1568 lines
54 KiB
Python
1568 lines
54 KiB
Python
|
from sympy.concrete.summations import Sum
|
||
|
from sympy.core.function import (Lambda, diff, expand_func)
|
||
|
from sympy.core.mul import Mul
|
||
|
from sympy.core import EulerGamma
|
||
|
from sympy.core.numbers import (E as e, I, Rational, pi)
|
||
|
from sympy.core.relational import (Eq, Ne)
|
||
|
from sympy.core.singleton import S
|
||
|
from sympy.core.symbol import (Dummy, Symbol, symbols)
|
||
|
from sympy.functions.combinatorial.factorials import (binomial, factorial)
|
||
|
from sympy.functions.elementary.complexes import (Abs, im, re, sign)
|
||
|
from sympy.functions.elementary.exponential import (exp, log)
|
||
|
from sympy.functions.elementary.hyperbolic import (cosh, sinh)
|
||
|
from sympy.functions.elementary.integers import floor
|
||
|
from sympy.functions.elementary.miscellaneous import sqrt
|
||
|
from sympy.functions.elementary.piecewise import Piecewise
|
||
|
from sympy.functions.elementary.trigonometric import (asin, atan, cos, sin, tan)
|
||
|
from sympy.functions.special.bessel import (besseli, besselj, besselk)
|
||
|
from sympy.functions.special.beta_functions import beta
|
||
|
from sympy.functions.special.error_functions import (erf, erfc, erfi, expint)
|
||
|
from sympy.functions.special.gamma_functions import (gamma, lowergamma, uppergamma)
|
||
|
from sympy.functions.special.hyper import hyper
|
||
|
from sympy.integrals.integrals import Integral
|
||
|
from sympy.logic.boolalg import (And, Or)
|
||
|
from sympy.sets.sets import Interval
|
||
|
from sympy.simplify.simplify import simplify
|
||
|
from sympy.utilities.lambdify import lambdify
|
||
|
from sympy.functions.special.error_functions import erfinv
|
||
|
from sympy.functions.special.hyper import meijerg
|
||
|
from sympy.sets.sets import FiniteSet, Complement, Intersection
|
||
|
from sympy.stats import (P, E, where, density, variance, covariance, skewness, kurtosis, median,
|
||
|
given, pspace, cdf, characteristic_function, moment_generating_function,
|
||
|
ContinuousRV, Arcsin, Benini, Beta, BetaNoncentral, BetaPrime,
|
||
|
Cauchy, Chi, ChiSquared, ChiNoncentral, Dagum, Erlang, ExGaussian,
|
||
|
Exponential, ExponentialPower, FDistribution, FisherZ, Frechet, Gamma,
|
||
|
GammaInverse, Gompertz, Gumbel, Kumaraswamy, Laplace, Levy, Logistic, LogCauchy,
|
||
|
LogLogistic, LogitNormal, LogNormal, Maxwell, Moyal, Nakagami, Normal, GaussianInverse,
|
||
|
Pareto, PowerFunction, QuadraticU, RaisedCosine, Rayleigh, Reciprocal, ShiftedGompertz, StudentT,
|
||
|
Trapezoidal, Triangular, Uniform, UniformSum, VonMises, Weibull, coskewness,
|
||
|
WignerSemicircle, Wald, correlation, moment, cmoment, smoment, quantile,
|
||
|
Lomax, BoundedPareto)
|
||
|
|
||
|
from sympy.stats.crv_types import NormalDistribution, ExponentialDistribution, ContinuousDistributionHandmade
|
||
|
from sympy.stats.joint_rv_types import MultivariateLaplaceDistribution, MultivariateNormalDistribution
|
||
|
from sympy.stats.crv import SingleContinuousPSpace, SingleContinuousDomain
|
||
|
from sympy.stats.compound_rv import CompoundPSpace
|
||
|
from sympy.stats.symbolic_probability import Probability
|
||
|
