ai-content-maker/.venv/Lib/site-packages/sympy/physics/optics/tests/test_gaussopt.py

103 lines
4.1 KiB
Python
Raw Permalink Normal View History

2024-05-03 04:18:51 +03:00
from sympy.core.evalf import N
from sympy.core.numbers import (Float, I, oo, pi)
from sympy.core.symbol import symbols
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.functions.elementary.trigonometric import atan2
from sympy.matrices.dense import Matrix
from sympy.polys.polytools import factor
from sympy.physics.optics import (BeamParameter, CurvedMirror,
CurvedRefraction, FlatMirror, FlatRefraction, FreeSpace, GeometricRay,
RayTransferMatrix, ThinLens, conjugate_gauss_beams,
gaussian_conj, geometric_conj_ab, geometric_conj_af, geometric_conj_bf,
rayleigh2waist, waist2rayleigh)
def streq(a, b):
return str(a) == str(b)
def test_gauss_opt():
mat = RayTransferMatrix(1, 2, 3, 4)
assert mat == Matrix([[1, 2], [3, 4]])
assert mat == RayTransferMatrix( Matrix([[1, 2], [3, 4]]) )
assert [mat.A, mat.B, mat.C, mat.D] == [1, 2, 3, 4]
d, f, h, n1, n2, R = symbols('d f h n1 n2 R')
lens = ThinLens(f)
assert lens == Matrix([[ 1, 0], [-1/f, 1]])
assert lens.C == -1/f
assert FreeSpace(d) == Matrix([[ 1, d], [0, 1]])
assert FlatRefraction(n1, n2) == Matrix([[1, 0], [0, n1/n2]])
assert CurvedRefraction(
R, n1, n2) == Matrix([[1, 0], [(n1 - n2)/(R*n2), n1/n2]])
assert FlatMirror() == Matrix([[1, 0], [0, 1]])
assert CurvedMirror(R) == Matrix([[ 1, 0], [-2/R, 1]])
assert ThinLens(f) == Matrix([[ 1, 0], [-1/f, 1]])
mul = CurvedMirror(R)*FreeSpace(d)
mul_mat = Matrix([[ 1, 0], [-2/R, 1]])*Matrix([[ 1, d], [0, 1]])
assert mul.A == mul_mat[0, 0]
assert mul.B == mul_mat[0, 1]
assert mul.C == mul_mat[1, 0]
assert mul.D == mul_mat[1, 1]
angle = symbols('angle')
assert GeometricRay(h, angle) == Matrix([[ h], [angle]])
assert FreeSpace(
d)*GeometricRay(h, angle) == Matrix([[angle*d + h], [angle]])
assert GeometricRay( Matrix( ((h,), (angle,)) ) ) == Matrix([[h], [angle]])
assert (FreeSpace(d)*GeometricRay(h, angle)).height == angle*d + h
assert (FreeSpace(d)*GeometricRay(h, angle)).angle == angle
p = BeamParameter(530e-9, 1, w=1e-3)
assert streq(p.q, 1 + 1.88679245283019*I*pi)
assert streq(N(p.q), 1.0 + 5.92753330865999*I)
assert streq(N(p.w_0), Float(0.00100000000000000))
assert streq(N(p.z_r), Float(5.92753330865999))
fs = FreeSpace(10)
p1 = fs*p
assert streq(N(p.w), Float(0.00101413072159615))
assert streq(N(p1.w), Float(0.00210803120913829))
w, wavelen = symbols('w wavelen')
assert waist2rayleigh(w, wavelen) == pi*w**2/wavelen
z_r, wavelen = symbols('z_r wavelen')
assert rayleigh2waist(z_r, wavelen) == sqrt(wavelen*z_r)/sqrt(pi)
a, b, f = symbols('a b f')
assert geometric_conj_ab(a, b) == a*b/(a + b)
assert geometric_conj_af(a, f) == a*f/(a - f)
assert geometric_conj_bf(b, f) == b*f/(b - f)
assert geometric_conj_ab(oo, b) == b
assert geometric_conj_ab(a, oo) == a
s_in, z_r_in, f = symbols('s_in z_r_in f')
assert gaussian_conj(
s_in, z_r_in, f)[0] == 1/(-1/(s_in + z_r_in**2/(-f + s_in)) + 1/f)
assert gaussian_conj(
s_in, z_r_in, f)[1] == z_r_in/(1 - s_in**2/f**2 + z_r_in**2/f**2)
assert gaussian_conj(
s_in, z_r_in, f)[2] == 1/sqrt(1 - s_in**2/f**2 + z_r_in**2/f**2)
l, w_i, w_o, f = symbols('l w_i w_o f')
assert conjugate_gauss_beams(l, w_i, w_o, f=f)[0] == f*(
-sqrt(w_i**2/w_o**2 - pi**2*w_i**4/(f**2*l**2)) + 1)
assert factor(conjugate_gauss_beams(l, w_i, w_o, f=f)[1]) == f*w_o**2*(
w_i**2/w_o**2 - sqrt(w_i**2/w_o**2 - pi**2*w_i**4/(f**2*l**2)))/w_i**2
assert conjugate_gauss_beams(l, w_i, w_o, f=f)[2] == f
z, l, w_0 = symbols('z l w_0', positive=True)
p = BeamParameter(l, z, w=w_0)
assert p.radius == z*(pi**2*w_0**4/(l**2*z**2) + 1)
assert p.w == w_0*sqrt(l**2*z**2/(pi**2*w_0**4) + 1)
assert p.w_0 == w_0
assert p.divergence == l/(pi*w_0)
assert p.gouy == atan2(z, pi*w_0**2/l)
assert p.waist_approximation_limit == 2*l/pi
p = BeamParameter(530e-9, 1, w=1e-3, n=2)
assert streq(p.q, 1 + 3.77358490566038*I*pi)
assert streq(N(p.z_r), Float(11.8550666173200))
assert streq(N(p.w_0), Float(0.00100000000000000))