
|
p = 10**50 + 151
|
||
|
assert primitive_root(p) == 11
|
||
|
assert primitive_root(2*p) == 11
|
||
|
assert primitive_root(p**2) == 11
|
||
|
raises(ValueError, lambda: primitive_root(-3))
|
||
|
|
||
|
assert is_quad_residue(3, 7) is False
|
||
|
assert is_quad_residue(10, 13) is True
|
||
|
assert is_quad_residue(12364, 139) == is_quad_residue(12364 % 139, 139)
|
||
|
assert is_quad_residue(207, 251) is True
|
||
|
assert is_quad_residue(0, 1) is True
|
||
|
assert is_quad_residue(1, 1) is True
|
||
|
assert is_quad_residue(0, 2) == is_quad_residue(1, 2) is True
|
||
|
assert is_quad_residue(1, 4) is True
|
||
|
assert is_quad_residue(2, 27) is False
|
||
|
assert is_quad_residue(13122380800, 13604889600) is True
|
||
|
assert [j for j in range(14) if is_quad_residue(j, 14)] == \
|
||
|
[0, 1, 2, 4, 7, 8, 9, 11]
|
||
|
raises(ValueError, lambda: is_quad_residue(1.1, 2))
|
||
|
raises(ValueError, lambda: is_quad_residue(2, 0))
|
||
|
|
||
|
assert quadratic_residues(S.One) == [0]
|
||
|
assert quadratic_residues(1) == [0]
|
||
|
assert quadratic_residues(12) == [0, 1, 4, 9]
|
||
|
assert quadratic_residues(13) == [0, 1, 3, 4, 9, 10, 12]
|
||
|
assert [len(quadratic_residues(i)) for i in range(1, 20)] == \
|
||
|
[1, 2, 2, 2, 3, 4, 4, 3, 4, 6, 6, 4, 7, 8, 6, 4, 9, 8, 10]
|
||
|
|
||
|
assert list(sqrt_mod_iter(6, 2)) == [0]
|
||
|
assert sqrt_mod(3, 13) == 4
|
||
|
assert sqrt_mod(3, -13) == 4
|
||
|
assert sqrt_mod(6, 23) == 11
|
||
|
assert sqrt_mod(345, 690) == 345
|
||
|
assert sqrt_mod(67, 101) == None
|
||
|
assert sqrt_mod(1020, 104729) == None
|
||
|
|
||
|
for p in range(3, 100):
|
||
|
d = defaultdict(list)
|
||
|
for i in range(p):
|
||
|
d[pow(i, 2, p)].append(i)
|
||
|
for i in range(1, p):
|
||
|
it = sqrt_mod_iter(i, p)
|
||
|
v = sqrt_mod(i, p, True)
|
||
|
if v:
|
||
|
v = sorted(v)
|
||
|
assert d[i] == v
|
||
|
else:
|
||
|
assert not d[i]
|
||
|
|
||
|
assert sqrt_mod(9, 27, True) == [3, 6, 12, 15, 21, 24]
|
||
|
assert sqrt_mod(9, 81, True) == [3, 24, 30, 51, 57, 78]
|
||
|
assert sqrt_mod(9, 3**5, True) == [3, 78, 84, 159, 165, 240]
|
||
|
assert sqrt_mod(81, 3**4, True) == [0, 9, 18, 27, 36, 45, 54, 63, 72]
|
||
|
assert sqrt_mod(81, 3**5, True) == [9, 18, 36, 45, 63, 72, 90, 99, 117,\
|
||
|
126, 144, 153, 171, 180, 198, 207, 225, 234]
|
||
|
assert sqrt_mod(81, 3**6, True) == [9, 72, 90, 153, 171, 234, 252, 315,\
|
||
|
333, 396, 414, 477, 495, 558, 576, 639, 657, 720]
|
||
|
assert sqrt_mod(81, 3**7, True) == [9, 234, 252, 477, 495, 720, 738, 963,\
|
||
|
981, 1206, 1224, 1449, 1467, 1692, 1710, 1935, 1953, 2178]
|
||
|
|
||
|
for a, p in [(26214400, 32768000000), (26214400, 16384000000),
|
||
|
(262144, 1048576), (87169610025, 163443018796875),
|
||
|
(22315420166400, 167365651248000000)]:
|
||
|
assert pow(sqrt_mod(a, p), 2, p) == a
|
||
|
|
||
|
n = 70
|
||
|
a, p = 5**2*3**n*2**n, 5**6*3**(n+1)*2**(n+2)
