144 lines
4.9 KiB
Python
144 lines
4.9 KiB
Python
|
"""Tests for computing Galois groups. """
|
||
|
|
||
|
from sympy.abc import x
|
||
|
from sympy.combinatorics.galois import (
|
||
|
S1TransitiveSubgroups, S2TransitiveSubgroups, S3TransitiveSubgroups,
|
||
|
S4TransitiveSubgroups, S5TransitiveSubgroups, S6TransitiveSubgroups,
|
||
|
)
|
||
|
from sympy.polys.domains.rationalfield import QQ
|
||
|
from sympy.polys.numberfields.galoisgroups import (
|
||
|
tschirnhausen_transformation,
|
||
|
galois_group,
|
||
|
_galois_group_degree_4_root_approx,
|
||
|
_galois_group_degree_5_hybrid,
|
||
|
)
|
||
|
from sympy.polys.numberfields.subfield import field_isomorphism
|
||
|
from sympy.polys.polytools import Poly
|
||
|
from sympy.testing.pytest import raises
|
||
|
|
||
|
|
||
|
def test_tschirnhausen_transformation():
|
||
|
for T in [
|
||
|
Poly(x**2 - 2),
|
||
|
Poly(x**2 + x + 1),
|
||
|
Poly(x**4 + 1),
|
||
|
Poly(x**4 - x**3 + x**2 - x + 1),
|
||
|
]:
|
||
|
_, U = tschirnhausen_transformation(T)
|
||
|
assert U.degree() == T.degree()
|
||
|
assert U.is_monic
|
||
|
assert U.is_irreducible
|
||
|
K = QQ.alg_field_from_poly(T)
|
||
|
L = QQ.alg_field_from_poly(U)
|
||
|
assert field_isomorphism(K.ext, L.ext) is not None
|
||
|
|
||
|
|
||
|
# Test polys are from:
|
||
|
# Cohen, H. *A Course in Computational Algebraic Number Theory*.
|
||
|
test_polys_by_deg = {
|
||
|
# Degree 1
|
||
|
1: [
|
||
|
(x, S1TransitiveSubgroups.S1, True)
|
||
|
],
|
||
|
# Degree 2
|
||
|
2: [
|
||
|
(x**2 + x + 1, S2TransitiveSubgroups.S2, False)
|
||
|
],
|
||
|
# Degree 3
|
||
|
3: [
|
||
|
(x**3 + x**2 - 2*x - 1, S3TransitiveSubgroups.A3, True),
|
||
|
(x**3 + 2, S3TransitiveSubgroups.S3, False),
|
||
|
],
|
||
|
# Degree 4
|
||
|
4: [
|
||
|
(x**4 + x**3 + x**2 + x + 1, S4TransitiveSubgroups.C4, False),
|
||
|
(x**4 + 1, S4TransitiveSubgroups.V, True),
|
||
|
(x**4 - 2, S4TransitiveSubgroups.D4, False),
|
||
|
(x**4 + 8*x + 12, S4TransitiveSubgroups.A4, True),
|
||
|
(x**4 + x + 1, S4TransitiveSubgroups.S4, False),
|
||
|
],
|
||
|
# Degree 5
|
||
|
5: [
|
||
|
(x**5 + x**4 - 4*x**3 - 3*x**2 + 3*x + 1, S5TransitiveSubgroups.C5, True),
|
||
|
(x**5 - 5*x + 12, S5TransitiveSubgroups.D5, True),
|
||
|
(x**5 + 2, S5TransitiveSubgroups.M20, False),
|
||
|
(x**5 + 20*x + 16, S5TransitiveSubgroups.A5, True),
|
||
|
(x**5 - x + 1, S5TransitiveSubgroups.S5, False),
|
||
|
],
|
||
|
# Degree 6
|
||
|
6: [
|
||
|
(x**6 + x**5 + x**4 + x**3 + x**2 + x + 1, S6TransitiveSubgroups.C6, False),
|
||
|
(x**6 + 108, S6TransitiveSubgroups.S3, False),
|
||
|
(x**6 + 2, S6TransitiveSubgroups.D6, False),
|
||
|
(x**6 - 3*x**2 - 1, S6TransitiveSubgroups.A4, True),
|
||
|
(x**6 + 3*x**3 + 3, S6TransitiveSubgroups.G18, False),
