ai-content-maker/.venv/Lib/site-packages/sympy/physics/quantum/tests/test_density.py

290 lines
9.5 KiB
Python
Raw Permalink Normal View History

2024-05-03 04:18:51 +03:00
from sympy.core.numbers import Rational
from sympy.core.singleton import S
from sympy.core.symbol import symbols
from sympy.functions.elementary.exponential import log
from sympy.external import import_module
from sympy.physics.quantum.density import Density, entropy, fidelity
from sympy.physics.quantum.state import Ket, TimeDepKet
from sympy.physics.quantum.qubit import Qubit
from sympy.physics.quantum.represent import represent
from sympy.physics.quantum.dagger import Dagger
from sympy.physics.quantum.cartesian import XKet, PxKet, PxOp, XOp
from sympy.physics.quantum.spin import JzKet
from sympy.physics.quantum.operator import OuterProduct
from sympy.physics.quantum.trace import Tr
from sympy.functions import sqrt
from sympy.testing.pytest import raises
from sympy.physics.quantum.matrixutils import scipy_sparse_matrix
from sympy.physics.quantum.tensorproduct import TensorProduct
def test_eval_args():
# check instance created
assert isinstance(Density([Ket(0), 0.5], [Ket(1), 0.5]), Density)
assert isinstance(Density([Qubit('00'), 1/sqrt(2)],
[Qubit('11'), 1/sqrt(2)]), Density)
#test if Qubit object type preserved
d = Density([Qubit('00'), 1/sqrt(2)], [Qubit('11'), 1/sqrt(2)])
for (state, prob) in d.args:
assert isinstance(state, Qubit)
# check for value error, when prob is not provided
raises(ValueError, lambda: Density([Ket(0)], [Ket(1)]))
def test_doit():
x, y = symbols('x y')
A, B, C, D, E, F = symbols('A B C D E F', commutative=False)
d = Density([XKet(), 0.5], [PxKet(), 0.5])
assert (0.5*(PxKet()*Dagger(PxKet())) +
0.5*(XKet()*Dagger(XKet()))) == d.doit()
# check for kets with expr in them
d_with_sym = Density([XKet(x*y), 0.5], [PxKet(x*y), 0.5])
assert (0.5*(PxKet(x*y)*Dagger(PxKet(x*y))) +
0.5*(XKet(x*y)*Dagger(XKet(x*y)))) == d_with_sym.doit()
d = Density([(A + B)*C, 1.0])
assert d.doit() == (1.0*A*C*Dagger(C)*Dagger(A) +
1.0*A*C*Dagger(C)*Dagger(B) +
1.0*B*C*Dagger(C)*Dagger(A) +
1.0*B*C*Dagger(C)*Dagger(B))
# With TensorProducts as args
# Density with simple tensor products as args
t = TensorProduct(A, B, C)
d = Density([t, 1.0])
assert d.doit() == \
1.0 * TensorProduct(A*Dagger(A), B*Dagger(B), C*Dagger(C))
# Density with multiple Tensorproducts as states
t2 = TensorProduct(A, B)
t3 = TensorProduct(C, D)
d = Density([t2, 0.5], [t3, 0.5])
assert d.doit() == (0.5 * TensorProduct(A*Dagger(A), B*Dagger(B)) +
0.5 * TensorProduct(C*Dagger(C), D*Dagger(D)))
#Density with mixed states
d = Density([t2 + t3, 1.0])
assert d.doit() == (1.0 * TensorProduct(A*Dagger(A), B*Dagger(B)) +
1.0 * TensorProduct(A*Dagger(C), B*Dagger(D)) +
1.0 * TensorProduct(C*Dagger(A), D*Dagger(B)) +
1.0 * TensorProduct(C*Dagger(C), D*Dagger(D)))
#Density operators with spin states
