ai-content-maker/.venv/Lib/site-packages/sympy/polys/rings.py

2596 lines
71 KiB
Python
Raw Permalink Normal View History

2024-05-03 04:18:51 +03:00
"""Sparse polynomial rings. """
from __future__ import annotations
from typing import Any
from operator import add, mul, lt, le, gt, ge
from functools import reduce
from types import GeneratorType
from sympy.core.expr import Expr
from sympy.core.numbers import igcd, oo
from sympy.core.symbol import Symbol, symbols as _symbols
from sympy.core.sympify import CantSympify, sympify
from sympy.ntheory.multinomial import multinomial_coefficients
from sympy.polys.compatibility import IPolys
from sympy.polys.constructor import construct_domain
from sympy.polys.densebasic import dmp_to_dict, dmp_from_dict
from sympy.polys.domains.domainelement import DomainElement
from sympy.polys.domains.polynomialring import PolynomialRing
from sympy.polys.heuristicgcd import heugcd
from sympy.polys.monomials import MonomialOps
from sympy.polys.orderings import lex
from sympy.polys.polyerrors import (
CoercionFailed, GeneratorsError,
ExactQuotientFailed, MultivariatePolynomialError)
from sympy.polys.polyoptions import (Domain as DomainOpt,
Order as OrderOpt, build_options)
from sympy.polys.polyutils import (expr_from_dict, _dict_reorder,
_parallel_dict_from_expr)
from sympy.printing.defaults import DefaultPrinting
from sympy.utilities import public, subsets
from sympy.utilities.iterables import is_sequence
from sympy.utilities.magic import pollute
@public
def ring(symbols, domain, order=lex):
"""Construct a polynomial ring returning ``(ring, x_1, ..., x_n)``.
Parameters
==========
symbols : str
Symbol/Expr or sequence of str, Symbol/Expr (non-empty)
domain : :class:`~.Domain` or coercible
order : :class:`~.MonomialOrder` or coercible, optional, defaults to ``lex``
Examples
========
>>> from sympy.polys.rings import ring
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.orderings import lex
>>> R, x, y, z = ring("x,y,z", ZZ, lex)
>>> R
Polynomial ring in x, y, z over ZZ with lex order
>>> x + y + z
x + y + z
>>> type(_)
<class 'sympy.polys.rings.PolyElement'>
"""
_ring = PolyRing(symbols, domain, order)
return (_ring,) + _ring.gens
@public
def xring(symbols, domain, order=lex):
"""Construct a polynomial ring returning ``(ring, (x_1, ..., x_n))``.
Parameters
==========
symbols : str
Symbol/Expr or sequence of str, Symbol/Expr (non-empty)
domain : :class:`~.Domain` or coercible
order : :class:`~.MonomialOrder` or coercible, optional, defaults to ``lex``
Examples
========
>>> from sympy.polys.rings import xring
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.orderings import lex
>>> R, (x, y, z) = xring("x,y,z", ZZ, lex)
>>> R
Polynomial ring in x, y, z over ZZ with lex order
>>> x + y + z
x + y + z
>>> type(_)
<class 'sympy.polys.rings.PolyElement'>
"""
_ring = PolyRing(symbols, domain, order)
return (_ring, _ring.gens)
@public
def vring(symbols, domain, order=lex):
"""Construct a polynomial ring and inject ``x_1, ..., x_n`` into the global namespace.
Parameters
==========
symbols : str
Symbol/Expr or sequence of str, Symbol/Expr (non-empty)
domain : :class:`~.Domain` or coercible
order : :class:`~.MonomialOrder` or coercible, optional, defaults to ``lex``
Examples
========
>>> from sympy.polys.rings import vring
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.orderings import lex
>>> vring("x,y,z", ZZ, lex)
Polynomial ring in x, y, z over ZZ with lex order
>>> x + y + z # noqa:
x + y + z
>>> type(_)
<class 'sympy.polys.rings.PolyElement'>
"""
_ring = PolyRing(symbols, domain, order)
pollute([ sym.name for sym in _ring.symbols ], _ring.gens)
return _ring
@public
def sring(exprs, *symbols, **options):
"""Construct a ring deriving generators and domain from options and input expressions.
Parameters
==========
exprs : :class:`~.Expr` or sequence of :class:`~.Expr` (sympifiable)
symbols : sequence of :class:`~.Symbol`/:class:`~.Expr`
options : keyword arguments understood by :class:`~.Options`
Examples
========
>>> from sympy import sring, symbols
>>> x, y, z = symbols("x,y,z")
>>> R, f = sring(x + 2*y + 3*z)
>>> R
Polynomial ring in x, y, z over ZZ with lex order
>>> f
x + 2*y + 3*z
>>> type(_)
<class 'sympy.polys.rings.PolyElement'>
"""
single = False
if not is_sequence(exprs):
exprs, single = [exprs], True
exprs = list(map(sympify, exprs))
opt = build_options(symbols, options)
# TODO: rewrite this so that it doesn't use expand() (see poly()).
reps, opt = _parallel_dict_from_expr(exprs, opt)
if opt.domain is None:
coeffs = sum([ list(rep.values()) for rep in reps ], [])
opt.domain, coeffs_dom = construct_domain(coeffs, opt=opt)
coeff_map = dict(zip(coeffs, coeffs_dom))
reps = [{m: coeff_map[c] for m, c in rep.items()} for rep in reps]
_ring = PolyRing(opt.gens, opt.domain, opt.order)
polys = list(map(_ring.from_dict, reps))
if single:
return (_ring, polys[0])
else:
return (_ring, polys)
def _parse_symbols(symbols):
if isinstance(symbols, str):
return _symbols(symbols, seq=True) if symbols else ()
elif isinstance(symbols, Expr):
return (symbols,)
elif is_sequence(symbols):
if all(isinstance(s, str) for s in symbols):
return _symbols(symbols)
elif all(isinstance(s, Expr) for s in symbols):
return symbols
raise GeneratorsError("expected a string, Symbol or expression or a non-empty sequence of strings, Symbols or expressions")
_ring_cache: dict[Any, Any] = {}
class PolyRing(DefaultPrinting, IPolys):
"""Multivariate distributed polynomial ring. """
def __new__(cls, symbols, domain, order=lex):
symbols = tuple(_parse_symbols(symbols))
ngens = len(symbols)
domain = DomainOpt.preprocess(domain)
order = OrderOpt.preprocess(order)
_hash_tuple = (cls.__name__, symbols, ngens, domain, order)
obj = _ring_cache.get(_hash_tuple)
if obj is None:
if domain.is_Composite and set(symbols) & set(domain.symbols):
raise GeneratorsError("polynomial ring and it's ground domain share generators")
obj = object.__new__(cls)
obj._hash_tuple = _hash_tuple
obj._hash = hash(_hash_tuple)
obj.dtype = type("PolyElement", (PolyElement,), {"ring": obj})
obj.symbols = symbols
obj.ngens = ngens
obj.domain = domain
obj.order = order
obj.zero_monom = (0,)*ngens
obj.gens = obj._gens()
obj._gens_set = set(obj.gens)
obj._one = [(obj.zero_monom, domain.one)]
if ngens:
# These expect monomials in at least one variable
codegen = MonomialOps(ngens)
obj.monomial_mul = codegen.mul()
obj.monomial_pow = codegen.pow()
obj.monomial_mulpow = codegen.mulpow()
obj.monomial_ldiv = codegen.ldiv()
obj.monomial_div = codegen.div()
obj.monomial_lcm = codegen.lcm()
obj.monomial_gcd = codegen.gcd()
else:
monunit = lambda a, b: ()
obj.monomial_mul = monunit
obj.monomial_pow = monunit
obj.monomial_mulpow = lambda a, b, c: ()
obj.monomial_ldiv = monunit
obj.monomial_div = monunit
obj.monomial_lcm = monunit
obj.monomial_gcd = monunit
if order is lex:
obj.leading_expv = max
else:
obj.leading_expv = lambda f: max(f, key=order)
for symbol, generator in zip(obj.symbols, obj.gens):