|
||
|
(x**6 - 3*x**2 + 1, S6TransitiveSubgroups.A4xC2, False),
|
||
|
(x**6 - 4*x**2 - 1, S6TransitiveSubgroups.S4p, True),
|
||
|
(x**6 - 3*x**5 + 6*x**4 - 7*x**3 + 2*x**2 + x - 4, S6TransitiveSubgroups.S4m, False),
|
||
|
(x**6 + 2*x**3 - 2, S6TransitiveSubgroups.G36m, False),
|
||
|
(x**6 + 2*x**2 + 2, S6TransitiveSubgroups.S4xC2, False),
|
||
|
(x**6 + 10*x**5 + 55*x**4 + 140*x**3 + 175*x**2 + 170*x + 25, S6TransitiveSubgroups.PSL2F5, True),
|
||
|
(x**6 + 10*x**5 + 55*x**4 + 140*x**3 + 175*x**2 - 3019*x + 25, S6TransitiveSubgroups.PGL2F5, False),
|
||
|
(x**6 + 6*x**4 + 2*x**3 + 9*x**2 + 6*x - 4, S6TransitiveSubgroups.G36p, True),
|
||
|
(x**6 + 2*x**4 + 2*x**3 + x**2 + 2*x + 2, S6TransitiveSubgroups.G72, False),
|
||
|
(x**6 + 24*x - 20, S6TransitiveSubgroups.A6, True),
|
||
|
(x**6 + x + 1, S6TransitiveSubgroups.S6, False),
|
||
|
],
|
||
|
}
|
||
|
|
||
|
|
||
|
def test_galois_group():
|
||
|
"""
|
||
|
Try all the test polys.
|
||
|
"""
|
||
|
for deg in range(1, 7):
|
||
|
polys = test_polys_by_deg[deg]
|
||
|
for T, G, alt in polys:
|
||
|
assert galois_group(T, by_name=True) == (G, alt)
|
||
|
|
||
|
|
||
|
def test_galois_group_degree_out_of_bounds():
|
||
|
raises(ValueError, lambda: galois_group(Poly(0, x)))
|
||
|
raises(ValueError, lambda: galois_group(Poly(1, x)))
|
||
|
raises(ValueError, lambda: galois_group(Poly(x ** 7 + 1)))
|
||
|
|
||
|
|
||
|
def test_galois_group_not_by_name():
|
||
|
"""
|
||
|
Check at least one polynomial of each supported degree, to see that
|
||
|
conversion from name to group works.
|
||
|
"""
|
||
|
for deg in range(1, 7):
|
||
|
T, G_name, _ = test_polys_by_deg[deg][0]
|
||
|
G, _ = galois_group(T)
|
||
|
assert G == G_name.get_perm_group()
|
||
|
|
||
|
|
||
|
def test_galois_group_not_monic_over_ZZ():
|
||
|
"""
|
||
|
Check that we can work with polys that are not monic over ZZ.
|
||
|
"""
|
||
|
for deg in range(1, 7):
|
||
|
T, G, alt = test_polys_by_deg[deg][0]
|
||
|
assert galois_group(T/2, by_name=True) == (G, alt)
|
||
|
|
||
|
|
||
|
def test__galois_group_degree_4_root_approx():
|
||
|
for T, G, alt in test_polys_by_deg[4]:
|
||
|
assert _galois_group_degree_4_root_approx(Poly(T)) == (G, alt)
|
||
|
|
||
|
|
||
|
def test__galois_group_degree_5_hybrid():
|
||
|
for T, G, alt in test_polys_by_deg[5]:
|
||
|
assert _galois_group_degree_5_hybrid(Poly(T)) == (G, alt)
|
||
|
|
||
|
|
||
|
def test_AlgebraicField_galois_group():
|
||
|
k = QQ.alg_field_from_poly(Poly(x**4 + 1))
|
||
|
G, _ = k.galois_group(by_name=True)
|
||
|
assert G == S4TransitiveSubgroups.V
|
||
|
|
||
|
k = QQ.alg_field_from_poly(Poly(x**4 - 2))
|
||
|
G, _ = k.galois_group(by_name=True)
|
||
|
assert G == S4TransitiveSubgroups.D4
|