ai-content-maker/.venv/Lib/site-packages/sympy/polys/polyfuncs.py

322 lines
8.3 KiB
Python
Raw Permalink Normal View History

2024-05-03 04:18:51 +03:00
"""High-level polynomials manipulation functions. """
from sympy.core import S, Basic, symbols, Dummy
from sympy.polys.polyerrors import (
PolificationFailed, ComputationFailed,
MultivariatePolynomialError, OptionError)
from sympy.polys.polyoptions import allowed_flags, build_options
from sympy.polys.polytools import poly_from_expr, Poly
from sympy.polys.specialpolys import (
symmetric_poly, interpolating_poly)
from sympy.polys.rings import sring
from sympy.utilities import numbered_symbols, take, public
@public
def symmetrize(F, *gens, **args):
r"""
Rewrite a polynomial in terms of elementary symmetric polynomials.
A symmetric polynomial is a multivariate polynomial that remains invariant
under any variable permutation, i.e., if `f = f(x_1, x_2, \dots, x_n)`,
then `f = f(x_{i_1}, x_{i_2}, \dots, x_{i_n})`, where
`(i_1, i_2, \dots, i_n)` is a permutation of `(1, 2, \dots, n)` (an
element of the group `S_n`).
Returns a tuple of symmetric polynomials ``(f1, f2, ..., fn)`` such that
``f = f1 + f2 + ... + fn``.
Examples
========
>>> from sympy.polys.polyfuncs import symmetrize
>>> from sympy.abc import x, y
>>> symmetrize(x**2 + y**2)
(-2*x*y + (x + y)**2, 0)
>>> symmetrize(x**2 + y**2, formal=True)
(s1**2 - 2*s2, 0, [(s1, x + y), (s2, x*y)])
>>> symmetrize(x**2 - y**2)
(-2*x*y + (x + y)**2, -2*y**2)
>>> symmetrize(x**2 - y**2, formal=True)
(s1**2 - 2*s2, -2*y**2, [(s1, x + y), (s2, x*y)])
"""
allowed_flags(args, ['formal', 'symbols'])
iterable = True
if not hasattr(F, '__iter__'):
iterable = False
F = [F]
R, F = sring(F, *gens, **args)
gens = R.symbols
opt = build_options(gens, args)
symbols = opt.symbols
symbols = [next(symbols) for i in range(len(gens))]
result = []
for f in F:
p, r, m = f.symmetrize()
result.append((p.as_expr(*symbols), r.as_expr(*gens)))
polys = [(s, g.as_expr()) for s, (_, g) in zip(symbols, m)]
if not opt.formal:
for i, (sym, non_sym) in enumerate(result):
result[i] = (sym.subs(polys), non_sym)
if not iterable:
result, = result
if not opt.formal:
return result
else:
if iterable:
return result, polys
else:
return result + (polys,)
@public
def horner(f, *gens, **args):
"""
Rewrite a polynomial in Horner form.
Among other applications, evaluation of a polynomial at a point is optimal
when it is applied using the Horner scheme ([1]).
Examples
========
>>> from sympy.polys.polyfuncs import horner
>>> from sympy.abc import x, y, a, b, c, d, e
>>> horner(9*x**4 + 8*x**3 + 7*x**2 + 6*x + 5)
x*(x*(x*(9*x + 8) + 7) + 6) + 5
>>> horner(a*x**4 + b*x**3 + c*x**2 + d*x + e)
e + x*(d + x*(c + x*(a*x + b)))
>>> f = 4*x**2*y**2 + 2*x**2*y + 2*x*y**2 + x*y
>>> horner(f, wrt=x)
x*(x*y*(4*y + 2) + y*(2*y + 1))
>>> horner(f, wrt=y)
y*(x*y*(4*x + 2) + x*(2*x + 1))
References
==========
[1] - https://en.wikipedia.org/wiki/Horner_scheme
"""
allowed_flags(args, [])
try:
F, opt = poly_from_expr(f, *gens, **args)
except PolificationFailed as exc:
return exc.expr
form, gen = S.Zero, F.gen
if F.is_univariate:
for coeff in F.all_coeffs():
form = form*gen + coeff
else:
F, gens = Poly(F, gen), gens[1:]
for coeff in F.all_coeffs():
form = form*gen + horner(coeff, *gens, **args)
return form
@public
def interpolate(data, x):
"""
Construct an interpolating polynomial for the data points
evaluated at point x (which can be symbolic or numeric).
