478 lines
16 KiB
Python
478 lines
16 KiB
Python
|
from sympy.core.add import Add
|
||
|
from sympy.core.function import (Function, expand)
|
||
|
from sympy.core.numbers import (I, Rational, nan, oo, pi)
|
||
|
from sympy.core.singleton import S
|
||
|
from sympy.core.symbol import (Symbol, symbols)
|
||
|
from sympy.functions.elementary.complexes import (conjugate, transpose)
|
||
|
from sympy.functions.elementary.exponential import (exp, log)
|
||
|
from sympy.functions.elementary.miscellaneous import sqrt
|
||
|
from sympy.functions.elementary.trigonometric import (cos, sin)
|
||
|
from sympy.integrals.integrals import Integral
|
||
|
from sympy.series.order import O, Order
|
||
|
from sympy.core.expr import unchanged
|
||
|
from sympy.testing.pytest import raises
|
||
|
from sympy.abc import w, x, y, z
|
||
|
|
||
|
|
||
|
def test_caching_bug():
|
||
|
#needs to be a first test, so that all caches are clean
|
||
|
#cache it
|
||
|
O(w)
|
||
|
#and test that this won't raise an exception
|
||
|
O(w**(-1/x/log(3)*log(5)), w)
|
||
|
|
||
|
|
||
|
def test_free_symbols():
|
||
|
assert Order(1).free_symbols == set()
|
||
|
assert Order(x).free_symbols == {x}
|
||
|
assert Order(1, x).free_symbols == {x}
|
||
|
assert Order(x*y).free_symbols == {x, y}
|
||
|
assert Order(x, x, y).free_symbols == {x, y}
|
||
|
|
||
|
|
||
|
def test_simple_1():
|
||
|
o = Rational(0)
|
||
|
assert Order(2*x) == Order(x)
|
||
|
assert Order(x)*3 == Order(x)
|
||
|
assert -28*Order(x) == Order(x)
|
||
|
assert Order(Order(x)) == Order(x)
|
||
|
assert Order(Order(x), y) == Order(Order(x), x, y)
|
||
|
assert Order(-23) == Order(1)
|
||
|
assert Order(exp(x)) == Order(1, x)
|
||
|
assert Order(exp(1/x)).expr == exp(1/x)
|
||
|
assert Order(x*exp(1/x)).expr == x*exp(1/x)
|
||
|
assert Order(x**(o/3)).expr == x**(o/3)
|
||
|
assert Order(x**(o*Rational(5, 3))).expr == x**(o*Rational(5, 3))
|
||
|
assert Order(x**2 + x + y, x) == O(1, x)
|
||
|
assert Order(x**2 + x + y, y) == O(1, y)
|
||
|
raises(ValueError, lambda: Order(exp(x), x, x))
|
||
|
raises(TypeError, lambda: Order(x, 2 - x))
|
||
|
|
||
|
|
||
|
def test_simple_2():
|
||
|
assert Order(2*x)*x == Order(x**2)
|
||
|
assert Order(2*x)/x == Order(1, x)
|
||
|
assert Order(2*x)*x*exp(1/x) == Order(x**2*exp(1/x))
|
||
|
assert (Order(2*x)*x*exp(1/x)/log(x)**3).expr == x**2*exp(1/x)*log(x)**-3
|
||
|
|
||
|
|
||
|
def test_simple_3():
|
||
|
assert Order(x) + x == Order(x)
|
||
|
assert Order(x) + 2 == 2 + Order(x)
|
||
|
assert Order(x) + x**2 == Order(x)
|
||
|
assert Order(x) + 1/x == 1/x + Order(x)
|
||
|
assert Order(1/x) + 1/x**2 == 1/x**2 + Order(1/x)
|
||
|
assert Order(x) + exp(1/x) == Order(x) + exp(1/x)
|
||
|
|
||
|
|
||
|
def test_simple_4():
|
||
|
assert Order(x)**2 == Order(x**2)
|
||
|
|
||
|
|
||
|
def test_simple_5():
|
||
|
assert Order(x) + Order(x**2) == Order(x)
|
||
|
assert Order(x) + Order(x**-2) == Order(x**-2)
|
||
|
assert Order(x) + Order(1/x) == Order(1/x)
|
||
|
|
||
|
|
||
|
def test_simple_6():
|
||
|
assert Order(x) - Order(x) == Order(x)