if isinstance(symbol, Symbol):
name = symbol.name
if not hasattr(obj, name):
setattr(obj, name, generator)
_ring_cache[_hash_tuple] = obj
return obj
def _gens(self):
"""Return a list of polynomial generators. """
one = self.domain.one
_gens = []
for i in range(self.ngens):
expv = self.monomial_basis(i)
poly = self.zero
poly[expv] = one
_gens.append(poly)
return tuple(_gens)
def __getnewargs__(self):
return (self.symbols, self.domain, self.order)
def __getstate__(self):
state = self.__dict__.copy()
del state["leading_expv"]
for key, value in state.items():
if key.startswith("monomial_"):
del state[key]
return state
def __hash__(self):
return self._hash
def __eq__(self, other):
return isinstance(other, PolyRing) and \
(self.symbols, self.domain, self.ngens, self.order) == \
(other.symbols, other.domain, other.ngens, other.order)
def __ne__(self, other):
return not self == other
def clone(self, symbols=None, domain=None, order=None):
return self.__class__(symbols or self.symbols, domain or self.domain, order or self.order)
def monomial_basis(self, i):
"""Return the ith-basis element. """
basis = [0]*self.ngens
basis[i] = 1
return tuple(basis)
@property
def zero(self):
return self.dtype()
@property
def one(self):
return self.dtype(self._one)
def domain_new(self, element, orig_domain=None):
return self.domain.convert(element, orig_domain)
def ground_new(self, coeff):
return self.term_new(self.zero_monom, coeff)
def term_new(self, monom, coeff):
coeff = self.domain_new(coeff)
poly = self.zero
if coeff:
poly[monom] = coeff
return poly
def ring_new(self, element):
if isinstance(element, PolyElement):
if self == element.ring:
return element
elif isinstance(self.domain, PolynomialRing) and self.domain.ring == element.ring:
return self.ground_new(element)
else:
raise NotImplementedError("conversion")
elif isinstance(element, str):
raise NotImplementedError("parsing")
elif isinstance(element, dict):
return self.from_dict(element)
elif isinstance(element, list):
try:
return self.from_terms(element)
except ValueError:
return self.from_list(element)
elif isinstance(element, Expr):
return self.from_expr(element)
else:
return self.ground_new(element)
__call__ = ring_new
def from_dict(self, element, orig_domain=None):
domain_new = self.domain_new
poly = self.zero
for monom, coeff in element.items():
coeff = domain_new(coeff, orig_domain)
if coeff:
poly[monom] = coeff
return poly
def from_terms(self, element, orig_domain=None):
return self.from_dict(dict(element), orig_domain)
def from_list(self, element):
return self.from_dict(dmp_to_dict(element, self.ngens-1, self.domain))
def _rebuild_expr(self, expr, mapping):
domain = self.domain
def _rebuild(expr):
generator = mapping.get(expr)
if generator is not None:
return generator
elif expr.is_Add:
return reduce(add, list(map(_rebuild, expr.args)))
elif expr.is_Mul:
return reduce(mul, list(map(_rebuild, expr.args)))
else:
# XXX: Use as_base_exp() to handle Pow(x, n) and also exp(n)
# XXX: E can be a generator e.g. sring([exp(2)]) -> ZZ[E]
base, exp = expr.as_base_exp()
if exp.is_Integer and exp > 1:
return _rebuild(base)**int(exp)
else:
return self.ground_new(domain.convert(expr))
return _rebuild(sympify(expr))
def from_expr(self, expr):
mapping = dict(list(zip(self.symbols, self.gens)))
try:
poly = self._rebuild_expr(expr, mapping)
except CoercionFailed:
raise ValueError("expected an expression convertible to a polynomial in %s, got %s" % (self, expr))
else:
return self.ring_new(poly)
def index(self, gen):
"""Compute index of ``gen`` in ``self.gens``. """
if gen is None:
if self.ngens:
i = 0
else:
i = -1 # indicate impossible choice
elif isinstance(gen, int):
i = gen
if 0 <= i and i < self.ngens:
pass
elif -self.ngens <= i and i <= -1:
i = -i - 1
else:
raise ValueError("invalid generator index: %s" % gen)
elif isinstance(gen, self.dtype):
try:
i = self.gens.index(gen)
except ValueError:
raise ValueError("invalid generator: %s" % gen)
elif isinstance(gen, str):
try:
i = self.symbols.index(gen)
except ValueError:
raise ValueError("invalid generator: %s" % gen)
else:
raise ValueError("expected a polynomial generator, an integer, a string or None, got %s" % gen)
return i
def drop(self, *gens):
"""Remove specified generators from this ring. """
indices = set(map(self.index, gens))
symbols = [ s for i, s in enumerate(self.symbols) if i not in indices ]
if not symbols:
return self.domain
else:
return self.clone(symbols=symbols)
def __getitem__(self, key):
symbols = self.symbols[key]
if not symbols:
return self.domain
else:
return self.clone(symbols=symbols)
def to_ground(self):
# TODO: should AlgebraicField be a Composite domain?
if self.domain.is_Composite or hasattr(self.domain, 'domain'):
return self.clone(domain=self.domain.domain)
else:
raise ValueError("%s is not a composite domain" % self.domain)
def to_domain(self):
return PolynomialRing(self)
def to_field(self):
from sympy.polys.fields import FracField
return FracField(self.symbols, self.domain, self.order)
@property
def is_univariate(self):
return len(self.gens) == 1
@property
def is_multivariate(self):
return len(self.gens) > 1
def add(self, *objs):
"""
Add a sequence of polynomials or containers of polynomials.
Examples
========
>>> from sympy.polys.rings import ring
>>> from sympy.polys.domains import ZZ
>>> R, x = ring("x", ZZ)
>>> R.add([ x**2 + 2*i + 3 for i in range(4) ])
4*x**2 + 24
>>> _.factor_list()
(4, [(x**2 + 6, 1)])
"""
p = self.zero
for obj in objs:
if is_sequence(obj, include=GeneratorType):
p += self.add(*obj)
else:
p += obj
return p
def mul(self, *objs):
"""
Multiply a sequence of polynomials or containers of polynomials.
Examples
========
>>> from sympy.polys.rings import ring
>>> from sympy.polys.domains import ZZ
>>> R, x = ring("x", ZZ)
>>> R.mul([ x**2 + 2*i + 3 for i in range(4) ])
x**8 + 24*x**6 + 206*x**4 + 744*x**2 + 945
>>> _.factor_list()
(1, [(x**2 + 3, 1), (x**2 + 5, 1), (x**2 + 7, 1), (x**2 + 9, 1)])
"""
p = self.one
for obj in objs:
if is_sequence(obj, include=GeneratorType):
p *= self.mul(*obj)
else:
p *= obj
return p
def drop_to_ground(self, *gens):
r"""
Remove specified generators from the ring and inject them into
its domain.
"""
indices = set(map(self.index, gens))
symbols = [s for i, s in enumerate(self.symbols) if i not in indices]
gens = [gen for i, gen in enumerate(self.gens) if i not in indices]
if not symbols:
return self
else:
return self.clone(symbols=symbols, domain=self.drop(*gens))
def compose(self, other):
"""Add the generators of ``other`` to ``self``"""
if self != other:
syms = set(self.symbols).union(set(other.symbols))
return self.clone(symbols=list(syms))
else:
return self
def add_gens(self, symbols):
"""Add the elements of ``symbols`` as generators to ``self``"""
syms = set(self.symbols).union(set(symbols))
return self.clone(symbols=list(syms))
def symmetric_poly(self, n):
"""
Return the elementary symmetric polynomial of degree *n* over
this ring's generators.