from sympy.testing.pytest import raises, XFAIL, slow, ignore_warnings
|
||
|
from sympy.core.random import verify_numerically as tn
|
||
|
|
||
|
oo = S.Infinity
|
||
|
|
||
|
x, y, z = map(Symbol, 'xyz')
|
||
|
|
||
|
def test_single_normal():
|
||
|
mu = Symbol('mu', real=True)
|
||
|
sigma = Symbol('sigma', positive=True)
|
||
|
X = Normal('x', 0, 1)
|
||
|
Y = X*sigma + mu
|
||
|
|
||
|
assert E(Y) == mu
|
||
|
assert variance(Y) == sigma**2
|
||
|
pdf = density(Y)
|
||
|
x = Symbol('x', real=True)
|
||
|
assert (pdf(x) ==
|
||
|
2**S.Half*exp(-(x - mu)**2/(2*sigma**2))/(2*pi**S.Half*sigma))
|
||
|
|
||
|
assert P(X**2 < 1) == erf(2**S.Half/2)
|
||
|
ans = quantile(Y)(x)
|
||
|
assert ans == Complement(Intersection(FiniteSet(
|
||
|
sqrt(2)*sigma*(sqrt(2)*mu/(2*sigma)+ erfinv(2*x - 1))),
|
||
|
Interval(-oo, oo)), FiniteSet(mu))
|
||
|
assert E(X, Eq(X, mu)) == mu
|
||
|
|
||
|
assert median(X) == FiniteSet(0)
|
||
|
# issue 8248
|
||
|
assert X.pspace.compute_expectation(1).doit() == 1
|
||
|
|
||
|
|
||
|
def test_conditional_1d():
|
||
|
X = Normal('x', 0, 1)
|
||
|
Y = given(X, X >= 0)
|
||
|
z = Symbol('z')
|
||
|
|
||
|
assert density(Y)(z) == 2 * density(X)(z)
|
||
|
|
||
|
assert Y.pspace.domain.set == Interval(0, oo)
|
||
|
assert E(Y) == sqrt(2) / sqrt(pi)
|
||
|
|
||
|
assert E(X**2) == E(Y**2)
|
||
|
|
||
|
|
||
|
def test_ContinuousDomain():
|
||
|
X = Normal('x', 0, 1)
|
||
|
assert where(X**2 <= 1).set == Interval(-1, 1)
|
||
|
assert where(X**2 <= 1).symbol == X.symbol
|
||
|
assert where(And(X**2 <= 1, X >= 0)).set == Interval(0, 1)
|
||
|
raises(ValueError, lambda: where(sin(X) > 1))
|
||
|
|
||
|
Y = given(X, X >= 0)
|
||
|
|
||
|
assert Y.pspace.domain.set == Interval(0, oo)
|
||
|
|
||
|
|
||
|
def test_multiple_normal():
|
||
|
X, Y = Normal('x', 0, 1), Normal('y', 0, 1)
|
||
|
p = Symbol("p", positive=True)
|
||
|
|
||
|
assert E(X + Y) == 0
|
||
|
assert variance(X + Y) == 2
|
||
|
assert variance(X + X) == 4
|
||
|
assert covariance(X, Y) == 0
|
||
|
assert covariance(2*X + Y, -X) == -2*variance(X)
|
||
|
assert skewness(X) == 0
|
||
|
assert skewness(X + Y) == 0
|
||
|
assert kurtosis(X) == 3
|
||
|
assert kurtosis(X+Y) == 3
|
||
|
assert correlation(X, Y) == 0
|
||
|
assert correlation(X, X + Y) == correlation(X, X - Y)
|
||
|
assert moment(X, 2) == 1
|
||
|
assert cmoment(X, 3) == 0
|
||
|
assert moment(X + Y, 4) == 12
|
||
|
assert cmoment(X, 2) == variance(X)
|
||
|
assert smoment(X*X, 2) == 1
|
||
|
assert smoment(X + Y, 3) == skewness(X + Y)
|
||
|
assert smoment(X + Y, 4) == kurtosis(X + Y)
|
||
|
assert E(X, Eq(X + Y, 0)) == 0
|
||
|
assert variance(X, Eq(X + Y, 0)) == S.Half
|
||
|
assert quantile(X)(p) == sqrt(2)*erfinv(2*p - S.One)
|
||
|
|
||
|
|
||
|
def test_symbolic():
|
||
|
mu1, mu2 = symbols('mu1 mu2', real=True)
|
||
|
s1, s2 = symbols('sigma1 sigma2', positive=True)
|
||
|
rate = Symbol('lambda', positive=True)
|
||
|
X = Normal('x', mu1, s1)
|
||
|
Y = Normal('y', mu2, s2)
|
||
|
Z = Exponential('z', rate)
|
||
|
a, b, c = symbols('a b c', real=True)
|
||
|
|
||
|
assert E(X) == mu1
|
||
|
assert E(X + Y) == mu1 + mu2
|
||
|
assert E(a*X + b) == a*E(X) + b
|
||
|
assert variance(X) == s1**2
|
||
|