|
||
|
it = sqrt_mod_iter(a, p)
|
||
|
for i in range(10):
|
||
|
assert pow(next(it), 2, p) == a
|
||
|
a, p = 5**2*3**n*2**n, 5**6*3**(n+1)*2**(n+3)
|
||
|
it = sqrt_mod_iter(a, p)
|
||
|
for i in range(2):
|
||
|
assert pow(next(it), 2, p) == a
|
||
|
n = 100
|
||
|
a, p = 5**2*3**n*2**n, 5**6*3**(n+1)*2**(n+1)
|
||
|
it = sqrt_mod_iter(a, p)
|
||
|
for i in range(2):
|
||
|
assert pow(next(it), 2, p) == a
|
||
|
|
||
|
assert type(next(sqrt_mod_iter(9, 27))) is int
|
||
|
assert type(next(sqrt_mod_iter(9, 27, ZZ))) is type(ZZ(1))
|
||
|
assert type(next(sqrt_mod_iter(1, 7, ZZ))) is type(ZZ(1))
|
||
|
|
||
|
assert is_nthpow_residue(2, 1, 5)
|
||
|
|
||
|
#issue 10816
|
||
|
assert is_nthpow_residue(1, 0, 1) is False
|
||
|
assert is_nthpow_residue(1, 0, 2) is True
|
||
|
assert is_nthpow_residue(3, 0, 2) is True
|
||
|
assert is_nthpow_residue(0, 1, 8) is True
|
||
|
assert is_nthpow_residue(2, 3, 2) is True
|
||
|
assert is_nthpow_residue(2, 3, 9) is False
|
||
|
assert is_nthpow_residue(3, 5, 30) is True
|
||
|
assert is_nthpow_residue(21, 11, 20) is True
|
||
|
assert is_nthpow_residue(7, 10, 20) is False
|
||
|
assert is_nthpow_residue(5, 10, 20) is True
|
||
|
assert is_nthpow_residue(3, 10, 48) is False
|
||
|
assert is_nthpow_residue(1, 10, 40) is True
|
||
|
assert is_nthpow_residue(3, 10, 24) is False
|
||
|
assert is_nthpow_residue(1, 10, 24) is True
|
||
|
assert is_nthpow_residue(3, 10, 24) is False
|
||
|
assert is_nthpow_residue(2, 10, 48) is False
|
||
|
assert is_nthpow_residue(81, 3, 972) is False
|
||
|
assert is_nthpow_residue(243, 5, 5103) is True
|
||
|
assert is_nthpow_residue(243, 3, 1240029) is False
|
||
|
assert is_nthpow_residue(36010, 8, 87382) is True
|
||
|
assert is_nthpow_residue(28552, 6, 2218) is True
|
||
|
assert is_nthpow_residue(92712, 9, 50026) is True
|
||
|
x = {pow(i, 56, 1024) for i in range(1024)}
|
||
|
assert {a for a in range(1024) if is_nthpow_residue(a, 56, 1024)} == x
|
||
|
x = { pow(i, 256, 2048) for i in range(2048)}
|
||
|
assert {a for a in range(2048) if is_nthpow_residue(a, 256, 2048)} == x
|
||
|
x = { pow(i, 11, 324000) for i in range(1000)}
|
||
|
assert [ is_nthpow_residue(a, 11, 324000) for a in x]
|
||
|
x = { pow(i, 17, 22217575536) for i in range(1000)}
|
||
|
assert [ is_nthpow_residue(a, 17, 22217575536) for a in x]
|
||
|
assert is_nthpow_residue(676, 3, 5364)
|
||
|
assert is_nthpow_residue(9, 12, 36)
|
||
|
assert is_nthpow_residue(32, 10, 41)
|
||
|
assert is_nthpow_residue(4, 2, 64)
|
||
|
assert is_nthpow_residue(31, 4, 41)
|
||
|
assert not is_nthpow_residue(2, 2, 5)
|
||
|
assert is_nthpow_residue(8547, 12, 10007)
|
||
|
assert is_nthpow_residue(Dummy(even=True) + 3, 3, 2) == True
|
||
|
assert nthroot_mod(Dummy(odd=True), 3, 2) == 1
|
||
|
|
||
|
assert nthroot_mod(29, 31, 74) == [45]
|
||
|
assert nthroot_mod(1801, 11, 2663) == 44
|
||
|
