295 lines
9.3 KiB
Python
295 lines
9.3 KiB
Python
|
"""Tests for Dixon's and Macaulay's classes. """
|
||
|
|
||
|
from sympy.matrices.dense import Matrix
|
||
|
from sympy.polys.polytools import factor
|
||
|
from sympy.core import symbols
|
||
|
from sympy.tensor.indexed import IndexedBase
|
||
|
|
||
|
from sympy.polys.multivariate_resultants import (DixonResultant,
|
||
|
MacaulayResultant)
|
||
|
|
||
|
c, d = symbols("a, b")
|
||
|
x, y = symbols("x, y")
|
||
|
|
||
|
p = c * x + y
|
||
|
q = x + d * y
|
||
|
|
||
|
dixon = DixonResultant(polynomials=[p, q], variables=[x, y])
|
||
|
macaulay = MacaulayResultant(polynomials=[p, q], variables=[x, y])
|
||
|
|
||
|
def test_dixon_resultant_init():
|
||
|
"""Test init method of DixonResultant."""
|
||
|
a = IndexedBase("alpha")
|
||
|
|
||
|
assert dixon.polynomials == [p, q]
|
||
|
assert dixon.variables == [x, y]
|
||
|
assert dixon.n == 2
|
||
|
assert dixon.m == 2
|
||
|
assert dixon.dummy_variables == [a[0], a[1]]
|
||
|
|
||
|
def test_get_dixon_polynomial_numerical():
|
||
|
"""Test Dixon's polynomial for a numerical example."""
|
||
|
a = IndexedBase("alpha")
|
||
|
|
||
|
p = x + y
|
||
|
q = x ** 2 + y **3
|
||
|
h = x ** 2 + y
|
||
|
|
||
|
dixon = DixonResultant([p, q, h], [x, y])
|
||
|
polynomial = -x * y ** 2 * a[0] - x * y ** 2 * a[1] - x * y * a[0] \
|
||
|
* a[1] - x * y * a[1] ** 2 - x * a[0] * a[1] ** 2 + x * a[0] - \
|
||
|
y ** 2 * a[0] * a[1] + y ** 2 * a[1] - y * a[0] * a[1] ** 2 + y * \
|
||
|
a[1] ** 2
|
||
|
|
||
|
assert dixon.get_dixon_polynomial().as_expr().expand() == polynomial
|
||
|
|
||
|
def test_get_max_degrees():
|
||
|
"""Tests max degrees function."""
|
||
|
|
||
|
p = x + y
|
||
|
q = x ** 2 + y **3
|
||
|
h = x ** 2 + y
|
||
|
|
||
|
dixon = DixonResultant(polynomials=[p, q, h], variables=[x, y])
|
||
|
dixon_polynomial = dixon.get_dixon_polynomial()
|
||
|
|
||
|
assert dixon.get_max_degrees(dixon_polynomial) == [1, 2]
|
||
|
|
||
|
def test_get_dixon_matrix():
|
||
|
"""Test Dixon's resultant for a numerical example."""
|
||
|
|
||
|
x, y = symbols('x, y')
|
||
|
|
||
|
p = x + y
|
||
|
q = x ** 2 + y ** 3
|
||
|
h = x ** 2 + y
|
||
|
|
||
|
dixon = DixonResultant([p, q, h], [x, y])
|
||
|
polynomial = dixon.get_dixon_polynomial()
|
||
|
|
||
|
assert dixon.get_dixon_matrix(polynomial).det() == 0
|
||
|
|
||
|
def test_get_dixon_matrix_example_two():
|
||
|
"""Test Dixon's matrix for example from [Palancz08]_."""
|
||
|
x, y, z = symbols('x, y, z')
|
||
|
|
||
|
f = x ** 2 + y ** 2 - 1 + z * 0
|
||
|
g = x ** 2 + z ** 2 - 1 + y * 0
|
||
|
h = y ** 2 + z ** 2 - 1
|
||
|
|
||
|
example_two = DixonResultant([f, g, h], [y, z])
|
||
|
poly = example_two.get_dixon_polynomial()
|
||
|
matrix = example_two.get_dixon_matrix(poly)
|
||
|
|
||
|
expr = 1 - 8 * x ** 2 + 24 * x ** 4 - 32 * x ** 6 + 16 * x ** 8
|
||
|
assert (matrix.det() - expr).expand() == 0
|
||
|
|
||
|
def test_KSY_precondition():
|
||
|
"""Tests precondition for KSY Resultant."""
|
||
|
A, B, C = symbols('A, B, C')
|
||
|
|
||
|
m1 = Matrix([[1, 2, 3],
|
||
|
[4, 5, 12],
|
||
|
[6, 7, 18]])
|
||
|
|
||
|
m2 = Matrix([[0, C**2],
|
||
|
[-2 * C, -C ** 2]])
|
||
|
|
||
|
m3 = Matrix([[1, 0],
|
||
|
[0, 1]])
|
||
|
|
||
|
m4 = Matrix([[A**2, 0, 1],
|
||
|
[A, 1, 1 / A]])
|
||
|
|
||
|
m5 = Matrix([[5, 1],
|
||
|
[2, B],
|
||
|
[0, 1],
|
||
|
[0, 0]])
|
||
|
|
||
|
assert dixon.KSY_precondition(m1) == False
|
||
|
assert dixon.KSY_precondition(m2) == True
|
||
|
assert dixon.KSY_precondition(m3) == True
|
||
|
assert dixon.KSY_precondition(m4) == False
|
||
|
assert dixon.KSY_precondition(m5) == True
|
||
|
|
||
|
def test_delete_zero_rows_and_columns():
|
||
|
"""Tests method for deleting rows and columns containing only zeros."""