Examples
========
>>> from sympy.polys.polyfuncs import interpolate
>>> from sympy.abc import a, b, x
A list is interpreted as though it were paired with a range starting
from 1:
>>> interpolate([1, 4, 9, 16], x)
x**2
This can be made explicit by giving a list of coordinates:
>>> interpolate([(1, 1), (2, 4), (3, 9)], x)
x**2
The (x, y) coordinates can also be given as keys and values of a
dictionary (and the points need not be equispaced):
>>> interpolate([(-1, 2), (1, 2), (2, 5)], x)
x**2 + 1
>>> interpolate({-1: 2, 1: 2, 2: 5}, x)
x**2 + 1
If the interpolation is going to be used only once then the
value of interest can be passed instead of passing a symbol:
>>> interpolate([1, 4, 9], 5)
25
Symbolic coordinates are also supported:
>>> [(i,interpolate((a, b), i)) for i in range(1, 4)]
[(1, a), (2, b), (3, -a + 2*b)]
"""
n = len(data)
if isinstance(data, dict):
if x in data:
return S(data[x])
X, Y = list(zip(*data.items()))
else:
if isinstance(data[0], tuple):
X, Y = list(zip(*data))
if x in X:
return S(Y[X.index(x)])
else:
if x in range(1, n + 1):
return S(data[x - 1])
Y = list(data)
X = list(range(1, n + 1))
try:
return interpolating_poly(n, x, X, Y).expand()
except ValueError:
d = Dummy()
return interpolating_poly(n, d, X, Y).expand().subs(d, x)
@public
def rational_interpolate(data, degnum, X=symbols('x')):
"""
Returns a rational interpolation, where the data points are element of
any integral domain.
The first argument contains the data (as a list of coordinates). The
``degnum`` argument is the degree in the numerator of the rational
function. Setting it too high will decrease the maximal degree in the
denominator for the same amount of data.
Examples
========
>>> from sympy.polys.polyfuncs import rational_interpolate
>>> data = [(1, -210), (2, -35), (3, 105), (4, 231), (5, 350), (6, 465)]
>>> rational_interpolate(data, 2)
(105*x**2 - 525)/(x + 1)
Values do not need to be integers:
>>> from sympy import sympify
>>> x = [1, 2, 3, 4, 5, 6]
>>> y = sympify("[-1, 0, 2, 22/5, 7, 68/7]")
>>> rational_interpolate(zip(x, y), 2)
(3*x**2 - 7*x + 2)/(x + 1)
The symbol for the variable can be changed if needed:
>>> from sympy import symbols
>>> z = symbols('z')
>>> rational_interpolate(data, 2, X=z)
(105*z**2 - 525)/(z + 1)
References
==========
.. [1] Algorithm is adapted from:
http://axiom-wiki.newsynthesis.org/RationalInterpolation
"""
from sympy.matrices.dense import ones
xdata, ydata = list(zip(*data))
k = len(xdata) - degnum - 1
if k < 0:
raise OptionError("Too few values for the required degree.")
c = ones(degnum + k + 1, degnum + k + 2)
for j in range(max(degnum, k)):
for i in range(degnum + k + 1):
c[i, j + 1] = c[i, j]*xdata[i]
for j in range(k + 1):
for i in range(degnum + k + 1):
c[i, degnum + k + 1 - j] = -c[i, k - j]*ydata[i]
r = c.nullspace()[0]
return (sum(r[i] * X**i for i in range(degnum + 1))
/ sum(r[i + degnum + 1] * X**i for i in range(k + 1)))
@public
def viete(f, roots=None, *gens, **args):
"""
Generate Viete's formulas for ``f``.
Examples
========
>>> from sympy.polys.polyfuncs import viete
>>> from sympy import symbols
>>> x, a, b, c, r1, r2 = symbols('x,a:c,r1:3')
>>> viete(a*x**2 + b*x + c, [r1, r2], x)
[(r1 + r2, -b/a), (r1*r2, c/a)]
"""
allowed_flags(args, [])
if isinstance(roots, Basic):
gens, roots = (roots,) + gens, None
try:
f, opt = poly_from_expr(f, *gens, **args)
except PolificationFailed as exc:
raise ComputationFailed('viete', 1, exc)
if f.is_multivariate:
raise MultivariatePolynomialError(
"multivariate polynomials are not allowed")
n = f.degree()
if n < 1:
raise ValueError(
"Cannot derive Viete's formulas for a constant polynomial")
if roots is None:
roots = numbered_symbols('r', start=1)
roots = take(roots, n)
if n != len(roots):
raise ValueError("required %s roots, got %s" % (n, len(roots)))
lc, coeffs = f.LC(), f.all_coeffs()
result, sign = [], -1
for i, coeff in enumerate(coeffs[1:]):
poly = symmetric_poly(i + 1, roots)
coeff = sign*(coeff/lc)
result.append((poly, coeff))
sign = -sign
return result