|
||
|
assert Order(x) + Order(1) == Order(1)
|
||
|
assert Order(x) + Order(x**2) == Order(x)
|
||
|
assert Order(1/x) + Order(1) == Order(1/x)
|
||
|
assert Order(x) + Order(exp(1/x)) == Order(exp(1/x))
|
||
|
assert Order(x**3) + Order(exp(2/x)) == Order(exp(2/x))
|
||
|
assert Order(x**-3) + Order(exp(2/x)) == Order(exp(2/x))
|
||
|
|
||
|
|
||
|
def test_simple_7():
|
||
|
assert 1 + O(1) == O(1)
|
||
|
assert 2 + O(1) == O(1)
|
||
|
assert x + O(1) == O(1)
|
||
|
assert 1/x + O(1) == 1/x + O(1)
|
||
|
|
||
|
|
||
|
def test_simple_8():
|
||
|
assert O(sqrt(-x)) == O(sqrt(x))
|
||
|
assert O(x**2*sqrt(x)) == O(x**Rational(5, 2))
|
||
|
assert O(x**3*sqrt(-(-x)**3)) == O(x**Rational(9, 2))
|
||
|
assert O(x**Rational(3, 2)*sqrt((-x)**3)) == O(x**3)
|
||
|
assert O(x*(-2*x)**(I/2)) == O(x*(-x)**(I/2))
|
||
|
|
||
|
|
||
|
def test_as_expr_variables():
|
||
|
assert Order(x).as_expr_variables(None) == (x, ((x, 0),))
|
||
|
assert Order(x).as_expr_variables(((x, 0),)) == (x, ((x, 0),))
|
||
|
assert Order(y).as_expr_variables(((x, 0),)) == (y, ((x, 0), (y, 0)))
|
||
|
assert Order(y).as_expr_variables(((x, 0), (y, 0))) == (y, ((x, 0), (y, 0)))
|
||
|
|
||
|
|
||
|
def test_contains_0():
|
||
|
assert Order(1, x).contains(Order(1, x))
|
||
|
assert Order(1, x).contains(Order(1))
|
||
|
assert Order(1).contains(Order(1, x)) is False
|
||
|
|
||
|
|
||
|
def test_contains_1():
|
||
|
assert Order(x).contains(Order(x))
|
||
|
assert Order(x).contains(Order(x**2))
|
||
|
assert not Order(x**2).contains(Order(x))
|
||
|
assert not Order(x).contains(Order(1/x))
|
||
|
assert not Order(1/x).contains(Order(exp(1/x)))
|
||
|
assert not Order(x).contains(Order(exp(1/x)))
|
||
|
assert Order(1/x).contains(Order(x))
|
||
|
assert Order(exp(1/x)).contains(Order(x))
|
||
|
assert Order(exp(1/x)).contains(Order(1/x))
|
||
|
assert Order(exp(1/x)).contains(Order(exp(1/x)))
|
||
|
assert Order(exp(2/x)).contains(Order(exp(1/x)))
|
||
|
assert not Order(exp(1/x)).contains(Order(exp(2/x)))
|
||
|
|
||
|
|
||
|
def test_contains_2():
|
||
|
assert Order(x).contains(Order(y)) is None
|
||
|
assert Order(x).contains(Order(y*x))
|
||
|
assert Order(y*x).contains(Order(x))
|
||
|
assert Order(y).contains(Order(x*y))
|
||
|
assert Order(x).contains(Order(y**2*x))
|
||
|
|
||
|
|
||
|
def test_contains_3():
|
||
|
assert Order(x*y**2).contains(Order(x**2*y)) is None
|
||
|
assert Order(x**2*y).contains(Order(x*y**2)) is None
|
||
|
|
||
|
|
||
|
def test_contains_4():
|
||
|
assert Order(sin(1/x**2)).contains(Order(cos(1/x**2))) is True
|
||
|
assert Order(cos(1/x**2)).contains(Order(sin(1/x**2))) is True
|
||
|
|
||
|
|
||
|
def test_contains():
|
||
|
assert Order(1, x) not in Order(1)
|
||
|
assert Order(1) in Order(1, x)
|
||
|
raises(TypeError, lambda: Order(x*y**2) in Order(x**2*y))
|
||
|
|
||
|
|
||
|
def test_add_1():
|
||
|
assert Order(x + x) == Order(x)
|
||
|
assert Order(3*x - 2*x**2) == Order(x)
|
||
|
assert Order(1 + x) == Order(1, x)
|
||
|
assert Order(1 + 1/x) == Order(1/x)
