ai-content-maker/.venv/Lib/site-packages/sympy/polys/tests/test_constructor.py

209 lines
6.2 KiB
Python
Raw Permalink Normal View History

2024-05-03 04:18:51 +03:00
"""Tests for tools for constructing domains for expressions. """
from sympy.polys.constructor import construct_domain
from sympy.polys.domains import ZZ, QQ, ZZ_I, QQ_I, RR, CC, EX
from sympy.polys.domains.realfield import RealField
from sympy.polys.domains.complexfield import ComplexField
from sympy.core import (Catalan, GoldenRatio)
from sympy.core.numbers import (E, Float, I, Rational, pi)
from sympy.core.singleton import S
from sympy.functions.elementary.exponential import exp
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.functions.elementary.trigonometric import sin
from sympy.abc import x, y
def test_construct_domain():
assert construct_domain([1, 2, 3]) == (ZZ, [ZZ(1), ZZ(2), ZZ(3)])
assert construct_domain([1, 2, 3], field=True) == (QQ, [QQ(1), QQ(2), QQ(3)])
assert construct_domain([S.One, S(2), S(3)]) == (ZZ, [ZZ(1), ZZ(2), ZZ(3)])
assert construct_domain([S.One, S(2), S(3)], field=True) == (QQ, [QQ(1), QQ(2), QQ(3)])
assert construct_domain([S.Half, S(2)]) == (QQ, [QQ(1, 2), QQ(2)])
result = construct_domain([3.14, 1, S.Half])
assert isinstance(result[0], RealField)
assert result[1] == [RR(3.14), RR(1.0), RR(0.5)]
result = construct_domain([3.14, I, S.Half])
assert isinstance(result[0], ComplexField)
assert result[1] == [CC(3.14), CC(1.0j), CC(0.5)]
assert construct_domain([1.0+I]) == (CC, [CC(1.0, 1.0)])
assert construct_domain([2.0+3.0*I]) == (CC, [CC(2.0, 3.0)])
assert construct_domain([1, I]) == (ZZ_I, [ZZ_I(1, 0), ZZ_I(0, 1)])
assert construct_domain([1, I/2]) == (QQ_I, [QQ_I(1, 0), QQ_I(0, S.Half)])
assert construct_domain([3.14, sqrt(2)], extension=None) == (EX, [EX(3.14), EX(sqrt(2))])
assert construct_domain([3.14, sqrt(2)], extension=True) == (EX, [EX(3.14), EX(sqrt(2))])
assert construct_domain([1, sqrt(2)], extension=None) == (EX, [EX(1), EX(sqrt(2))])
assert construct_domain([x, sqrt(x)]) == (EX, [EX(x), EX(sqrt(x))])
assert construct_domain([x, sqrt(x), sqrt(y)]) == (EX, [EX(x), EX(sqrt(x)), EX(sqrt(y))])
alg = QQ.algebraic_field(sqrt(2))
assert construct_domain([7, S.Half, sqrt(2)], extension=True) == \
(alg, [alg.convert(7), alg.convert(S.Half), alg.convert(sqrt(2))])
alg = QQ.algebraic_field(sqrt(2) + sqrt(3))
assert construct_domain([7, sqrt(2), sqrt(3)], extension=True) == \
(alg, [alg.convert(7), alg.convert(sqrt(2)), alg.convert(sqrt(3))])
dom = ZZ[x]
assert construct_domain([2*x, 3]) == \
(dom, [dom.convert(2*x), dom.convert(3)])
dom = ZZ[x, y]
assert construct_domain([2*x, 3*y]) == \
(dom, [dom.convert(2*x), dom.convert(3*y)])
dom = QQ[x]
assert construct_domain([x/2, 3]) == \
(dom, [dom.convert(x/2), dom.convert(3)])
dom = QQ[x, y]
assert construct_domain([x/2, 3*y]) == \
(dom, [dom.convert(x/2), dom.convert(3*y)])
dom = ZZ_I[x]
assert construct_domain([2*x, I]) == \
