160 lines
6.1 KiB
Python
160 lines
6.1 KiB
Python
|
from sympy.concrete.summations import Sum
|
||
|
from sympy.core.numbers import (oo, pi)
|
||
|
from sympy.core.relational import Eq
|
||
|
from sympy.core.singleton import S
|
||
|
from sympy.core.symbol import symbols
|
||
|
from sympy.functions.combinatorial.factorials import factorial
|
||
|
from sympy.functions.elementary.exponential import exp
|
||
|
from sympy.functions.elementary.miscellaneous import sqrt
|
||
|
from sympy.functions.elementary.piecewise import Piecewise
|
||
|
from sympy.functions.special.beta_functions import beta
|
||
|
from sympy.functions.special.error_functions import erf
|
||
|
from sympy.functions.special.gamma_functions import gamma
|
||
|
from sympy.integrals.integrals import Integral
|
||
|
from sympy.sets.sets import Interval
|
||
|
from sympy.stats import (Normal, P, E, density, Gamma, Poisson, Rayleigh,
|
||
|
variance, Bernoulli, Beta, Uniform, cdf)
|
||
|
from sympy.stats.compound_rv import CompoundDistribution, CompoundPSpace
|
||
|
from sympy.stats.crv_types import NormalDistribution
|
||
|
from sympy.stats.drv_types import PoissonDistribution
|
||
|
from sympy.stats.frv_types import BernoulliDistribution
|
||
|
from sympy.testing.pytest import raises, ignore_warnings
|
||
|
from sympy.stats.joint_rv_types import MultivariateNormalDistribution
|
||
|
|
||
|
from sympy.abc import x
|
||
|
|
||
|
|
||
|
# helpers for testing troublesome unevaluated expressions
|
||
|
flat = lambda s: ''.join(str(s).split())
|
||
|
streq = lambda *a: len(set(map(flat, a))) == 1
|
||
|
assert streq(x, x)
|
||
|
assert streq(x, 'x')
|
||
|
assert not streq(x, x + 1)
|
||
|
|
||
|
|
||
|
def test_normal_CompoundDist():
|
||
|
X = Normal('X', 1, 2)
|
||
|
Y = Normal('X', X, 4)
|
||
|
assert density(Y)(x).simplify() == sqrt(10)*exp(-x**2/40 + x/20 - S(1)/40)/(20*sqrt(pi))
|
||
|
assert E(Y) == 1 # it is always equal to mean of X
|
||
|
assert P(Y > 1) == S(1)/2 # as 1 is the mean
|
||
|
assert P(Y > 5).simplify() == S(1)/2 - erf(sqrt(10)/5)/2
|
||
|
assert variance(Y) == variance(X) + 4**2 # 2**2 + 4**2
|
||
|
# https://math.stackexchange.com/questions/1484451/
|
||
|
# (Contains proof of E and variance computation)
|
||
|
|
||
|
|
||
|
def test_poisson_CompoundDist():
|
||
|
k, t, y = symbols('k t y', positive=True, real=True)
|
||
|
G = Gamma('G', k, t)
|
||
|
D = Poisson('P', G)
|
||
|
assert density(D)(y).simplify() == t**y*(t + 1)**(-k - y)*gamma(k + y)/(gamma(k)*gamma(y + 1))
|
||
|
# https://en.wikipedia.org/wiki/Negative_binomial_distribution#Gamma%E2%80%93Poisson_mixture
|
||
|
assert E(D).simplify() == k*t # mean of NegativeBinomialDistribution
|
||
|
|
||
|
|
||
|
def test_bernoulli_CompoundDist():
|
||
|
X = Beta('X', 1, 2)
|
||
|
Y = Bernoulli('Y', X)
|
||
|
assert density(Y).dict == {0: S(2)/3, 1: S(1)/3}
|
||
|
assert E(Y) == P(Eq(Y, 1)) == S(1)/3
|
||
|
assert variance(Y) == S(2)/9
|
||
|
assert cdf(Y) == {0: S(2)/3, 1: 1}
|
||
|
|
||
|
# test issue 8128
|
||
|
a = Bernoulli('a', S(1)/2)
|
||
|
b = Bernoulli('b', a)
|
||
|
assert density(b).dict == {0: S(1)/2, 1: S(1)/2}
|
||
|
assert P(b > 0.5) == S(1)/2
|
||
|
|
||
|
X = Uniform('X', 0, 1)
|
||
|
Y = Bernoulli('Y', X)
|
||
|
assert E(Y) == S(1)/2
|
||
|
assert P(Eq(Y, 1)) == E(Y)
|
||
|
|
||
|
|
||
|
def test_unevaluated_CompoundDist():