|
||
|
# TODO : A better output for Order(log(x) + 1/log(x))
|
||
|
# could be Order(log(x)). Currently Order for expressions
|
||
|
# where all arguments would involve a log term would fall
|
||
|
# in this category and outputs for these should be improved.
|
||
|
assert Order(log(x) + 1/log(x)) == Order((log(x)**2 + 1)/log(x))
|
||
|
assert Order(exp(1/x) + x) == Order(exp(1/x))
|
||
|
assert Order(exp(1/x) + 1/x**20) == Order(exp(1/x))
|
||
|
|
||
|
|
||
|
def test_ln_args():
|
||
|
assert O(log(x)) + O(log(2*x)) == O(log(x))
|
||
|
assert O(log(x)) + O(log(x**3)) == O(log(x))
|
||
|
assert O(log(x*y)) + O(log(x) + log(y)) == O(log(x) + log(y), x, y)
|
||
|
|
||
|
|
||
|
def test_multivar_0():
|
||
|
assert Order(x*y).expr == x*y
|
||
|
assert Order(x*y**2).expr == x*y**2
|
||
|
assert Order(x*y, x).expr == x
|
||
|
assert Order(x*y**2, y).expr == y**2
|
||
|
assert Order(x*y*z).expr == x*y*z
|
||
|
assert Order(x/y).expr == x/y
|
||
|
assert Order(x*exp(1/y)).expr == x*exp(1/y)
|
||
|
assert Order(exp(x)*exp(1/y)).expr == exp(x)*exp(1/y)
|
||
|
|
||
|
|
||
|
def test_multivar_0a():
|
||
|
assert Order(exp(1/x)*exp(1/y)).expr == exp(1/x)*exp(1/y)
|
||
|
|
||
|
|
||
|
def test_multivar_1():
|
||
|
assert Order(x + y).expr == x + y
|
||
|
assert Order(x + 2*y).expr == x + y
|
||
|
assert (Order(x + y) + x).expr == (x + y)
|
||
|
assert (Order(x + y) + x**2) == Order(x + y)
|
||
|
assert (Order(x + y) + 1/x) == 1/x + Order(x + y)
|
||
|
assert Order(x**2 + y*x).expr == x**2 + y*x
|
||
|
|
||
|
|
||
|
def test_multivar_2():
|
||
|
assert Order(x**2*y + y**2*x, x, y).expr == x**2*y + y**2*x
|
||
|
|
||
|
|
||
|
def test_multivar_mul_1():
|
||
|
assert Order(x + y)*x == Order(x**2 + y*x, x, y)
|
||
|
|
||
|
|
||
|
def test_multivar_3():
|
||
|
assert (Order(x) + Order(y)).args in [
|
||
|
(Order(x), Order(y)),
|
||
|
(Order(y), Order(x))]
|
||
|
assert Order(x) + Order(y) + Order(x + y) == Order(x + y)
|
||
|
assert (Order(x**2*y) + Order(y**2*x)).args in [
|
||
|
(Order(x*y**2), Order(y*x**2)),
|
||
|
(Order(y*x**2), Order(x*y**2))]
|
||
|
assert (Order(x**2*y) + Order(y*x)) == Order(x*y)
|
||
|
|
||
|
|
||
|
def test_issue_3468():
|
||
|
y = Symbol('y', negative=True)
|
||
|
z = Symbol('z', complex=True)
|
||
|
|
||
|
# check that Order does not modify assumptions about symbols
|
||
|
Order(x)
|
||
|
Order(y)
|
||
|
Order(z)
|
||
|
|
||
|
assert x.is_positive is None
|
||
|
assert y.is_positive is False
|
||
|
assert z.is_positive is None
|
||
|
|
||
|
|
||