tp1 = TensorProduct(JzKet(1, 1), JzKet(1, -1))
d = Density([tp1, 1])
# full trace
t = Tr(d)
assert t.doit() == 1
#Partial trace on density operators with spin states
t = Tr(d, [0])
assert t.doit() == JzKet(1, -1) * Dagger(JzKet(1, -1))
t = Tr(d, [1])
assert t.doit() == JzKet(1, 1) * Dagger(JzKet(1, 1))
# with another spin state
tp2 = TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)))
d = Density([tp2, 1])
#full trace
t = Tr(d)
assert t.doit() == 1
#Partial trace on density operators with spin states
t = Tr(d, [0])
assert t.doit() == JzKet(S.Half, Rational(-1, 2)) * Dagger(JzKet(S.Half, Rational(-1, 2)))
t = Tr(d, [1])
assert t.doit() == JzKet(S.Half, S.Half) * Dagger(JzKet(S.Half, S.Half))
def test_apply_op():
d = Density([Ket(0), 0.5], [Ket(1), 0.5])
assert d.apply_op(XOp()) == Density([XOp()*Ket(0), 0.5],
[XOp()*Ket(1), 0.5])
def test_represent():
x, y = symbols('x y')
d = Density([XKet(), 0.5], [PxKet(), 0.5])
assert (represent(0.5*(PxKet()*Dagger(PxKet()))) +
represent(0.5*(XKet()*Dagger(XKet())))) == represent(d)
# check for kets with expr in them
d_with_sym = Density([XKet(x*y), 0.5], [PxKet(x*y), 0.5])
assert (represent(0.5*(PxKet(x*y)*Dagger(PxKet(x*y)))) +
represent(0.5*(XKet(x*y)*Dagger(XKet(x*y))))) == \
represent(d_with_sym)
# check when given explicit basis
assert (represent(0.5*(XKet()*Dagger(XKet())), basis=PxOp()) +
represent(0.5*(PxKet()*Dagger(PxKet())), basis=PxOp())) == \
represent(d, basis=PxOp())
def test_states():
d = Density([Ket(0), 0.5], [Ket(1), 0.5])
states = d.states()
assert states[0] == Ket(0) and states[1] == Ket(1)
def test_probs():
d = Density([Ket(0), .75], [Ket(1), 0.25])
probs = d.probs()
assert probs[0] == 0.75 and probs[1] == 0.25
#probs can be symbols
x, y = symbols('x y')
d = Density([Ket(0), x], [Ket(1), y])
probs = d.probs()
assert probs[0] == x and probs[1] == y
def test_get_state():
x, y = symbols('x y')
d = Density([Ket(0), x], [Ket(1), y])
states = (d.get_state(0), d.get_state(1))
assert states[0] == Ket(0) and states[1] == Ket(1)
def test_get_prob():
x, y = symbols('x y')
d = Density([Ket(0), x], [Ket(1), y])
probs = (d.get_prob(0), d.get_prob(1))
assert probs[0] == x and probs[1] == y
def test_entropy():
up = JzKet(S.Half, S.Half)
down = JzKet(S.Half, Rational(-1, 2))
d = Density((up, S.Half), (down, S.Half))
# test for density object
ent = entropy(d)
assert entropy(d) == log(2)/2
assert d.entropy() == log(2)/2
np = import_module('numpy', min_module_version='1.4.0')
if np:
#do this test only if 'numpy' is available on test machine
np_mat = represent(d, format='numpy')
ent = entropy(np_mat)
assert isinstance(np_mat, np.ndarray)
assert ent.real == 0.69314718055994529
assert ent.imag == 0
scipy = import_module('scipy', import_kwargs={'fromlist': ['sparse']})
if scipy and np:
#do this test only if numpy and scipy are available
mat = represent(d, format="scipy.sparse")
