ai-content-maker/.venv/Lib/site-packages/sympy/physics/quantum/tests/test_represent.py

190 lines
5.0 KiB
Python
Raw Permalink Normal View History

2024-05-03 04:18:51 +03:00
from sympy.core.numbers import (Float, I, Integer)
from sympy.matrices.dense import Matrix
from sympy.external import import_module
from sympy.testing.pytest import skip
from sympy.physics.quantum.dagger import Dagger
from sympy.physics.quantum.represent import (represent, rep_innerproduct,
rep_expectation, enumerate_states)
from sympy.physics.quantum.state import Bra, Ket
from sympy.physics.quantum.operator import Operator, OuterProduct
from sympy.physics.quantum.tensorproduct import TensorProduct
from sympy.physics.quantum.tensorproduct import matrix_tensor_product
from sympy.physics.quantum.commutator import Commutator
from sympy.physics.quantum.anticommutator import AntiCommutator
from sympy.physics.quantum.innerproduct import InnerProduct
from sympy.physics.quantum.matrixutils import (numpy_ndarray,
scipy_sparse_matrix, to_numpy,
to_scipy_sparse, to_sympy)
from sympy.physics.quantum.cartesian import XKet, XOp, XBra
from sympy.physics.quantum.qapply import qapply
from sympy.physics.quantum.operatorset import operators_to_state
Amat = Matrix([[1, I], [-I, 1]])
Bmat = Matrix([[1, 2], [3, 4]])
Avec = Matrix([[1], [I]])
class AKet(Ket):
@classmethod
def dual_class(self):
return ABra
def _represent_default_basis(self, **options):
return self._represent_AOp(None, **options)
def _represent_AOp(self, basis, **options):
return Avec
class ABra(Bra):
@classmethod
def dual_class(self):
return AKet
class AOp(Operator):
def _represent_default_basis(self, **options):
return self._represent_AOp(None, **options)
def _represent_AOp(self, basis, **options):
return Amat
class BOp(Operator):
def _represent_default_basis(self, **options):
return self._represent_AOp(None, **options)
def _represent_AOp(self, basis, **options):
return Bmat
k = AKet('a')
b = ABra('a')
A = AOp('A')
B = BOp('B')
_tests = [
# Bra
(b, Dagger(Avec)),
(Dagger(b), Avec),
# Ket
(k, Avec),
(Dagger(k), Dagger(Avec)),
# Operator
(A, Amat),
(Dagger(A), Dagger(Amat)),
# OuterProduct
(OuterProduct(k, b), Avec*Avec.H),
# TensorProduct
(TensorProduct(A, B), matrix_tensor_product(Amat, Bmat)),
# Pow
(A**2, Amat**2),
# Add/Mul
(A*B + 2*A, Amat*Bmat + 2*Amat),
# Commutator
(Commutator(A, B), Amat*Bmat - Bmat*Amat),
# AntiCommutator
(AntiCommutator(A, B), Amat*Bmat + Bmat*Amat),
# InnerProduct
(InnerProduct(b, k), (Avec.H*Avec)[0])
]
def test_format_sympy():
for test in _tests:
lhs = represent(test[0], basis=A, format='sympy')
rhs = to_sympy(test[1])
assert lhs == rhs
def test_scalar_sympy():
assert represent(Integer(1)) == Integer(1)
assert represent(Float(1.0)) == Float(1.0)
assert represent(1.0 + I) == 1.0 + I
np = import_module('numpy')
def test_format_numpy():
if not np:
skip("numpy not installed.")
for test in _tests:
lhs = represent(test[0], basis=A, format='numpy')
rhs = to_numpy(test[1])
if isinstance(lhs, numpy_ndarray):
assert (lhs == rhs).all()
else:
assert lhs == rhs
def test_scalar_numpy():
if not np:
skip("numpy not installed.")
assert represent(Integer(1), format='numpy') == 1
assert represent(Float(1.0), format='numpy') == 1.0
assert represent(1.0 + I, format='numpy') == 1.0 + 1.0j
scipy = import_module('scipy', import_kwargs={'fromlist': ['sparse']})
def test_format_scipy_sparse():
if not np:
skip("numpy not installed.")
if not scipy:
skip("scipy not installed.")
for test in _tests:
lhs = represent(test[0], basis=A, format='scipy.sparse')
rhs = to_scipy_sparse(test[1])
if isinstance(lhs, scipy_sparse_matrix):
assert np.linalg.norm((lhs - rhs).todense()) == 0.0
else:
assert lhs == rhs
def test_scalar_scipy_sparse():
if not np:
skip("numpy not installed.")
if not scipy:
skip("scipy not installed.")
assert represent(Integer(1), format='scipy.sparse') == 1
assert represent(Float(1.0), format='scipy.sparse') == 1.0
assert represent(1.0 + I, format='scipy.sparse') == 1.0 + 1.0j
x_ket = XKet('x')
x_bra = XBra('x')
x_op = XOp('X')
def test_innerprod_represent():
assert rep_innerproduct(x_ket) == InnerProduct(XBra("x_1"), x_ket).doit()
assert rep_innerproduct(x_bra) == InnerProduct(x_bra, XKet("x_1")).doit()
try:
rep_innerproduct(x_op)
except TypeError:
return True
def test_operator_represent():
basis_kets = enumerate_states(operators_to_state(x_op), 1, 2)
assert rep_expectation(
x_op) == qapply(basis_kets[1].dual*x_op*basis_kets[0])
def test_enumerate_states():
test = XKet("foo")
assert enumerate_states(test, 1, 1) == [XKet("foo_1")]
assert enumerate_states(
test, [1, 2, 4]) == [XKet("foo_1"), XKet("foo_2"), XKet("foo_4")]