|
def test_leading_order():
|
||
|
assert (x + 1 + 1/x**5).extract_leading_order(x) == ((1/x**5, O(1/x**5)),)
|
||
|
assert (1 + 1/x).extract_leading_order(x) == ((1/x, O(1/x)),)
|
||
|
assert (1 + x).extract_leading_order(x) == ((1, O(1, x)),)
|
||
|
assert (1 + x**2).extract_leading_order(x) == ((1, O(1, x)),)
|
||
|
assert (2 + x**2).extract_leading_order(x) == ((2, O(1, x)),)
|
||
|
assert (x + x**2).extract_leading_order(x) == ((x, O(x)),)
|
||
|
|
||
|
|
||
|
def test_leading_order2():
|
||
|
assert set((2 + pi + x**2).extract_leading_order(x)) == {(pi, O(1, x)),
|
||
|
(S(2), O(1, x))}
|
||
|
assert set((2*x + pi*x + x**2).extract_leading_order(x)) == {(2*x, O(x)),
|
||
|
(x*pi, O(x))}
|
||
|
|
||
|
|
||
|
def test_order_leadterm():
|
||
|
assert O(x**2)._eval_as_leading_term(x) == O(x**2)
|
||
|
|
||
|
|
||
|
def test_order_symbols():
|
||
|
e = x*y*sin(x)*Integral(x, (x, 1, 2))
|
||
|
assert O(e) == O(x**2*y, x, y)
|
||
|
assert O(e, x) == O(x**2)
|
||
|
|
||
|
|
||
|
def test_nan():
|
||
|
assert O(nan) is nan
|
||
|
assert not O(x).contains(nan)
|
||
|
|
||
|
|
||
|
def test_O1():
|
||
|
assert O(1, x) * x == O(x)
|
||
|
assert O(1, y) * x == O(1, y)
|
||
|
|
||
|
|
||
|
def test_getn():
|
||
|
# other lines are tested incidentally by the suite
|
||
|
assert O(x).getn() == 1
|
||
|
assert O(x/log(x)).getn() == 1
|
||
|
assert O(x**2/log(x)**2).getn() == 2
|
||
|
assert O(x*log(x)).getn() == 1
|
||
|
raises(NotImplementedError, lambda: (O(x) + O(y)).getn())
|
||
|
|
||
|
|
||
|
def test_diff():
|
||
|
assert O(x**2).diff(x) == O(x)
|
||
|
|
||
|
|
||
|
def test_getO():
|
||
|
assert (x).getO() is None
|
||
|
assert (x).removeO() == x
|
||
|
assert (O(x)).getO() == O(x)
|
||
|
assert (O(x)).removeO() == 0
|
||
|
assert (z + O(x) + O(y)).getO() == O(x) + O(y)
|
||
|
assert (z + O(x) + O(y)).removeO() == z
|
||
|
raises(NotImplementedError, lambda: (O(x) + O(y)).getn())
|
||
|
|
||
|
|
||
|
def test_leading_term():
|
||
|
from sympy.functions.special.gamma_functions import digamma
|
||
|
assert O(1/digamma(1/x)) == O(1/log(x))
|
||
|
|
||
|
|
||
|
def test_eval():
|
||
|
assert Order(x).subs(Order(x), 1) == 1
|
||
|
assert Order(x).subs(x, y) == Order(y)
|
||
|
assert Order(x).subs(y, x) == Order(x)
|
||
|
assert Order(x).subs(x, x + y) == Order(x + y, (x, -y))
|
||
|
assert (O(1)**x).is_Pow
|
||
|
|
||
|
|
||
|
def test_issue_4279():
|
||
|
a, b = symbols('a b')
|
||
|
assert O(a, a, b) + O(1, a, b) == O(1, a, b)
|
||
|
assert O(b, a, b) + O(1, a, b) == O(1, a, b)