"""
if n < 0 or n > self.ngens:
raise ValueError("Cannot generate symmetric polynomial of order %s for %s" % (n, self.gens))
elif not n:
return self.one
else:
poly = self.zero
for s in subsets(range(self.ngens), int(n)):
monom = tuple(int(i in s) for i in range(self.ngens))
poly += self.term_new(monom, self.domain.one)
return poly
class PolyElement(DomainElement, DefaultPrinting, CantSympify, dict):
"""Element of multivariate distributed polynomial ring. """
def new(self, init):
return self.__class__(init)
def parent(self):
return self.ring.to_domain()
def __getnewargs__(self):
return (self.ring, list(self.iterterms()))
_hash = None
def __hash__(self):
# XXX: This computes a hash of a dictionary, but currently we don't
# protect dictionary from being changed so any use site modifications
# will make hashing go wrong. Use this feature with caution until we
# figure out how to make a safe API without compromising speed of this
# low-level class.
_hash = self._hash
if _hash is None:
self._hash = _hash = hash((self.ring, frozenset(self.items())))
return _hash
def copy(self):
"""Return a copy of polynomial self.
Polynomials are mutable; if one is interested in preserving
a polynomial, and one plans to use inplace operations, one
can copy the polynomial. This method makes a shallow copy.
Examples
========
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.rings import ring
>>> R, x, y = ring('x, y', ZZ)
>>> p = (x + y)**2
>>> p1 = p.copy()
>>> p2 = p
>>> p[R.zero_monom] = 3
>>> p
x**2 + 2*x*y + y**2 + 3
>>> p1
x**2 + 2*x*y + y**2
>>> p2
x**2 + 2*x*y + y**2 + 3
"""
return self.new(self)
def set_ring(self, new_ring):
if self.ring == new_ring:
return self
elif self.ring.symbols != new_ring.symbols:
terms = list(zip(*_dict_reorder(self, self.ring.symbols, new_ring.symbols)))
return new_ring.from_terms(terms, self.ring.domain)
else:
return new_ring.from_dict(self, self.ring.domain)
def as_expr(self, *symbols):
if not symbols:
symbols = self.ring.symbols
elif len(symbols) != self.ring.ngens:
raise ValueError(
"Wrong number of symbols, expected %s got %s" %
(self.ring.ngens, len(symbols))
)
return expr_from_dict(self.as_expr_dict(), *symbols)
def as_expr_dict(self):
to_sympy = self.ring.domain.to_sympy
return {monom: to_sympy(coeff) for monom, coeff in self.iterterms()}
def clear_denoms(self):
domain = self.ring.domain
if not domain.is_Field or not domain.has_assoc_Ring:
return domain.one, self
ground_ring = domain.get_ring()
common = ground_ring.one
lcm = ground_ring.lcm
denom = domain.denom
for coeff in self.values():
common = lcm(common, denom(coeff))
poly = self.new([ (k, v*common) for k, v in self.items() ])
return common, poly
def strip_zero(self):
"""Eliminate monomials with zero coefficient. """
for k, v in list(self.items()):
if not v:
del self[k]
def __eq__(p1, p2):
"""Equality test for polynomials.
Examples
========
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.rings import ring
>>> _, x, y = ring('x, y', ZZ)
>>> p1 = (x + y)**2 + (x - y)**2
>>> p1 == 4*x*y
False
>>> p1 == 2*(x**2 + y**2)
True
"""
if not p2:
return not p1
elif isinstance(p2, PolyElement) and p2.ring == p1.ring:
return dict.__eq__(p1, p2)
elif len(p1) > 1:
return False
else:
return p1.get(p1.ring.zero_monom) == p2
def __ne__(p1, p2):
return not p1 == p2
def almosteq(p1, p2, tolerance=None):
"""Approximate equality test for polynomials. """
ring = p1.ring
if isinstance(p2, ring.dtype):
if set(p1.keys()) != set(p2.keys()):
return False
almosteq = ring.domain.almosteq
for k in p1.keys():
if not almosteq(p1[k], p2[k], tolerance):
return False
return True
elif len(p1) > 1:
return False
else:
try:
p2 = ring.domain.convert(p2)
except CoercionFailed:
return False
else:
return ring.domain.almosteq(p1.const(), p2, tolerance)
def sort_key(self):
return (len(self), self.terms())
def _cmp(p1, p2, op):
if isinstance(p2, p1.ring.dtype):
return op(p1.sort_key(), p2.sort_key())
else:
return NotImplemented
def __lt__(p1, p2):
return p1._cmp(p2, lt)
def __le__(p1, p2):
return p1._cmp(p2, le)
def __gt__(p1, p2):
return p1._cmp(p2, gt)
def __ge__(p1, p2):
return p1._cmp(p2, ge)
def _drop(self, gen):
ring = self.ring
i = ring.index(gen)
if ring.ngens == 1:
return i, ring.domain
else:
symbols = list(ring.symbols)
del symbols[i]
return i, ring.clone(symbols=symbols)
def drop(self, gen):
i, ring = self._drop(gen)
if self.ring.ngens == 1:
if self.is_ground:
return self.coeff(1)
else:
raise ValueError("Cannot drop %s" % gen)
else:
poly = ring.zero
for k, v in self.items():
if k[i] == 0:
K = list(k)
del K[i]
poly[tuple(K)] = v
else:
raise ValueError("Cannot drop %s" % gen)
return poly
def _drop_to_ground(self, gen):
ring = self.ring
i = ring.index(gen)
symbols = list(ring.symbols)
del symbols[i]
return i, ring.clone(symbols=symbols, domain=ring[i])
def drop_to_ground(self, gen):
if self.ring.ngens == 1:
raise ValueError("Cannot drop only generator to ground")
i, ring = self._drop_to_ground(gen)
poly = ring.zero
gen = ring.domain.gens[0]
for monom, coeff in self.iterterms():
mon = monom[:i] + monom[i+1:]
if mon not in poly:
poly[mon] = (gen**monom[i]).mul_ground(coeff)
else:
poly[mon] += (gen**monom[i]).mul_ground(coeff)
return poly
def to_dense(self):
return dmp_from_dict(self, self.ring.ngens-1, self.ring.domain)
def to_dict(self):
return dict(self)
def str(self, printer, precedence, exp_pattern, mul_symbol):
if not self:
return printer._print(self.ring.domain.zero)
prec_mul = precedence["Mul"]
prec_atom = precedence["Atom"]
ring = self.ring
symbols = ring.symbols
ngens = ring.ngens
zm = ring.zero_monom
sexpvs = []
for expv, coeff in self.terms():
negative = ring.domain.is_negative(coeff)
sign = " - " if negative else " + "
sexpvs.append(sign)
if expv == zm:
scoeff = printer._print(coeff)
if negative and scoeff.startswith("-"):
scoeff = scoeff[1:]
else:
if negative:
coeff = -coeff
if coeff != self.ring.domain.one:
scoeff = printer.parenthesize(coeff, prec_mul, strict=True)
else:
scoeff = ''
sexpv = []
for i in range(ngens):
exp = expv[i]
if not exp:
continue
symbol = printer.parenthesize(symbols[i], prec_atom, strict=True)
if exp != 1:
if exp != int(exp) or exp < 0:
sexp = printer.parenthesize(exp, prec_atom, strict=False)
else:
sexp = exp
sexpv.append(exp_pattern % (symbol, sexp))
else:
sexpv.append('%s' % symbol)
if scoeff:
sexpv = [scoeff] + sexpv
sexpvs.append(mul_symbol.join(sexpv))
if sexpvs[0] in [" + ", " - "]:
head = sexpvs.pop(0)
if head == " - ":
sexpvs.insert(0, "-")
return "".join(sexpvs)
@property
def is_generator(self):
return self in self.ring._gens_set
@property
def is_ground(self):
return not self or (len(self) == 1 and self.ring.zero_monom in self)
@property
def is_monomial(self):
return not self or (len(self) == 1 and self.LC == 1)
@property
def is_term(self):
return len(self) <= 1
@property
def is_negative(self):
return self.ring.domain.is_negative(self.LC)
@property
def is_positive(self):
return self.ring.domain.is_positive(self.LC)
@property
def is_nonnegative(self):
return self.ring.domain.is_nonnegative(self.LC)
@property
def is_nonpositive(self):
return self.ring.domain.is_nonpositive(self.LC)
@property
def is_zero(f):
return not f
@property
def is_one(f):
return f == f.ring.one
@property
def is_monic(f):
return f.ring.domain.is_one(f.LC)
@property
def is_primitive(f):
return f.ring.domain.is_one(f.content())
@property
def is_linear(f):
return all(sum(monom) <= 1 for monom in f.itermonoms())
@property
def is_quadratic(f):
return all(sum(monom) <= 2 for monom in f.itermonoms())
@property
def is_squarefree(f):
if not f.ring.ngens:
return True
return f.ring.dmp_sqf_p(f)
@property
def is_irreducible(f):
if not f.ring.ngens:
return True
return f.ring.dmp_irreducible_p(f)
@property
def is_cyclotomic(f):
if f.ring.is_univariate:
return f.ring.dup_cyclotomic_p(f)
else:
raise MultivariatePolynomialError("cyclotomic polynomial")
def __neg__(self):
return self.new([ (monom, -coeff) for monom, coeff in self.iterterms() ])
def __pos__(self):
return self
def __add__(p1, p2):
"""Add two polynomials.