|
||
|
A, B, C = symbols('A, B, C')
|
||
|
|
||
|
m1 = Matrix([[0, 0],
|
||
|
[0, 0],
|
||
|
[1, 2]])
|
||
|
|
||
|
m2 = Matrix([[0, 1, 2],
|
||
|
[0, 3, 4],
|
||
|
[0, 5, 6]])
|
||
|
|
||
|
m3 = Matrix([[0, 0, 0, 0],
|
||
|
[0, 1, 2, 0],
|
||
|
[0, 3, 4, 0],
|
||
|
[0, 0, 0, 0]])
|
||
|
|
||
|
m4 = Matrix([[1, 0, 2],
|
||
|
[0, 0, 0],
|
||
|
[3, 0, 4]])
|
||
|
|
||
|
m5 = Matrix([[0, 0, 0, 1],
|
||
|
[0, 0, 0, 2],
|
||
|
[0, 0, 0, 3],
|
||
|
[0, 0, 0, 4]])
|
||
|
|
||
|
m6 = Matrix([[0, 0, A],
|
||
|
[B, 0, 0],
|
||
|
[0, 0, C]])
|
||
|
|
||
|
assert dixon.delete_zero_rows_and_columns(m1) == Matrix([[1, 2]])
|
||
|
|
||
|
assert dixon.delete_zero_rows_and_columns(m2) == Matrix([[1, 2],
|
||
|
[3, 4],
|
||
|
[5, 6]])
|
||
|
|
||
|
assert dixon.delete_zero_rows_and_columns(m3) == Matrix([[1, 2],
|
||
|
[3, 4]])
|
||
|
|
||
|
assert dixon.delete_zero_rows_and_columns(m4) == Matrix([[1, 2],
|
||
|
[3, 4]])
|
||
|
|
||
|
assert dixon.delete_zero_rows_and_columns(m5) == Matrix([[1],
|
||
|
[2],
|
||
|
[3],
|
||
|
[4]])
|
||
|
|
||
|
assert dixon.delete_zero_rows_and_columns(m6) == Matrix([[0, A],
|
||
|
[B, 0],
|
||
|
[0, C]])
|
||
|
|
||
|
def test_product_leading_entries():
|
||
|
"""Tests product of leading entries method."""
|
||
|
A, B = symbols('A, B')
|
||
|
|
||
|
m1 = Matrix([[1, 2, 3],
|
||
|
[0, 4, 5],
|
||
|
[0, 0, 6]])
|
||
|
|
||
|
m2 = Matrix([[0, 0, 1],
|
||
|
[2, 0, 3]])
|
||
|
|
||
|
m3 = Matrix([[0, 0, 0],
|
||
|
[1, 2, 3],
|
||
|
[0, 0, 0]])
|
||
|
|
||
|
m4 = Matrix([[0, 0, A],
|
||
|
[1, 2, 3],
|
||
|
[B, 0, 0]])
|
||
|
|
||
|
assert dixon.product_leading_entries(m1) == 24
|
||
|
assert dixon.product_leading_entries(m2) == 2
|
||
|
assert dixon.product_leading_entries(m3) == 1
|
||
|
assert dixon.product_leading_entries(m4) == A * B
|
||
|
|
||
|
def test_get_KSY_Dixon_resultant_example_one():
|
||
|
"""Tests the KSY Dixon resultant for example one"""
|
||
|
x, y, z = symbols('x, y, z')
|
||
|
|
||
|
p = x * y * z
|
||
|
q = x**2 - z**2
|
||
|
h = x + y + z
|
||
|
dixon = DixonResultant([p, q, h], [x, y])
|
||
|
dixon_poly = dixon.get_dixon_polynomial()
|
||
|
dixon_matrix = dixon.get_dixon_matrix(dixon_poly)
|
||
|
D = dixon.get_KSY_Dixon_resultant(dixon_matrix)
|
||
|
|
||
|
assert D == -z**3
|
||
|
|
||
|
def test_get_KSY_Dixon_resultant_example_two():
|
||
|
"""Tests the KSY Dixon resultant for example two"""
|
||
|
x, y, A = symbols('x, y, A')
|
||
|
|
||
|
p = x * y + x * A + x - A**2 - A + y**2 + y
|
||
|
q = x**2 + x * A - x + x * y + y * A - y
|
||
|
h = x**2 + x * y + 2 * x - x * A - y * A - 2 * A
|
||
|
|
||
|
dixon = DixonResultant([p, q, h], [x, y])
|
||
|
dixon_poly = dixon.get_dixon_polynomial()
|
||
|
dixon_matrix = dixon.get_dixon_matrix(dixon_poly)
|
||
|
D = factor(dixon.get_KSY_Dixon_resultant(dixon_matrix))
|
||
|
|
||
|
assert D == -8*A*(A - 1)*(A + 2)*(2*A - 1)**2
|
||
|
|
||
|
def test_macaulay_resultant_init():
|
||
|
"""Test init method of MacaulayResultant."""