|
||
|
assert O(a + b, a, b) + O(1, a, b) == O(1, a, b)
|
||
|
assert O(1, a, b) + O(a, a, b) == O(1, a, b)
|
||
|
assert O(1, a, b) + O(b, a, b) == O(1, a, b)
|
||
|
assert O(1, a, b) + O(a + b, a, b) == O(1, a, b)
|
||
|
|
||
|
|
||
|
def test_issue_4855():
|
||
|
assert 1/O(1) != O(1)
|
||
|
assert 1/O(x) != O(1/x)
|
||
|
assert 1/O(x, (x, oo)) != O(1/x, (x, oo))
|
||
|
|
||
|
f = Function('f')
|
||
|
assert 1/O(f(x)) != O(1/x)
|
||
|
|
||
|
|
||
|
def test_order_conjugate_transpose():
|
||
|
x = Symbol('x', real=True)
|
||
|
y = Symbol('y', imaginary=True)
|
||
|
assert conjugate(Order(x)) == Order(conjugate(x))
|
||
|
assert conjugate(Order(y)) == Order(conjugate(y))
|
||
|
assert conjugate(Order(x**2)) == Order(conjugate(x)**2)
|
||
|
assert conjugate(Order(y**2)) == Order(conjugate(y)**2)
|
||
|
assert transpose(Order(x)) == Order(transpose(x))
|
||
|
assert transpose(Order(y)) == Order(transpose(y))
|
||
|
assert transpose(Order(x**2)) == Order(transpose(x)**2)
|
||
|
assert transpose(Order(y**2)) == Order(transpose(y)**2)
|
||
|
|
||
|
|
||
|
def test_order_noncommutative():
|
||
|
A = Symbol('A', commutative=False)
|
||
|
assert Order(A + A*x, x) == Order(1, x)
|
||
|
assert (A + A*x)*Order(x) == Order(x)
|
||
|
assert (A*x)*Order(x) == Order(x**2, x)
|
||
|
assert expand((1 + Order(x))*A*A*x) == A*A*x + Order(x**2, x)
|
||
|
assert expand((A*A + Order(x))*x) == A*A*x + Order(x**2, x)
|
||
|
assert expand((A + Order(x))*A*x) == A*A*x + Order(x**2, x)
|
||
|
|
||
|
|
||
|
def test_issue_6753():
|
||
|
assert (1 + x**2)**10000*O(x) == O(x)
|
||
|
|
||
|
|
||
|
def test_order_at_infinity():
|
||
|
assert Order(1 + x, (x, oo)) == Order(x, (x, oo))
|
||
|
assert Order(3*x, (x, oo)) == Order(x, (x, oo))
|
||
|
assert Order(x, (x, oo))*3 == Order(x, (x, oo))
|
||
|
assert -28*Order(x, (x, oo)) == Order(x, (x, oo))
|
||
|
assert Order(Order(x, (x, oo)), (x, oo)) == Order(x, (x, oo))
|
||
|
assert Order(Order(x, (x, oo)), (y, oo)) == Order(x, (x, oo), (y, oo))
|
||
|
assert Order(3, (x, oo)) == Order(1, (x, oo))
|
||
|
assert Order(x**2 + x + y, (x, oo)) == O(x**2, (x, oo))
|
||
|
assert Order(x**2 + x + y, (y, oo)) == O(y, (y, oo))
|
||
|
|
||
|
assert Order(2*x, (x, oo))*x == Order(x**2, (x, oo))
|
||
|
assert Order(2*x, (x, oo))/x == Order(1, (x, oo))
|
||
|
assert Order(2*x, (x, oo))*x*exp(1/x) == Order(x**2*exp(1/x), (x, oo))
|
||
|
assert Order(2*x, (x, oo))*x*exp(1/x)/log(x)**3 == Order(x**2*exp(1/x)*log(x)**-3, (x, oo))
|
||
|