Examples
========
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.rings import ring
>>> _, x, y = ring('x, y', ZZ)
>>> (x + y)**2 + (x - y)**2
2*x**2 + 2*y**2
"""
if not p2:
return p1.copy()
ring = p1.ring
if isinstance(p2, ring.dtype):
p = p1.copy()
get = p.get
zero = ring.domain.zero
for k, v in p2.items():
v = get(k, zero) + v
if v:
p[k] = v
else:
del p[k]
return p
elif isinstance(p2, PolyElement):
if isinstance(ring.domain, PolynomialRing) and ring.domain.ring == p2.ring:
pass
elif isinstance(p2.ring.domain, PolynomialRing) and p2.ring.domain.ring == ring:
return p2.__radd__(p1)
else:
return NotImplemented
try:
cp2 = ring.domain_new(p2)
except CoercionFailed:
return NotImplemented
else:
p = p1.copy()
if not cp2:
return p
zm = ring.zero_monom
if zm not in p1.keys():
p[zm] = cp2
else:
if p2 == -p[zm]:
del p[zm]
else:
p[zm] += cp2
return p
def __radd__(p1, n):
p = p1.copy()
if not n:
return p
ring = p1.ring
try:
n = ring.domain_new(n)
except CoercionFailed:
return NotImplemented
else:
zm = ring.zero_monom
if zm not in p1.keys():
p[zm] = n
else:
if n == -p[zm]:
del p[zm]
else:
p[zm] += n
return p
def __sub__(p1, p2):
"""Subtract polynomial p2 from p1.
Examples
========
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.rings import ring
>>> _, x, y = ring('x, y', ZZ)
>>> p1 = x + y**2
>>> p2 = x*y + y**2
>>> p1 - p2
-x*y + x
"""
if not p2:
return p1.copy()
ring = p1.ring
if isinstance(p2, ring.dtype):
p = p1.copy()
get = p.get
zero = ring.domain.zero
for k, v in p2.items():
v = get(k, zero) - v
if v:
p[k] = v
else:
del p[k]
return p
elif isinstance(p2, PolyElement):
if isinstance(ring.domain, PolynomialRing) and ring.domain.ring == p2.ring:
pass
elif isinstance(p2.ring.domain, PolynomialRing) and p2.ring.domain.ring == ring:
return p2.__rsub__(p1)
else:
return NotImplemented
try:
p2 = ring.domain_new(p2)
except CoercionFailed:
return NotImplemented
else:
p = p1.copy()
zm = ring.zero_monom
if zm not in p1.keys():
p[zm] = -p2
else:
if p2 == p[zm]:
del p[zm]
else:
p[zm] -= p2
return p
def __rsub__(p1, n):
"""n - p1 with n convertible to the coefficient domain.
Examples
========
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.rings import ring
>>> _, x, y = ring('x, y', ZZ)
>>> p = x + y
>>> 4 - p
-x - y + 4
"""
ring = p1.ring
try:
n = ring.domain_new(n)
except CoercionFailed:
return NotImplemented
else:
p = ring.zero
for expv in p1:
p[expv] = -p1[expv]
p += n
return p
def __mul__(p1, p2):
"""Multiply two polynomials.
Examples
========
>>> from sympy.polys.domains import QQ
>>> from sympy.polys.rings import ring
>>> _, x, y = ring('x, y', QQ)
>>> p1 = x + y
>>> p2 = x - y
>>> p1*p2
x**2 - y**2
"""
ring = p1.ring
p = ring.zero
if not p1 or not p2:
return p
elif isinstance(p2, ring.dtype):
get = p.get
zero = ring.domain.zero
monomial_mul = ring.monomial_mul
p2it = list(p2.items())
for exp1, v1 in p1.items():
for exp2, v2 in p2it:
exp = monomial_mul(exp1, exp2)
p[exp] = get(exp, zero) + v1*v2
p.strip_zero()
return p
elif isinstance(p2, PolyElement):
if isinstance(ring.domain, PolynomialRing) and ring.domain.ring == p2.ring:
pass
elif isinstance(p2.ring.domain, PolynomialRing) and p2.ring.domain.ring == ring:
return p2.__rmul__(p1)
else:
return NotImplemented
try:
p2 = ring.domain_new(p2)
except CoercionFailed:
return NotImplemented
else:
for exp1, v1 in p1.items():
v = v1*p2
if v:
p[exp1] = v
return p
def __rmul__(p1, p2):
"""p2 * p1 with p2 in the coefficient domain of p1.
Examples
========
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.rings import ring
>>> _, x, y = ring('x, y', ZZ)
>>> p = x + y
>>> 4 * p
4*x + 4*y
"""
p = p1.ring.zero
if not p2:
return p
try:
p2 = p.ring.domain_new(p2)
except CoercionFailed:
return NotImplemented
else:
for exp1, v1 in p1.items():
v = p2*v1
if v:
p[exp1] = v
return p
def __pow__(self, n):
"""raise polynomial to power `n`
Examples
========
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.rings import ring
>>> _, x, y = ring('x, y', ZZ)
>>> p = x + y**2
>>> p**3
x**3 + 3*x**2*y**2 + 3*x*y**4 + y**6
"""
ring = self.ring
if not n:
if self:
return ring.one
else:
raise ValueError("0**0")
elif len(self) == 1:
monom, coeff = list(self.items())[0]
p = ring.zero
if coeff == ring.domain.one:
p[ring.monomial_pow(monom, n)] = coeff
else:
