ai-content-maker/.venv/Lib/site-packages/sympy/polys/heuristicgcd.py

150 lines
3.6 KiB
Python
Raw Permalink Normal View History

2024-05-03 04:18:51 +03:00
"""Heuristic polynomial GCD algorithm (HEUGCD). """
from .polyerrors import HeuristicGCDFailed
HEU_GCD_MAX = 6
def heugcd(f, g):
"""
Heuristic polynomial GCD in ``Z[X]``.
Given univariate polynomials ``f`` and ``g`` in ``Z[X]``, returns
their GCD and cofactors, i.e. polynomials ``h``, ``cff`` and ``cfg``
such that::
h = gcd(f, g), cff = quo(f, h) and cfg = quo(g, h)
The algorithm is purely heuristic which means it may fail to compute
the GCD. This will be signaled by raising an exception. In this case
you will need to switch to another GCD method.
The algorithm computes the polynomial GCD by evaluating polynomials
``f`` and ``g`` at certain points and computing (fast) integer GCD
of those evaluations. The polynomial GCD is recovered from the integer
image by interpolation. The evaluation process reduces f and g variable
by variable into a large integer. The final step is to verify if the
interpolated polynomial is the correct GCD. This gives cofactors of
the input polynomials as a side effect.
Examples
========
>>> from sympy.polys.heuristicgcd import heugcd
>>> from sympy.polys import ring, ZZ
>>> R, x,y, = ring("x,y", ZZ)
>>> f = x**2 + 2*x*y + y**2
>>> g = x**2 + x*y
>>> h, cff, cfg = heugcd(f, g)
>>> h, cff, cfg
(x + y, x + y, x)
>>> cff*h == f
True
>>> cfg*h == g
True
References
==========
.. [1] [Liao95]_
"""
assert f.ring == g.ring and f.ring.domain.is_ZZ
ring = f.ring
x0 = ring.gens[0]
domain = ring.domain
gcd, f, g = f.extract_ground(g)
f_norm = f.max_norm()
g_norm = g.max_norm()
B = domain(2*min(f_norm, g_norm) + 29)
x = max(min(B, 99*domain.sqrt(B)),
2*min(f_norm // abs(f.LC),
g_norm // abs(g.LC)) + 4)
for i in range(0, HEU_GCD_MAX):
ff = f.evaluate(x0, x)
gg = g.evaluate(x0, x)
if ff and gg:
if ring.ngens == 1:
h, cff, cfg = domain.cofactors(ff, gg)
else:
h, cff, cfg = heugcd(ff, gg)
h = _gcd_interpolate(h, x, ring)
h = h.primitive()[1]
cff_, r = f.div(h)
if not r:
cfg_, r = g.div(h)
if not r:
h = h.mul_ground(gcd)
return h, cff_, cfg_
cff = _gcd_interpolate(cff, x, ring)
h, r = f.div(cff)
if not r:
cfg_, r = g.div(h)
if not r:
h = h.mul_ground(gcd)
return h, cff, cfg_
cfg = _gcd_interpolate(cfg, x, ring)
h, r = g.div(cfg)
if not r:
cff_, r = f.div(h)
if not r:
h = h.mul_ground(gcd)
return h, cff_, cfg
x = 73794*x * domain.sqrt(domain.sqrt(x)) // 27011
raise HeuristicGCDFailed('no luck')
def _gcd_interpolate(h, x, ring):
"""Interpolate polynomial GCD from integer GCD. """
f, i = ring.zero, 0
# TODO: don't expose poly repr implementation details
if ring.ngens == 1:
while h:
g = h % x
if g > x // 2: g -= x
h = (h - g) // x
# f += X**i*g
if g:
f[(i,)] = g
i += 1
else:
while h:
g = h.trunc_ground(x)
h = (h - g).quo_ground(x)
# f += X**i*g
if g:
for monom, coeff in g.iterterms():
f[(i,) + monom] = coeff
i += 1
if f.LC < 0:
return -f
else:
return f