|
||
|
assert Order(x, (x, oo)) + 1/x == 1/x + Order(x, (x, oo)) == Order(x, (x, oo))
|
||
|
assert Order(x, (x, oo)) + 1 == 1 + Order(x, (x, oo)) == Order(x, (x, oo))
|
||
|
assert Order(x, (x, oo)) + x == x + Order(x, (x, oo)) == Order(x, (x, oo))
|
||
|
assert Order(x, (x, oo)) + x**2 == x**2 + Order(x, (x, oo))
|
||
|
assert Order(1/x, (x, oo)) + 1/x**2 == 1/x**2 + Order(1/x, (x, oo)) == Order(1/x, (x, oo))
|
||
|
assert Order(x, (x, oo)) + exp(1/x) == exp(1/x) + Order(x, (x, oo))
|
||
|
|
||
|
assert Order(x, (x, oo))**2 == Order(x**2, (x, oo))
|
||
|
|
||
|
assert Order(x, (x, oo)) + Order(x**2, (x, oo)) == Order(x**2, (x, oo))
|
||
|
assert Order(x, (x, oo)) + Order(x**-2, (x, oo)) == Order(x, (x, oo))
|
||
|
assert Order(x, (x, oo)) + Order(1/x, (x, oo)) == Order(x, (x, oo))
|
||
|
|
||
|
assert Order(x, (x, oo)) - Order(x, (x, oo)) == Order(x, (x, oo))
|
||
|
assert Order(x, (x, oo)) + Order(1, (x, oo)) == Order(x, (x, oo))
|
||
|
assert Order(x, (x, oo)) + Order(x**2, (x, oo)) == Order(x**2, (x, oo))
|
||
|
assert Order(1/x, (x, oo)) + Order(1, (x, oo)) == Order(1, (x, oo))
|
||
|
assert Order(x, (x, oo)) + Order(exp(1/x), (x, oo)) == Order(x, (x, oo))
|
||
|
assert Order(x**3, (x, oo)) + Order(exp(2/x), (x, oo)) == Order(x**3, (x, oo))
|
||
|
assert Order(x**-3, (x, oo)) + Order(exp(2/x), (x, oo)) == Order(exp(2/x), (x, oo))
|
||
|
|
||
|
# issue 7207
|
||
|
assert Order(exp(x), (x, oo)).expr == Order(2*exp(x), (x, oo)).expr == exp(x)
|
||
|
assert Order(y**x, (x, oo)).expr == Order(2*y**x, (x, oo)).expr == exp(x*log(y))
|
||
|
|
||
|
# issue 19545
|
||
|
assert Order(1/x - 3/(3*x + 2), (x, oo)).expr == x**(-2)
|
||
|
|
||
|
def test_mixing_order_at_zero_and_infinity():
|
||
|
assert (Order(x, (x, 0)) + Order(x, (x, oo))).is_Add
|
||
|
assert Order(x, (x, 0)) + Order(x, (x, oo)) == Order(x, (x, oo)) + Order(x, (x, 0))
|
||
|
assert Order(Order(x, (x, oo))) == Order(x, (x, oo))
|
||
|
|
||
|
# not supported (yet)
|
||
|
raises(NotImplementedError, lambda: Order(x, (x, 0))*Order(x, (x, oo)))
|
||
|
raises(NotImplementedError, lambda: Order(x, (x, oo))*Order(x, (x, 0)))
|
||
|
raises(NotImplementedError, lambda: Order(Order(x, (x, oo)), y))
|
||
|
raises(NotImplementedError, lambda: Order(Order(x), (x, oo)))
|
||
|
|
||
|
|
||
|
def test_order_at_some_point():
|
||
|
assert Order(x, (x, 1)) == Order(1, (x, 1))
|
||
|
assert Order(2*x - 2, (x, 1)) == Order(x - 1, (x, 1))
|
||
|
assert Order(-x + 1, (x, 1)) == Order(x - 1, (x, 1))
|
||
|