p[ring.monomial_pow(monom, n)] = coeff**n
return p
# For ring series, we need negative and rational exponent support only
# with monomials.
n = int(n)
if n < 0:
raise ValueError("Negative exponent")
elif n == 1:
return self.copy()
elif n == 2:
return self.square()
elif n == 3:
return self*self.square()
elif len(self) <= 5: # TODO: use an actual density measure
return self._pow_multinomial(n)
else:
return self._pow_generic(n)
def _pow_generic(self, n):
p = self.ring.one
c = self
while True:
if n & 1:
p = p*c
n -= 1
if not n:
break
c = c.square()
n = n // 2
return p
def _pow_multinomial(self, n):
multinomials = multinomial_coefficients(len(self), n).items()
monomial_mulpow = self.ring.monomial_mulpow
zero_monom = self.ring.zero_monom
terms = self.items()
zero = self.ring.domain.zero
poly = self.ring.zero
for multinomial, multinomial_coeff in multinomials:
product_monom = zero_monom
product_coeff = multinomial_coeff
for exp, (monom, coeff) in zip(multinomial, terms):
if exp:
product_monom = monomial_mulpow(product_monom, monom, exp)
product_coeff *= coeff**exp
monom = tuple(product_monom)
coeff = product_coeff
coeff = poly.get(monom, zero) + coeff
if coeff:
poly[monom] = coeff
elif monom in poly:
del poly[monom]
return poly
def square(self):
"""square of a polynomial
Examples
========
>>> from sympy.polys.rings import ring
>>> from sympy.polys.domains import ZZ
>>> _, x, y = ring('x, y', ZZ)
>>> p = x + y**2
>>> p.square()
x**2 + 2*x*y**2 + y**4
"""
ring = self.ring
p = ring.zero
get = p.get
keys = list(self.keys())
zero = ring.domain.zero
monomial_mul = ring.monomial_mul
for i in range(len(keys)):
k1 = keys[i]
pk = self[k1]
for j in range(i):
k2 = keys[j]
exp = monomial_mul(k1, k2)
p[exp] = get(exp, zero) + pk*self[k2]
p = p.imul_num(2)
get = p.get
for k, v in self.items():
k2 = monomial_mul(k, k)
p[k2] = get(k2, zero) + v**2
p.strip_zero()
return p
def __divmod__(p1, p2):
ring = p1.ring
if not p2:
raise ZeroDivisionError("polynomial division")
elif isinstance(p2, ring.dtype):
return p1.div(p2)
elif isinstance(p2, PolyElement):
if isinstance(ring.domain, PolynomialRing) and ring.domain.ring == p2.ring:
pass
elif isinstance(p2.ring.domain, PolynomialRing) and p2.ring.domain.ring == ring:
return p2.__rdivmod__(p1)
else:
return NotImplemented
try:
p2 = ring.domain_new(p2)
except CoercionFailed:
return NotImplemented
else:
return (p1.quo_ground(p2), p1.rem_ground(p2))
def __rdivmod__(p1, p2):
return NotImplemented
def __mod__(p1, p2):
ring = p1.ring
if not p2:
raise ZeroDivisionError("polynomial division")
elif isinstance(p2, ring.dtype):
return p1.rem(p2)
elif isinstance(p2, PolyElement):
if isinstance(ring.domain, PolynomialRing) and ring.domain.ring == p2.ring:
pass
elif isinstance(p2.ring.domain, PolynomialRing) and p2.ring.domain.ring == ring:
return p2.__rmod__(p1)
else:
return NotImplemented
try:
p2 = ring.domain_new(p2)
except CoercionFailed:
return NotImplemented
else:
return p1.rem_ground(p2)
def __rmod__(p1, p2):
return NotImplemented
def __truediv__(p1, p2):
ring = p1.ring
if not p2:
raise ZeroDivisionError("polynomial division")
elif isinstance(p2, ring.dtype):
if p2.is_monomial:
return p1*(p2**(-1))
else:
return p1.quo(p2)
elif isinstance(p2, PolyElement):
if isinstance(ring.domain, PolynomialRing) and ring.domain.ring == p2.ring:
pass
elif isinstance(p2.ring.domain, PolynomialRing) and p2.ring.domain.ring == ring:
return p2.__rtruediv__(p1)
else:
return NotImplemented
try:
p2 = ring.domain_new(p2)
except CoercionFailed:
return NotImplemented
else:
return p1.quo_ground(p2)
def __rtruediv__(p1, p2):
return NotImplemented
__floordiv__ = __truediv__
__rfloordiv__ = __rtruediv__
# TODO: use // (__floordiv__) for exquo()?
def _term_div(self):
zm = self.ring.zero_monom
domain = self.ring.domain
domain_quo = domain.quo
monomial_div = self.ring.monomial_div
if domain.is_Field:
def term_div(a_lm_a_lc, b_lm_b_lc):
a_lm, a_lc = a_lm_a_lc
b_lm, b_lc = b_lm_b_lc
if b_lm == zm: # apparently this is a very common case
monom = a_lm
else:
monom = monomial_div(a_lm, b_lm)
if monom is not None:
return monom, domain_quo(a_lc, b_lc)
else:
return None
else:
def term_div(a_lm_a_lc, b_lm_b_lc):
a_lm, a_lc = a_lm_a_lc
b_lm, b_lc = b_lm_b_lc
if b_lm == zm: # apparently this is a very common case
monom = a_lm
else:
monom = monomial_div(a_lm, b_lm)
if not (monom is None or a_lc % b_lc):
return monom, domain_quo(a_lc, b_lc)
else:
return None
return term_div
def div(self, fv):
"""Division algorithm, see [CLO] p64.
fv array of polynomials
return qv, r such that
self = sum(fv[i]*qv[i]) + r
All polynomials are required not to be Laurent polynomials.
Examples
========
>>> from sympy.polys.rings import ring
>>> from sympy.polys.domains import ZZ
>>> _, x, y = ring('x, y', ZZ)
>>> f = x**3
>>> f0 = x - y**2
>>> f1 = x - y
>>> qv, r = f.div((f0, f1))
>>> qv[0]
x**2 + x*y**2 + y**4
>>> qv[1]
0
>>> r
y**6
"""
ring = self.ring
ret_single = False
if isinstance(fv, PolyElement):
ret_single = True
fv = [fv]
if not all(fv):
raise ZeroDivisionError("polynomial division")
if not self:
if ret_single:
return ring.zero, ring.zero
else:
return [], ring.zero
for f in fv:
if f.ring != ring:
raise ValueError('self and f must have the same ring')
s = len(fv)
qv = [ring.zero for i in range(s)]
p = self.copy()
r = ring.zero
term_div = self._term_div()
expvs = [fx.leading_expv() for fx in fv]
while p:
i = 0
divoccurred = 0
while i < s and divoccurred == 0:
expv = p.leading_expv()
term = term_div((expv, p[expv]), (expvs[i], fv[i][expvs[i]]))
if term is not None:
expv1, c = term
qv[i] = qv[i]._iadd_monom((expv1, c))
p = p._iadd_poly_monom(fv[i], (expv1, -c))
divoccurred = 1
else:
i += 1
if not divoccurred:
expv = p.leading_expv()
r = r._iadd_monom((expv, p[expv]))
del p[expv]
if expv == ring.zero_monom:
r += p
if ret_single:
if not qv:
return ring.zero, r
else:
return qv[0], r
else:
return qv, r
def rem(self, G):
f = self
if isinstance(G, PolyElement):
G = [G]
if not all(G):
raise ZeroDivisionError("polynomial division")
ring = f.ring
domain = ring.domain
zero = domain.zero
monomial_mul = ring.monomial_mul
r = ring.zero
term_div = f._term_div()
ltf = f.LT
f = f.copy()
get = f.get
while f:
for g in G:
tq = term_div(ltf, g.LT)
if tq is not None:
m, c = tq
for mg, cg in g.iterterms():
m1 = monomial_mul(mg, m)
c1 = get(m1, zero) - c*cg
if not c1:
del f[m1]
else:
f[m1] = c1
ltm = f.leading_expv()
if ltm is not None:
ltf = ltm, f[ltm]
break
else:
ltm, ltc = ltf
if ltm in r:
r[ltm] += ltc
else:
r[ltm] = ltc
del f[ltm]
ltm = f.leading_expv()
if ltm is not None:
ltf = ltm, f[ltm]
return r
def quo(f, G):
return f.div(G)[0]
def exquo(f, G):
q, r = f.div(G)
if not r:
return q
else:
raise ExactQuotientFailed(f, G)
def _iadd_monom(self, mc):
"""add to self the monomial coeff*x0**i0*x1**i1*...
unless self is a generator -- then just return the sum of the two.
mc is a tuple, (monom, coeff), where monomial is (i0, i1, ...)
Examples
========
>>> from sympy.polys.rings import ring
>>> from sympy.polys.domains import ZZ
>>> _, x, y = ring('x, y', ZZ)
>>> p = x**4 + 2*y
>>> m = (1, 2)
>>> p1 = p._iadd_monom((m, 5))
>>> p1
x**4 + 5*x*y**2 + 2*y
>>> p1 is p
True
>>> p = x
>>> p1 = p._iadd_monom((m, 5))
>>> p1
5*x*y**2 + x
>>> p1 is p
False
"""
if self in self.ring._gens_set:
cpself = self.copy()
else:
cpself = self
expv, coeff = mc
c = cpself.get(expv)
if c is None:
cpself[expv] = coeff
else:
c += coeff
if c:
cpself[expv] = c
else:
del cpself[expv]
return cpself
def _iadd_poly_monom(self, p2, mc):
"""add to self the product of (p)*(coeff*x0**i0*x1**i1*...)
unless self is a generator -- then just return the sum of the two.
mc is a tuple, (monom, coeff), where monomial is (i0, i1, ...)