assert isinstance(mat, scipy_sparse_matrix)
assert ent.real == 0.69314718055994529
assert ent.imag == 0
def test_eval_trace():
up = JzKet(S.Half, S.Half)
down = JzKet(S.Half, Rational(-1, 2))
d = Density((up, 0.5), (down, 0.5))
t = Tr(d)
assert t.doit() == 1.0
#test dummy time dependent states
class TestTimeDepKet(TimeDepKet):
def _eval_trace(self, bra, **options):
return 1
x, t = symbols('x t')
k1 = TestTimeDepKet(0, 0.5)
k2 = TestTimeDepKet(0, 1)
d = Density([k1, 0.5], [k2, 0.5])
assert d.doit() == (0.5 * OuterProduct(k1, k1.dual) +
0.5 * OuterProduct(k2, k2.dual))
t = Tr(d)
assert t.doit() == 1.0
def test_fidelity():
#test with kets
up = JzKet(S.Half, S.Half)
down = JzKet(S.Half, Rational(-1, 2))
updown = (S.One/sqrt(2))*up + (S.One/sqrt(2))*down
#check with matrices
up_dm = represent(up * Dagger(up))
down_dm = represent(down * Dagger(down))
updown_dm = represent(updown * Dagger(updown))
assert abs(fidelity(up_dm, up_dm) - 1) < 1e-3
assert fidelity(up_dm, down_dm) < 1e-3
assert abs(fidelity(up_dm, updown_dm) - (S.One/sqrt(2))) < 1e-3
assert abs(fidelity(updown_dm, down_dm) - (S.One/sqrt(2))) < 1e-3
#check with density
up_dm = Density([up, 1.0])
down_dm = Density([down, 1.0])
updown_dm = Density([updown, 1.0])
assert abs(fidelity(up_dm, up_dm) - 1) < 1e-3
assert abs(fidelity(up_dm, down_dm)) < 1e-3
assert abs(fidelity(up_dm, updown_dm) - (S.One/sqrt(2))) < 1e-3
assert abs(fidelity(updown_dm, down_dm) - (S.One/sqrt(2))) < 1e-3
#check mixed states with density
updown2 = sqrt(3)/2*up + S.Half*down
d1 = Density([updown, 0.25], [updown2, 0.75])
d2 = Density([updown, 0.75], [updown2, 0.25])
assert abs(fidelity(d1, d2) - 0.991) < 1e-3
assert abs(fidelity(d2, d1) - fidelity(d1, d2)) < 1e-3
#using qubits/density(pure states)
state1 = Qubit('0')
state2 = Qubit('1')
state3 = S.One/sqrt(2)*state1 + S.One/sqrt(2)*state2
state4 = sqrt(Rational(2, 3))*state1 + S.One/sqrt(3)*state2
state1_dm = Density([state1, 1])
state2_dm = Density([state2, 1])
state3_dm = Density([state3, 1])
assert fidelity(state1_dm, state1_dm) == 1
assert fidelity(state1_dm, state2_dm) == 0
assert abs(fidelity(state1_dm, state3_dm) - 1/sqrt(2)) < 1e-3
assert abs(fidelity(state3_dm, state2_dm) - 1/sqrt(2)) < 1e-3
#using qubits/density(mixed states)
d1 = Density([state3, 0.70], [state4, 0.30])
d2 = Density([state3, 0.20], [state4, 0.80])
assert abs(fidelity(d1, d1) - 1) < 1e-3
assert abs(fidelity(d1, d2) - 0.996) < 1e-3
assert abs(fidelity(d1, d2) - fidelity(d2, d1)) < 1e-3
#TODO: test for invalid arguments
# non-square matrix
mat1 = [[0, 0],
[0, 0],
[0, 0]]
mat2 = [[0, 0],
[0, 0]]
raises(ValueError, lambda: fidelity(mat1, mat2))
# unequal dimensions
mat1 = [[0, 0],
[0, 0]]
mat2 = [[0, 0, 0],
[0, 0, 0],
[0, 0, 0]]
raises(ValueError, lambda: fidelity(mat1, mat2))
# unsupported data-type
x, y = 1, 2 # random values that is not a matrix
raises(ValueError, lambda: fidelity(x, y))