for a, q, p in [(51922, 2, 203017), (43, 3, 109), (1801, 11, 2663),
|
||
|
(26118163, 1303, 33333347), (1499, 7, 2663), (595, 6, 2663),
|
||
|
(1714, 12, 2663), (28477, 9, 33343)]:
|
||
|
r = nthroot_mod(a, q, p)
|
||
|
assert pow(r, q, p) == a
|
||
|
assert nthroot_mod(11, 3, 109) is None
|
||
|
assert nthroot_mod(16, 5, 36, True) == [4, 22]
|
||
|
assert nthroot_mod(9, 16, 36, True) == [3, 9, 15, 21, 27, 33]
|
||
|
assert nthroot_mod(4, 3, 3249000) == []
|
||
|
assert nthroot_mod(36010, 8, 87382, True) == [40208, 47174]
|
||
|
assert nthroot_mod(0, 12, 37, True) == [0]
|
||
|
assert nthroot_mod(0, 7, 100, True) == [0, 10, 20, 30, 40, 50, 60, 70, 80, 90]
|
||
|
assert nthroot_mod(4, 4, 27, True) == [5, 22]
|
||
|
assert nthroot_mod(4, 4, 121, True) == [19, 102]
|
||
|
assert nthroot_mod(2, 3, 7, True) == []
|
||
|
|
||
|
for p in range(5, 100):
|
||
|
qv = range(3, p, 4)
|
||
|
for q in qv:
|
||
|
d = defaultdict(list)
|
||
|
for i in range(p):
|
||
|
d[pow(i, q, p)].append(i)
|
||
|
for a in range(1, p - 1):
|
||
|
res = nthroot_mod(a, q, p, True)
|
||
|
if d[a]:
|
||
|
assert d[a] == res
|
||
|
else:
|
||
|
assert res == []
|
||
|
|
||
|
assert legendre_symbol(5, 11) == 1
|
||
|
assert legendre_symbol(25, 41) == 1
|
||
|
assert legendre_symbol(67, 101) == -1
|
||
|
assert legendre_symbol(0, 13) == 0
|
||
|
assert legendre_symbol(9, 3) == 0
|
||
|
raises(ValueError, lambda: legendre_symbol(2, 4))
|
||
|
|
||
|
assert jacobi_symbol(25, 41) == 1
|
||
|
assert jacobi_symbol(-23, 83) == -1
|
||
|
assert jacobi_symbol(3, 9) == 0
|
||
|
assert jacobi_symbol(42, 97) == -1
|
||
|
assert jacobi_symbol(3, 5) == -1
|
||
|
assert jacobi_symbol(7, 9) == 1
|
||
|
assert jacobi_symbol(0, 3) == 0
|
||
|
assert jacobi_symbol(0, 1) == 1
|
||
|
assert jacobi_symbol(2, 1) == 1
|
||
|
assert jacobi_symbol(1, 3) == 1
|
||
|
raises(ValueError, lambda: jacobi_symbol(3, 8))
|
||
|
|
||
|
assert mobius(13*7) == 1
|
||
|
assert mobius(1) == 1
|
||
|
assert mobius(13*7*5) == -1
|
||
|
assert mobius(13**2) == 0
|
||
|
raises(ValueError, lambda: mobius(-3))
|
||
|
|
||
|
p = Symbol('p', integer=True, positive=True, prime=True)
|
||
|
x = Symbol('x', positive=True)
|
||
|
i = Symbol('i', integer=True)
|
||
|
assert mobius(p) == -1
|
||
|
raises(TypeError, lambda: mobius(x))
|
||
|
raises(ValueError, lambda: mobius(i))
|
||
|
|
||
|
assert _discrete_log_trial_mul(587, 2**7, 2) == 7
|
||
|
assert _discrete_log_trial_mul(941, 7**18, 7) == 18
|
||
|
assert _discrete_log_trial_mul(389, 3**81, 3) == 81
|
||
|
assert _discrete_log_trial_mul(191, 19**123, 19) == 123
|
||
|
assert _discrete_log_shanks_steps(442879, 7**2, 7) == 2
|
||
|
assert _discrete_log_shanks_steps(874323, 5**19, 5) == 19
|
||
|
assert _discrete_log_shanks_steps(6876342, 7**71, 7) == 71
|
||
|
assert _discrete_log_shanks_steps(2456747, 3**321, 3) == 321
|
||
|
assert _discrete_log_pollard_rho(6013199, 2**6, 2, rseed=0) == 6