Examples
========
>>> from sympy.polys.rings import ring
>>> from sympy.polys.domains import ZZ
>>> _, x, y, z = ring('x, y, z', ZZ)
>>> p1 = x**4 + 2*y
>>> p2 = y + z
>>> m = (1, 2, 3)
>>> p1 = p1._iadd_poly_monom(p2, (m, 3))
>>> p1
x**4 + 3*x*y**3*z**3 + 3*x*y**2*z**4 + 2*y
"""
p1 = self
if p1 in p1.ring._gens_set:
p1 = p1.copy()
(m, c) = mc
get = p1.get
zero = p1.ring.domain.zero
monomial_mul = p1.ring.monomial_mul
for k, v in p2.items():
ka = monomial_mul(k, m)
coeff = get(ka, zero) + v*c
if coeff:
p1[ka] = coeff
else:
del p1[ka]
return p1
def degree(f, x=None):
"""
The leading degree in ``x`` or the main variable.
Note that the degree of 0 is negative infinity (the SymPy object -oo).
"""
i = f.ring.index(x)
if not f:
return -oo
elif i < 0:
return 0
else:
return max([ monom[i] for monom in f.itermonoms() ])
def degrees(f):
"""
A tuple containing leading degrees in all variables.
Note that the degree of 0 is negative infinity (the SymPy object -oo)
"""
if not f:
return (-oo,)*f.ring.ngens
else:
return tuple(map(max, list(zip(*f.itermonoms()))))
def tail_degree(f, x=None):
"""
The tail degree in ``x`` or the main variable.
Note that the degree of 0 is negative infinity (the SymPy object -oo)
"""
i = f.ring.index(x)
if not f:
return -oo
elif i < 0:
return 0
else:
return min([ monom[i] for monom in f.itermonoms() ])
def tail_degrees(f):
"""
A tuple containing tail degrees in all variables.
Note that the degree of 0 is negative infinity (the SymPy object -oo)
"""
if not f:
return (-oo,)*f.ring.ngens
else:
return tuple(map(min, list(zip(*f.itermonoms()))))
def leading_expv(self):
"""Leading monomial tuple according to the monomial ordering.
Examples
========
>>> from sympy.polys.rings import ring
>>> from sympy.polys.domains import ZZ
>>> _, x, y, z = ring('x, y, z', ZZ)
>>> p = x**4 + x**3*y + x**2*z**2 + z**7
>>> p.leading_expv()
(4, 0, 0)
"""
if self:
return self.ring.leading_expv(self)
else:
return None
def _get_coeff(self, expv):
return self.get(expv, self.ring.domain.zero)
def coeff(self, element):
"""
Returns the coefficient that stands next to the given monomial.
Parameters
==========
element : PolyElement (with ``is_monomial = True``) or 1
Examples
========
>>> from sympy.polys.rings import ring
>>> from sympy.polys.domains import ZZ
>>> _, x, y, z = ring("x,y,z", ZZ)
>>> f = 3*x**2*y - x*y*z + 7*z**3 + 23
>>> f.coeff(x**2*y)
3
>>> f.coeff(x*y)
0
>>> f.coeff(1)
23
"""
if element == 1:
return self._get_coeff(self.ring.zero_monom)
elif isinstance(element, self.ring.dtype):
terms = list(element.iterterms())
if len(terms) == 1:
monom, coeff = terms[0]
if coeff == self.ring.domain.one:
return self._get_coeff(monom)
raise ValueError("expected a monomial, got %s" % element)
def const(self):
"""Returns the constant coefficient. """
return self._get_coeff(self.ring.zero_monom)
@property
def LC(self):
return self._get_coeff(self.leading_expv())
@property
def LM(self):
expv = self.leading_expv()
if expv is None:
return self.ring.zero_monom
else:
return expv
def leading_monom(self):
"""
Leading monomial as a polynomial element.
Examples
========
>>> from sympy.polys.rings import ring
>>> from sympy.polys.domains import ZZ
>>> _, x, y = ring('x, y', ZZ)
>>> (3*x*y + y**2).leading_monom()
x*y
"""
p = self.ring.zero
expv = self.leading_expv()
if expv:
p[expv] = self.ring.domain.one
return p
@property
def LT(self):
expv = self.leading_expv()
if expv is None:
return (self.ring.zero_monom, self.ring.domain.zero)
else:
return (expv, self._get_coeff(expv))
def leading_term(self):
"""Leading term as a polynomial element.
Examples
========
>>> from sympy.polys.rings import ring
>>> from sympy.polys.domains import ZZ
>>> _, x, y = ring('x, y', ZZ)
>>> (3*x*y + y**2).leading_term()
3*x*y
"""
p = self.ring.zero
expv = self.leading_expv()
if expv is not None:
p[expv] = self[expv]
return p
def _sorted(self, seq, order):
if order is None:
order = self.ring.order
else:
order = OrderOpt.preprocess(order)
if order is lex:
return sorted(seq, key=lambda monom: monom[0], reverse=True)
else:
return sorted(seq, key=lambda monom: order(monom[0]), reverse=True)
def coeffs(self, order=None):
"""Ordered list of polynomial coefficients.
Parameters
==========
order : :class:`~.MonomialOrder` or coercible, optional
Examples
========
>>> from sympy.polys.rings import ring
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.orderings import lex, grlex
>>> _, x, y = ring("x, y", ZZ, lex)
>>> f = x*y**7 + 2*x**2*y**3
>>> f.coeffs()
[2, 1]
>>> f.coeffs(grlex)
[1, 2]
"""
return [ coeff for _, coeff in self.terms(order) ]
def monoms(self, order=None):
"""Ordered list of polynomial monomials.
Parameters
==========
order : :class:`~.MonomialOrder` or coercible, optional
Examples
========
>>> from sympy.polys.rings import ring
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.orderings import lex, grlex
>>> _, x, y = ring("x, y", ZZ, lex)
>>> f = x*y**7 + 2*x**2*y**3
>>> f.monoms()
[(2, 3), (1, 7)]
>>> f.monoms(grlex)
[(1, 7), (2, 3)]
"""
return [ monom for monom, _ in self.terms(order) ]
def terms(self, order=None):
"""Ordered list of polynomial terms.