(dom, [dom.convert(2*x), dom.convert(I)])
dom = ZZ_I[x, y]
assert construct_domain([2*x, I*y]) == \
(dom, [dom.convert(2*x), dom.convert(I*y)])
dom = QQ_I[x]
assert construct_domain([x/2, I]) == \
(dom, [dom.convert(x/2), dom.convert(I)])
dom = QQ_I[x, y]
assert construct_domain([x/2, I*y]) == \
(dom, [dom.convert(x/2), dom.convert(I*y)])
dom = RR[x]
assert construct_domain([x/2, 3.5]) == \
(dom, [dom.convert(x/2), dom.convert(3.5)])
dom = RR[x, y]
assert construct_domain([x/2, 3.5*y]) == \
(dom, [dom.convert(x/2), dom.convert(3.5*y)])
dom = CC[x]
assert construct_domain([I*x/2, 3.5]) == \
(dom, [dom.convert(I*x/2), dom.convert(3.5)])
dom = CC[x, y]
assert construct_domain([I*x/2, 3.5*y]) == \
(dom, [dom.convert(I*x/2), dom.convert(3.5*y)])
dom = CC[x]
assert construct_domain([x/2, I*3.5]) == \
(dom, [dom.convert(x/2), dom.convert(I*3.5)])
dom = CC[x, y]
assert construct_domain([x/2, I*3.5*y]) == \
(dom, [dom.convert(x/2), dom.convert(I*3.5*y)])
dom = ZZ.frac_field(x)
assert construct_domain([2/x, 3]) == \
(dom, [dom.convert(2/x), dom.convert(3)])
dom = ZZ.frac_field(x, y)
assert construct_domain([2/x, 3*y]) == \
(dom, [dom.convert(2/x), dom.convert(3*y)])
dom = RR.frac_field(x)
assert construct_domain([2/x, 3.5]) == \
(dom, [dom.convert(2/x), dom.convert(3.5)])
dom = RR.frac_field(x, y)
assert construct_domain([2/x, 3.5*y]) == \
(dom, [dom.convert(2/x), dom.convert(3.5*y)])
dom = RealField(prec=336)[x]
assert construct_domain([pi.evalf(100)*x]) == \
(dom, [dom.convert(pi.evalf(100)*x)])
assert construct_domain(2) == (ZZ, ZZ(2))
assert construct_domain(S(2)/3) == (QQ, QQ(2, 3))
assert construct_domain(Rational(2, 3)) == (QQ, QQ(2, 3))
assert construct_domain({}) == (ZZ, {})
def test_complex_exponential():
w = exp(-I*2*pi/3, evaluate=False)
alg = QQ.algebraic_field(w)
assert construct_domain([w**2, w, 1], extension=True) == (
alg,
[alg.convert(w**2),
alg.convert(w),
alg.convert(1)]
)
def test_composite_option():
assert construct_domain({(1,): sin(y)}, composite=False) == \
(EX, {(1,): EX(sin(y))})
assert construct_domain({(1,): y}, composite=False) == \
(EX, {(1,): EX(y)})
assert construct_domain({(1, 1): 1}, composite=False) == \
(ZZ, {(1, 1): 1})
assert construct_domain({(1, 0): y}, composite=False) == \
(EX, {(1, 0): EX(y)})
def test_precision():
f1 = Float("1.01")
f2 = Float("1.0000000000000000000001")
for u in [1, 1e-2, 1e-6, 1e-13, 1e-14, 1e-16, 1e-20, 1e-100, 1e-300,
f1, f2]:
result = construct_domain([u])
v = float(result[1][0])
assert abs(u - v) / u < 1e-14 # Test relative accuracy
result = construct_domain([f1])
y = result[1][0]
assert y-1 > 1e-50
result = construct_domain([f2])
y = result[1][0]
assert y-1 > 1e-50
def test_issue_11538():
for n in [E, pi, Catalan]:
assert construct_domain(n)[0] == ZZ[n]
assert construct_domain(x + n)[0] == ZZ[x, n]
assert construct_domain(GoldenRatio)[0] == EX
assert construct_domain(x + GoldenRatio)[0] == EX