|
||
|
assert _discrete_log_pollard_rho(6138719, 2**19, 2, rseed=0) == 19
|
||
|
assert _discrete_log_pollard_rho(36721943, 2**40, 2, rseed=0) == 40
|
||
|
assert _discrete_log_pollard_rho(24567899, 3**333, 3, rseed=0) == 333
|
||
|
raises(ValueError, lambda: _discrete_log_pollard_rho(11, 7, 31, rseed=0))
|
||
|
raises(ValueError, lambda: _discrete_log_pollard_rho(227, 3**7, 5, rseed=0))
|
||
|
|
||
|
assert _discrete_log_pohlig_hellman(98376431, 11**9, 11) == 9
|
||
|
assert _discrete_log_pohlig_hellman(78723213, 11**31, 11) == 31
|
||
|
assert _discrete_log_pohlig_hellman(32942478, 11**98, 11) == 98
|
||
|
assert _discrete_log_pohlig_hellman(14789363, 11**444, 11) == 444
|
||
|
assert discrete_log(587, 2**9, 2) == 9
|
||
|
assert discrete_log(2456747, 3**51, 3) == 51
|
||
|
assert discrete_log(32942478, 11**127, 11) == 127
|
||
|
assert discrete_log(432751500361, 7**324, 7) == 324
|
||
|
args = 5779, 3528, 6215
|
||
|
assert discrete_log(*args) == 687
|
||
|
assert discrete_log(*Tuple(*args)) == 687
|
||
|
assert quadratic_congruence(400, 85, 125, 1600) == [295, 615, 935, 1255, 1575]
|
||
|
assert quadratic_congruence(3, 6, 5, 25) == [3, 20]
|
||
|
assert quadratic_congruence(120, 80, 175, 500) == []
|
||
|
assert quadratic_congruence(15, 14, 7, 2) == [1]
|
||
|
assert quadratic_congruence(8, 15, 7, 29) == [10, 28]
|
||
|
assert quadratic_congruence(160, 200, 300, 461) == [144, 431]
|
||
|
assert quadratic_congruence(100000, 123456, 7415263, 48112959837082048697) == [30417843635344493501, 36001135160550533083]
|
||
|
assert quadratic_congruence(65, 121, 72, 277) == [249, 252]
|
||
|
assert quadratic_congruence(5, 10, 14, 2) == [0]
|
||
|
assert quadratic_congruence(10, 17, 19, 2) == [1]
|
||
|
assert quadratic_congruence(10, 14, 20, 2) == [0, 1]
|
||
|
assert polynomial_congruence(6*x**5 + 10*x**4 + 5*x**3 + x**2 + x + 1,
|
||
|
972000) == [220999, 242999, 463999, 485999, 706999, 728999, 949999, 971999]
|
||
|
|
||
|
assert polynomial_congruence(x**3 - 10*x**2 + 12*x - 82, 33075) == [30287]
|
||
|
assert polynomial_congruence(x**2 + x + 47, 2401) == [785, 1615]
|
||
|
assert polynomial_congruence(10*x**2 + 14*x + 20, 2) == [0, 1]
|
||
|
assert polynomial_congruence(x**3 + 3, 16) == [5]
|
||
|
assert polynomial_congruence(65*x**2 + 121*x + 72, 277) == [249, 252]
|
||
|
assert polynomial_congruence(x**4 - 4, 27) == [5, 22]
|
||
|
assert polynomial_congruence(35*x**3 - 6*x**2 - 567*x + 2308, 148225) == [86957,
|
||
|
111157, 122531, 146731]
|
||
|
assert polynomial_congruence(x**16 - 9, 36) == [3, 9, 15, 21, 27, 33]
|
||
|
assert polynomial_congruence(x**6 - 2*x**5 - 35, 6125) == [3257]
|
||
|
raises(ValueError, lambda: polynomial_congruence(x**x, 6125))
|
||
|
raises(ValueError, lambda: polynomial_congruence(x**i, 6125))
|
||
|
raises(ValueError, lambda: polynomial_congruence(0.1*x**2 + 6, 100))
|