Parameters
==========
order : :class:`~.MonomialOrder` or coercible, optional
Examples
========
>>> from sympy.polys.rings import ring
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.orderings import lex, grlex
>>> _, x, y = ring("x, y", ZZ, lex)
>>> f = x*y**7 + 2*x**2*y**3
>>> f.terms()
[((2, 3), 2), ((1, 7), 1)]
>>> f.terms(grlex)
[((1, 7), 1), ((2, 3), 2)]
"""
return self._sorted(list(self.items()), order)
def itercoeffs(self):
"""Iterator over coefficients of a polynomial. """
return iter(self.values())
def itermonoms(self):
"""Iterator over monomials of a polynomial. """
return iter(self.keys())
def iterterms(self):
"""Iterator over terms of a polynomial. """
return iter(self.items())
def listcoeffs(self):
"""Unordered list of polynomial coefficients. """
return list(self.values())
def listmonoms(self):
"""Unordered list of polynomial monomials. """
return list(self.keys())
def listterms(self):
"""Unordered list of polynomial terms. """
return list(self.items())
def imul_num(p, c):
"""multiply inplace the polynomial p by an element in the
coefficient ring, provided p is not one of the generators;
else multiply not inplace
Examples
========
>>> from sympy.polys.rings import ring
>>> from sympy.polys.domains import ZZ
>>> _, x, y = ring('x, y', ZZ)
>>> p = x + y**2
>>> p1 = p.imul_num(3)
>>> p1
3*x + 3*y**2
>>> p1 is p
True
>>> p = x
>>> p1 = p.imul_num(3)
>>> p1
3*x
>>> p1 is p
False
"""
if p in p.ring._gens_set:
return p*c
if not c:
p.clear()
return
for exp in p:
p[exp] *= c
return p
def content(f):
"""Returns GCD of polynomial's coefficients. """
domain = f.ring.domain
cont = domain.zero
gcd = domain.gcd
for coeff in f.itercoeffs():
cont = gcd(cont, coeff)
return cont
def primitive(f):
"""Returns content and a primitive polynomial. """
cont = f.content()
return cont, f.quo_ground(cont)
def monic(f):
"""Divides all coefficients by the leading coefficient. """
if not f:
return f
else:
return f.quo_ground(f.LC)
def mul_ground(f, x):
if not x:
return f.ring.zero
terms = [ (monom, coeff*x) for monom, coeff in f.iterterms() ]
return f.new(terms)
def mul_monom(f, monom):
monomial_mul = f.ring.monomial_mul
terms = [ (monomial_mul(f_monom, monom), f_coeff) for f_monom, f_coeff in f.items() ]
return f.new(terms)
def mul_term(f, term):
monom, coeff = term
if not f or not coeff:
return f.ring.zero
elif monom == f.ring.zero_monom:
return f.mul_ground(coeff)
monomial_mul = f.ring.monomial_mul
terms = [ (monomial_mul(f_monom, monom), f_coeff*coeff) for f_monom, f_coeff in f.items() ]
return f.new(terms)
def quo_ground(f, x):
domain = f.ring.domain
if not x:
raise ZeroDivisionError('polynomial division')
if not f or x == domain.one:
return f
if domain.is_Field:
quo = domain.quo
terms = [ (monom, quo(coeff, x)) for monom, coeff in f.iterterms() ]
else:
terms = [ (monom, coeff // x) for monom, coeff in f.iterterms() if not (coeff % x) ]
return f.new(terms)
def quo_term(f, term):
monom, coeff = term
if not coeff:
raise ZeroDivisionError("polynomial division")
elif not f:
return f.ring.zero
elif monom == f.ring.zero_monom:
return f.quo_ground(coeff)
term_div = f._term_div()
terms = [ term_div(t, term) for t in f.iterterms() ]
return f.new([ t for t in terms if t is not None ])
def trunc_ground(f, p):
if f.ring.domain.is_ZZ:
terms = []
for monom, coeff in f.iterterms():
coeff = coeff % p
if coeff > p // 2:
coeff = coeff - p
terms.append((monom, coeff))
else:
terms = [ (monom, coeff % p) for monom, coeff in f.iterterms() ]
poly = f.new(terms)
poly.strip_zero()
return poly
rem_ground = trunc_ground
def extract_ground(self, g):
f = self
fc = f.content()
gc = g.content()
gcd = f.ring.domain.gcd(fc, gc)
f = f.quo_ground(gcd)
g = g.quo_ground(gcd)
return gcd, f, g
def _norm(f, norm_func):
if not f:
return f.ring.domain.zero
else:
ground_abs = f.ring.domain.abs
return norm_func([ ground_abs(coeff) for coeff in f.itercoeffs() ])
def max_norm(f):
return f._norm(max)
def l1_norm(f):
return f._norm(sum)
def deflate(f, *G):
ring = f.ring
polys = [f] + list(G)
J = [0]*ring.ngens
for p in polys:
for monom in p.itermonoms():
for i, m in enumerate(monom):
J[i] = igcd(J[i], m)
for i, b in enumerate(J):
if not b:
J[i] = 1
J = tuple(J)
if all(b == 1 for b in J):
return J, polys
H = []
for p in polys:
h = ring.zero
for I, coeff in p.iterterms():
N = [ i // j for i, j in zip(I, J) ]
h[tuple(N)] = coeff
H.append(h)
return J, H
def inflate(f, J):
poly = f.ring.zero
for I, coeff in f.iterterms():
N = [ i*j for i, j in zip(I, J) ]
poly[tuple(N)] = coeff
return poly
def lcm(self, g):
f = self
domain = f.ring.domain
if not domain.is_Field:
fc, f = f.primitive()
gc, g = g.primitive()
c = domain.lcm(fc, gc)
h = (f*g).quo(f.gcd(g))
if not domain.is_Field:
return h.mul_ground(c)
else:
return h.monic()
def gcd(f, g):
return f.cofactors(g)[0]
def cofactors(f, g):
if not f and not g:
zero = f.ring.zero
return zero, zero, zero
elif not f:
h, cff, cfg = f._gcd_zero(g)
return h, cff, cfg
elif not g:
h, cfg, cff = g._gcd_zero(f)
return h, cff, cfg
elif len(f) == 1:
h, cff, cfg = f._gcd_monom(g)
return h, cff, cfg
elif len(g) == 1:
h, cfg, cff = g._gcd_monom(f)
return h, cff, cfg
J, (f, g) = f.deflate(g)
h, cff, cfg = f._gcd(g)
return (h.inflate(J), cff.inflate(J), cfg.inflate(J))
def _gcd_zero(f, g):
one, zero = f.ring.one, f.ring.zero
if g.is_nonnegative:
return g, zero, one
else:
return -g, zero, -one
def _gcd_monom(f, g):
ring = f.ring
ground_gcd = ring.domain.gcd
ground_quo = ring.domain.quo
monomial_gcd = ring.monomial_gcd
monomial_ldiv = ring.monomial_ldiv
mf, cf = list(f.iterterms())[0]
_mgcd, _cgcd = mf, cf
for mg, cg in g.iterterms():
_mgcd = monomial_gcd(_mgcd, mg)
_cgcd = ground_gcd(_cgcd, cg)
h = f.new([(_mgcd, _cgcd)])
cff = f.new([(monomial_ldiv(mf, _mgcd), ground_quo(cf, _cgcd))])
cfg = f.new([(monomial_ldiv(mg, _mgcd), ground_quo(cg, _cgcd)) for mg, cg in g.iterterms()])
return h, cff, cfg
def _gcd(f, g):
ring = f.ring
if ring.domain.is_QQ:
return f._gcd_QQ(g)
elif ring.domain.is_ZZ:
return f._gcd_ZZ(g)
else: # TODO: don't use dense representation (port PRS algorithms)
return ring.dmp_inner_gcd(f, g)
def _gcd_ZZ(f, g):
return heugcd(f, g)
def _gcd_QQ(self, g):
f = self
ring = f.ring
new_ring = ring.clone(domain=ring.domain.get_ring())
cf, f = f.clear_denoms()
cg, g = g.clear_denoms()
f = f.set_ring(new_ring)
g = g.set_ring(new_ring)
h, cff, cfg = f._gcd_ZZ(g)
h = h.set_ring(ring)
c, h = h.LC, h.monic()
cff = cff.set_ring(ring).mul_ground(ring.domain.quo(c, cf))
cfg = cfg.set_ring(ring).mul_ground(ring.domain.quo(c, cg))
return h, cff, cfg
def cancel(self, g):
"""
Cancel common factors in a rational function ``f/g``.
Examples
========
>>> from sympy.polys import ring, ZZ
>>> R, x,y = ring("x,y", ZZ)
>>> (2*x**2 - 2).cancel(x**2 - 2*x + 1)
(2*x + 2, x - 1)
"""
f = self
ring = f.ring
if not f:
return f, ring.one
domain = ring.domain
if not (domain.is_Field and domain.has_assoc_Ring):
_, p, q = f.cofactors(g)
else:
new_ring = ring.clone(domain=domain.get_ring())
cq, f = f.clear_denoms()
cp, g = g.clear_denoms()
f = f.set_ring(new_ring)
g = g.set_ring(new_ring)
_, p, q = f.cofactors(g)
_, cp, cq = new_ring.domain.cofactors(cp, cq)
p = p.set_ring(ring)
q = q.set_ring(ring)
p = p.mul_ground(cp)
q = q.mul_ground(cq)
# Make canonical with respect to sign or quadrant in the case of ZZ_I
# or QQ_I. This ensures that the LC of the denominator is canonical by
# multiplying top and bottom by a unit of the ring.
u = q.canonical_unit()
if u == domain.one:
p, q = p, q
elif u == -domain.one:
p, q = -p, -q
else:
p = p.mul_ground(u)
q = q.mul_ground(u)
return p, q
def canonical_unit(f):
domain = f.ring.domain
return domain.canonical_unit(f.LC)
def diff(f, x):
"""Computes partial derivative in ``x``.