assert Order(x - 1, (x, 1))**2 == Order((x - 1)**2, (x, 1))
|
||
|
assert Order(x - 2, (x, 2)) - O(x - 2, (x, 2)) == Order(x - 2, (x, 2))
|
||
|
|
||
|
|
||
|
def test_order_subs_limits():
|
||
|
# issue 3333
|
||
|
assert (1 + Order(x)).subs(x, 1/x) == 1 + Order(1/x, (x, oo))
|
||
|
assert (1 + Order(x)).limit(x, 0) == 1
|
||
|
# issue 5769
|
||
|
assert ((x + Order(x**2))/x).limit(x, 0) == 1
|
||
|
|
||
|
assert Order(x**2).subs(x, y - 1) == Order((y - 1)**2, (y, 1))
|
||
|
assert Order(10*x**2, (x, 2)).subs(x, y - 1) == Order(1, (y, 3))
|
||
|
|
||
|
|
||
|
def test_issue_9351():
|
||
|
assert exp(x).series(x, 10, 1) == exp(10) + Order(x - 10, (x, 10))
|
||
|
|
||
|
|
||
|
def test_issue_9192():
|
||
|
assert O(1)*O(1) == O(1)
|
||
|
assert O(1)**O(1) == O(1)
|
||
|
|
||
|
|
||
|
def test_issue_9910():
|
||
|
assert O(x*log(x) + sin(x), (x, oo)) == O(x*log(x), (x, oo))
|
||
|
|
||
|
|
||
|
def test_performance_of_adding_order():
|
||
|
l = [x**i for i in range(1000)]
|
||
|
l.append(O(x**1001))
|
||
|
assert Add(*l).subs(x,1) == O(1)
|
||
|
|
||
|
def test_issue_14622():
|
||
|
assert (x**(-4) + x**(-3) + x**(-1) + O(x**(-6), (x, oo))).as_numer_denom() == (
|
||
|
x**4 + x**5 + x**7 + O(x**2, (x, oo)), x**8)
|
||
|
assert (x**3 + O(x**2, (x, oo))).is_Add
|
||
|
assert O(x**2, (x, oo)).contains(x**3) is False
|
||
|
assert O(x, (x, oo)).contains(O(x, (x, 0))) is None
|
||
|
assert O(x, (x, 0)).contains(O(x, (x, oo))) is None
|
||
|
raises(NotImplementedError, lambda: O(x**3).contains(x**w))
|
||
|
|
||
|
|
||
|
def test_issue_15539():
|
||
|
assert O(1/x**2 + 1/x**4, (x, -oo)) == O(1/x**2, (x, -oo))
|
||
|
assert O(1/x**4 + exp(x), (x, -oo)) == O(1/x**4, (x, -oo))
|
||
|
assert O(1/x**4 + exp(-x), (x, -oo)) == O(exp(-x), (x, -oo))
|
||
|
assert O(1/x, (x, oo)).subs(x, -x) == O(-1/x, (x, -oo))
|
||
|
|
||
|
def test_issue_18606():
|
||
|
assert unchanged(Order, 0)
|
||
|
|
||
|
|
||
|
def test_issue_22165():
|
||
|
assert O(log(x)).contains(2)
|
||
|
|
||
|
|
||
|
def test_issue_23231():
|
||
|
# This test checks Order for expressions having
|
||
|
# arguments containing variables in exponents/powers.
|
||
|
assert O(x**x + 2**x, (x, oo)) == O(exp(x*log(x)), (x, oo))
|
||
|
assert O(x**x + x**2, (x, oo)) == O(exp(x*log(x)), (x, oo))
|
||
|
assert O(x**x + 1/x**2, (x, oo)) == O(exp(x*log(x)), (x, oo))
|
||
|
assert O(2**x + 3**x , (x, oo)) == O(exp(x*log(3)), (x, oo))
|
||
|
|
||
|
|
||
|
def test_issue_9917():
|
||
|
assert O(x*sin(x) + 1, (x, oo)) == O(x, (x, oo))
|