|
||
|
|
||
|
assert macaulay.polynomials == [p, q]
|
||
|
assert macaulay.variables == [x, y]
|
||
|
assert macaulay.n == 2
|
||
|
assert macaulay.degrees == [1, 1]
|
||
|
assert macaulay.degree_m == 1
|
||
|
assert macaulay.monomials_size == 2
|
||
|
|
||
|
def test_get_degree_m():
|
||
|
assert macaulay._get_degree_m() == 1
|
||
|
|
||
|
def test_get_size():
|
||
|
assert macaulay.get_size() == 2
|
||
|
|
||
|
def test_macaulay_example_one():
|
||
|
"""Tests the Macaulay for example from [Bruce97]_"""
|
||
|
|
||
|
x, y, z = symbols('x, y, z')
|
||
|
a_1_1, a_1_2, a_1_3 = symbols('a_1_1, a_1_2, a_1_3')
|
||
|
a_2_2, a_2_3, a_3_3 = symbols('a_2_2, a_2_3, a_3_3')
|
||
|
b_1_1, b_1_2, b_1_3 = symbols('b_1_1, b_1_2, b_1_3')
|
||
|
b_2_2, b_2_3, b_3_3 = symbols('b_2_2, b_2_3, b_3_3')
|
||
|
c_1, c_2, c_3 = symbols('c_1, c_2, c_3')
|
||
|
|
||
|
f_1 = a_1_1 * x ** 2 + a_1_2 * x * y + a_1_3 * x * z + \
|
||
|
a_2_2 * y ** 2 + a_2_3 * y * z + a_3_3 * z ** 2
|
||
|
f_2 = b_1_1 * x ** 2 + b_1_2 * x * y + b_1_3 * x * z + \
|
||
|
b_2_2 * y ** 2 + b_2_3 * y * z + b_3_3 * z ** 2
|
||
|
f_3 = c_1 * x + c_2 * y + c_3 * z
|
||
|
|
||
|
mac = MacaulayResultant([f_1, f_2, f_3], [x, y, z])
|
||
|
|
||
|
assert mac.degrees == [2, 2, 1]
|
||
|
assert mac.degree_m == 3
|
||
|
|
||
|
assert mac.monomial_set == [x ** 3, x ** 2 * y, x ** 2 * z,
|
||
|
x * y ** 2,
|
||
|
x * y * z, x * z ** 2, y ** 3,
|
||
|
y ** 2 *z, y * z ** 2, z ** 3]
|
||
|
assert mac.monomials_size == 10
|
||
|
assert mac.get_row_coefficients() == [[x, y, z], [x, y, z],
|
||
|
[x * y, x * z, y * z, z ** 2]]
|
||
|
|
||
|
matrix = mac.get_matrix()
|
||
|
assert matrix.shape == (mac.monomials_size, mac.monomials_size)
|
||
|
assert mac.get_submatrix(matrix) == Matrix([[a_1_1, a_2_2],
|
||
|
[b_1_1, b_2_2]])
|
||
|
|
||
|
def test_macaulay_example_two():
|
||
|
"""Tests the Macaulay formulation for example from [Stiller96]_."""
|
||
|
|
||
|
x, y, z = symbols('x, y, z')
|
||
|
a_0, a_1, a_2 = symbols('a_0, a_1, a_2')
|
||
|
b_0, b_1, b_2 = symbols('b_0, b_1, b_2')
|
||
|
c_0, c_1, c_2, c_3, c_4 = symbols('c_0, c_1, c_2, c_3, c_4')
|
||
|
|
||
|
f = a_0 * y - a_1 * x + a_2 * z
|
||
|
g = b_1 * x ** 2 + b_0 * y ** 2 - b_2 * z ** 2
|
||
|
h = c_0 * y - c_1 * x ** 3 + c_2 * x ** 2 * z - c_3 * x * z ** 2 + \
|
||
|
c_4 * z ** 3
|
||
|
|
||
|
mac = MacaulayResultant([f, g, h], [x, y, z])
|
||
|
|
||
|
assert mac.degrees == [1, 2, 3]
|
||
|
assert mac.degree_m == 4
|
||
|
assert mac.monomials_size == 15
|
||
|
assert len(mac.get_row_coefficients()) == mac.n
|
||
|
|
||
|
matrix = mac.get_matrix()
|
||
|
assert matrix.shape == (mac.monomials_size, mac.monomials_size)
|
||
|
assert mac.get_submatrix(matrix) == Matrix([[-a_1, a_0, a_2, 0],
|
||
|
[0, -a_1, 0, 0],
|
||
|
[0, 0, -a_1, 0],
|
||
|
[0, 0, 0, -a_1]])
|