Examples
========
>>> from sympy.polys.rings import ring
>>> from sympy.polys.domains import ZZ
>>> _, x, y = ring("x,y", ZZ)
>>> p = x + x**2*y**3
>>> p.diff(x)
2*x*y**3 + 1
"""
ring = f.ring
i = ring.index(x)
m = ring.monomial_basis(i)
g = ring.zero
for expv, coeff in f.iterterms():
if expv[i]:
e = ring.monomial_ldiv(expv, m)
g[e] = ring.domain_new(coeff*expv[i])
return g
def __call__(f, *values):
if 0 < len(values) <= f.ring.ngens:
return f.evaluate(list(zip(f.ring.gens, values)))
else:
raise ValueError("expected at least 1 and at most %s values, got %s" % (f.ring.ngens, len(values)))
def evaluate(self, x, a=None):
f = self
if isinstance(x, list) and a is None:
(X, a), x = x[0], x[1:]
f = f.evaluate(X, a)
if not x:
return f
else:
x = [ (Y.drop(X), a) for (Y, a) in x ]
return f.evaluate(x)
ring = f.ring
i = ring.index(x)
a = ring.domain.convert(a)
if ring.ngens == 1:
result = ring.domain.zero
for (n,), coeff in f.iterterms():
result += coeff*a**n
return result
else:
poly = ring.drop(x).zero
for monom, coeff in f.iterterms():
n, monom = monom[i], monom[:i] + monom[i+1:]
coeff = coeff*a**n
if monom in poly:
coeff = coeff + poly[monom]
if coeff:
poly[monom] = coeff
else:
del poly[monom]
else:
if coeff:
poly[monom] = coeff
return poly
def subs(self, x, a=None):
f = self
if isinstance(x, list) and a is None:
for X, a in x:
f = f.subs(X, a)
return f
ring = f.ring
i = ring.index(x)
a = ring.domain.convert(a)
if ring.ngens == 1:
result = ring.domain.zero
for (n,), coeff in f.iterterms():
result += coeff*a**n
return ring.ground_new(result)
else:
poly = ring.zero
for monom, coeff in f.iterterms():
n, monom = monom[i], monom[:i] + (0,) + monom[i+1:]
coeff = coeff*a**n
if monom in poly:
coeff = coeff + poly[monom]
if coeff:
poly[monom] = coeff
else:
del poly[monom]
else:
if coeff:
poly[monom] = coeff
return poly
def symmetrize(self):
r"""
Rewrite *self* in terms of elementary symmetric polynomials.
Explanation
===========
If this :py:class:`~.PolyElement` belongs to a ring of $n$ variables,
we can try to write it as a function of the elementary symmetric
polynomials on $n$ variables. We compute a symmetric part, and a
remainder for any part we were not able to symmetrize.
Examples
========
>>> from sympy.polys.rings import ring
>>> from sympy.polys.domains import ZZ
>>> R, x, y = ring("x,y", ZZ)
>>> f = x**2 + y**2
>>> f.symmetrize()
(x**2 - 2*y, 0, [(x, x + y), (y, x*y)])
>>> f = x**2 - y**2
>>> f.symmetrize()
(x**2 - 2*y, -2*y**2, [(x, x + y), (y, x*y)])
Returns
=======
Triple ``(p, r, m)``
``p`` is a :py:class:`~.PolyElement` that represents our attempt
to express *self* as a function of elementary symmetric
polynomials. Each variable in ``p`` stands for one of the
elementary symmetric polynomials. The correspondence is given
by ``m``.
``r`` is the remainder.
``m`` is a list of pairs, giving the mapping from variables in
``p`` to elementary symmetric polynomials.
The triple satisfies the equation ``p.compose(m) + r == self``.
If the remainder ``r`` is zero, *self* is symmetric. If it is
nonzero, we were not able to represent *self* as symmetric.
See Also
========
sympy.polys.polyfuncs.symmetrize
References
==========
.. [1] Lauer, E. Algorithms for symmetrical polynomials, Proc. 1976
ACM Symp. on Symbolic and Algebraic Computing, NY 242-247.
https://dl.acm.org/doi/pdf/10.1145/800205.806342
"""
f = self.copy()
ring = f.ring
n = ring.ngens
if not n:
return f, ring.zero, []
polys = [ring.symmetric_poly(i+1) for i in range(n)]
poly_powers = {}
def get_poly_power(i, n):
if (i, n) not in poly_powers:
poly_powers[(i, n)] = polys[i]**n
return poly_powers[(i, n)]
indices = list(range(n - 1))
weights = list(range(n, 0, -1))
symmetric = ring.zero
while f:
_height, _monom, _coeff = -1, None, None
for i, (monom, coeff) in enumerate(f.terms()):
if all(monom[i] >= monom[i + 1] for i in indices):
height = max([n*m for n, m in zip(weights, monom)])
if height > _height:
_height, _monom, _coeff = height, monom, coeff
if _height != -1:
monom, coeff = _monom, _coeff
else:
break
exponents = []
for m1, m2 in zip(monom, monom[1:] + (0,)):
exponents.append(m1 - m2)
symmetric += ring.term_new(tuple(exponents), coeff)
product = coeff
for i, n in enumerate(exponents):
product *= get_poly_power(i, n)
f -= product
mapping = list(zip(ring.gens, polys))
return symmetric, f, mapping
def compose(f, x, a=None):
ring = f.ring
poly = ring.zero
gens_map = dict(zip(ring.gens, range(ring.ngens)))
if a is not None:
replacements = [(x, a)]
else:
if isinstance(x, list):
replacements = list(x)
elif isinstance(x, dict):
replacements = sorted(x.items(), key=lambda k: gens_map[k[0]])
else:
raise ValueError("expected a generator, value pair a sequence of such pairs")
for k, (x, g) in enumerate(replacements):
replacements[k] = (gens_map[x], ring.ring_new(g))
for monom, coeff in f.iterterms():
monom = list(monom)
subpoly = ring.one
for i, g in replacements:
n, monom[i] = monom[i], 0
if n:
subpoly *= g**n
subpoly = subpoly.mul_term((tuple(monom), coeff))
poly += subpoly
return poly
# TODO: following methods should point to polynomial
# representation independent algorithm implementations.
def pdiv(f, g):
return f.ring.dmp_pdiv(f, g)
def prem(f, g):
return f.ring.dmp_prem(f, g)
def pquo(f, g):
return f.ring.dmp_quo(f, g)
def pexquo(f, g):
return f.ring.dmp_exquo(f, g)
def half_gcdex(f, g):
return f.ring.dmp_half_gcdex(f, g)
def gcdex(f, g):
return f.ring.dmp_gcdex(f, g)
def subresultants(f, g):
return f.ring.dmp_subresultants(f, g)
def resultant(f, g):
return f.ring.dmp_resultant(f, g)
def discriminant(f):
return f.ring.dmp_discriminant(f)
def decompose(f):
if f.ring.is_univariate:
return f.ring.dup_decompose(f)
else:
raise MultivariatePolynomialError("polynomial decomposition")
def shift(f, a):
if f.ring.is_univariate:
return f.ring.dup_shift(f, a)
else:
raise MultivariatePolynomialError("polynomial shift")
def sturm(f):
if f.ring.is_univariate:
return f.ring.dup_sturm(f)
else:
raise MultivariatePolynomialError("sturm sequence")
def gff_list(f):
return f.ring.dmp_gff_list(f)
def sqf_norm(f):
return f.ring.dmp_sqf_norm(f)
def sqf_part(f):
return f.ring.dmp_sqf_part(f)
def sqf_list(f, all=False):
return f.ring.dmp_sqf_list(f, all=all)
def factor_list(f):
return f.ring.dmp_factor_list(f)