|
||
|
# these tests need to be removed once they work with evaluation as they are currently not
|
||
|
# evaluated completely in sympy.
|
||
|
R = Rayleigh('R', 4)
|
||
|
X = Normal('X', 3, R)
|
||
|
ans = '''
|
||
|
Piecewise(((-sqrt(pi)*sinh(x/4 - 3/4) + sqrt(pi)*cosh(x/4 - 3/4))/(
|
||
|
8*sqrt(pi)), Abs(arg(x - 3)) <= pi/4), (Integral(sqrt(2)*exp(-(x - 3)
|
||
|
**2/(2*R**2))*exp(-R**2/32)/(32*sqrt(pi)), (R, 0, oo)), True))'''
|
||
|
assert streq(density(X)(x), ans)
|
||
|
|
||
|
expre = '''
|
||
|
Integral(X*Integral(sqrt(2)*exp(-(X-3)**2/(2*R**2))*exp(-R**2/32)/(32*
|
||
|
sqrt(pi)),(R,0,oo)),(X,-oo,oo))'''
|
||
|
with ignore_warnings(UserWarning): ### TODO: Restore tests once warnings are removed
|
||
|
assert streq(E(X, evaluate=False).rewrite(Integral), expre)
|
||
|
|
||
|
X = Poisson('X', 1)
|
||
|
Y = Poisson('Y', X)
|
||
|
Z = Poisson('Z', Y)
|
||
|
exprd = Sum(exp(-Y)*Y**x*Sum(exp(-1)*exp(-X)*X**Y/(factorial(X)*factorial(Y)
|
||
|
), (X, 0, oo))/factorial(x), (Y, 0, oo))
|
||
|
assert density(Z)(x) == exprd
|
||
|
|
||
|
N = Normal('N', 1, 2)
|
||
|
M = Normal('M', 3, 4)
|
||
|
D = Normal('D', M, N)
|
||
|
exprd = '''
|
||
|
Integral(sqrt(2)*exp(-(N-1)**2/8)*Integral(exp(-(x-M)**2/(2*N**2))*exp
|
||
|
(-(M-3)**2/32)/(8*pi*N),(M,-oo,oo))/(4*sqrt(pi)),(N,-oo,oo))'''
|
||
|
assert streq(density(D, evaluate=False)(x), exprd)
|
||
|
|
||
|
|
||
|
def test_Compound_Distribution():
|
||
|
X = Normal('X', 2, 4)
|
||
|
N = NormalDistribution(X, 4)
|
||
|
C = CompoundDistribution(N)
|
||
|
assert C.is_Continuous
|
||
|
assert C.set == Interval(-oo, oo)
|
||
|
assert C.pdf(x, evaluate=True).simplify() == exp(-x**2/64 + x/16 - S(1)/16)/(8*sqrt(pi))
|
||
|
|
||
|
assert not isinstance(CompoundDistribution(NormalDistribution(2, 3)),
|
||
|
CompoundDistribution)
|
||
|
M = MultivariateNormalDistribution([1, 2], [[2, 1], [1, 2]])
|
||
|
raises(NotImplementedError, lambda: CompoundDistribution(M))
|
||
|
|
||
|
X = Beta('X', 2, 4)
|
||
|
B = BernoulliDistribution(X, 1, 0)
|
||
|
C = CompoundDistribution(B)
|
||
|
assert C.is_Finite
|
||
|
assert C.set == {0, 1}
|
||
|
y = symbols('y', negative=False, integer=True)
|
||
|
assert C.pdf(y, evaluate=True) == Piecewise((S(1)/(30*beta(2, 4)), Eq(y, 0)),
|
||
|
(S(1)/(60*beta(2, 4)), Eq(y, 1)), (0, True))
|
||
|
|
||
|
k, t, z = symbols('k t z', positive=True, real=True)
|
||
|
G = Gamma('G', k, t)
|
||
|
X = PoissonDistribution(G)
|
||
|
C = CompoundDistribution(X)
|
||
|
assert C.is_Discrete
|
||
|
assert C.set == S.Naturals0
|
||
|
assert C.pdf(z, evaluate=True).simplify() == t**z*(t + 1)**(-k - z)*gamma(k \
|
||
|
+ z)/(gamma(k)*gamma(z + 1))
|
||
|
|
||
|
|
||
|
def test_compound_pspace():
|
||
|
X = Normal('X', 2, 4)
|
||
|
Y = Normal('Y', 3, 6)
|
||
|
assert not isinstance(Y.pspace, CompoundPSpace)
|
||
|
N = NormalDistribution(1, 2)
|
||
|
D = PoissonDistribution(3)
|
||
|
B = BernoulliDistribution(0.2, 1, 0)
|
||
|
pspace1 = CompoundPSpace('N', N)
|
||
|
pspace2 = CompoundPSpace('D', D)
|
||
|
pspace3 = CompoundPSpace('B', B)
|
||
|
assert not isinstance(pspace1, CompoundPSpace)
|
||
|
assert not isinstance(pspace2, CompoundPSpace)
|
||
|
assert not isinstance(pspace3, CompoundPSpace)
|
||
|
M = MultivariateNormalDistribution([1, 2], [[2, 1], [1, 2]])
|
||
|
raises(ValueError, lambda: CompoundPSpace('M', M))
|
||
|
Y = Normal('Y', X, 6)
|
||
|
assert isinstance(Y.pspace, CompoundPSpace)
|
||
|
assert Y.pspace.distribution == CompoundDistribution(NormalDistribution(X, 6))
|
||
|
assert Y.pspace.domain.set == Interval(-oo, oo)
|