assert variance(X + a*Y + b) == variance(X) + a**2*variance(Y)
|
||
|
|
||
|
assert E(Z) == 1/rate
|
||
|
assert E(a*Z + b) == a*E(Z) + b
|
||
|
assert E(X + a*Z + b) == mu1 + a/rate + b
|
||
|
assert median(X) == FiniteSet(mu1)
|
||
|
|
||
|
|
||
|
def test_cdf():
|
||
|
X = Normal('x', 0, 1)
|
||
|
|
||
|
d = cdf(X)
|
||
|
assert P(X < 1) == d(1).rewrite(erfc)
|
||
|
assert d(0) == S.Half
|
||
|
|
||
|
d = cdf(X, X > 0) # given X>0
|
||
|
assert d(0) == 0
|
||
|
|
||
|
Y = Exponential('y', 10)
|
||
|
d = cdf(Y)
|
||
|
assert d(-5) == 0
|
||
|
assert P(Y > 3) == 1 - d(3)
|
||
|
|
||
|
raises(ValueError, lambda: cdf(X + Y))
|
||
|
|
||
|
Z = Exponential('z', 1)
|
||
|
f = cdf(Z)
|
||
|
assert f(z) == Piecewise((1 - exp(-z), z >= 0), (0, True))
|
||
|
|
||
|
|
||
|
def test_characteristic_function():
|
||
|
X = Uniform('x', 0, 1)
|
||
|
|
||
|
cf = characteristic_function(X)
|
||
|
assert cf(1) == -I*(-1 + exp(I))
|
||
|
|
||
|
Y = Normal('y', 1, 1)
|
||
|
cf = characteristic_function(Y)
|
||
|
assert cf(0) == 1
|
||
|
assert cf(1) == exp(I - S.Half)
|
||
|
|
||
|
Z = Exponential('z', 5)
|
||
|
cf = characteristic_function(Z)
|
||
|
assert cf(0) == 1
|
||
|
assert cf(1).expand() == Rational(25, 26) + I*5/26
|
||
|
|
||
|
X = GaussianInverse('x', 1, 1)
|
||
|
cf = characteristic_function(X)
|
||
|
assert cf(0) == 1
|
||
|
assert cf(1) == exp(1 - sqrt(1 - 2*I))
|
||
|
|
||
|
X = ExGaussian('x', 0, 1, 1)
|
||
|
cf = characteristic_function(X)
|
||
|
assert cf(0) == 1
|
||
|
assert cf(1) == (1 + I)*exp(Rational(-1, 2))/2
|
||
|
|
||
|
L = Levy('x', 0, 1)
|
||
|
cf = characteristic_function(L)
|
||
|
assert cf(0) == 1
|
||
|
assert cf(1) == exp(-sqrt(2)*sqrt(-I))
|
||
|
|
||
|
|
||
|
def test_moment_generating_function():
|
||
|
t = symbols('t', positive=True)
|
||
|
|
||
|
# Symbolic tests
|
||
|
a, b, c = symbols('a b c')
|
||
|
|
||
|
mgf = moment_generating_function(Beta('x', a, b))(t)
|
||
|
assert mgf == hyper((a,), (a + b,), t)
|
||
|
|
||
|
mgf = moment_generating_function(Chi('x', a))(t)
|
||
|
assert mgf == sqrt(2)*t*gamma(a/2 + S.Half)*\
|
||
|
hyper((a/2 + S.Half,), (Rational(3, 2),), t**2/2)/gamma(a/2) +\
|
||
|
hyper((a/2,), (S.Half,), t**2/2)
|
||
|
|
||
|
mgf = moment_generating_function(ChiSquared('x', a))(t)
|
||
|
assert mgf == (1 - 2*t)**(-a/2)
|
||
|
|
||
|
mgf = moment_generating_function(Erlang('x', a, b))(t)
|
||
|
assert mgf == (1 - t/b)**(-a)
|
||
|
|
||
|
mgf = moment_generating_function(ExGaussian("x", a, b, c))(t)
|
||
|
assert mgf == exp(a*t + b**2*t**2/2)/(1 - t/c)
|
||
|
|
||
|
mgf = moment_generating_function(Exponential('x', a))(t)
|
||
|
assert mgf == a/(a - t)
|
||
|
|
||
|
mgf = moment_generating_function(Gamma('x', a, b))(t)
|
||
|
assert mgf == (-b*t + 1)**(-a)
|
||
|
|
||
|
mgf = moment_generating_function(Gumbel('x', a, b))(t)
|
||
|
assert mgf == exp(b*t)*gamma(-a*t + 1)
|
||
|
|
||
|
mgf = moment_generating_function(Gompertz('x', a, b))(t)
|
||
|
assert mgf == b*exp(b)*expint(t/a, b)
|
||
|
|
||
|
mgf = moment_generating_function(Laplace('x', a, b))(t)
|
||
|
assert mgf == exp(a*t)/(-b**2*t**2 + 1)
|
||
|
|
||
|
mgf = moment_generating_function(Logistic('x', a, b))(t)
|
||
|
assert mgf == exp(a*t)*beta(-b*t + 1, b*t + 1)
|
||
|
|
||
|
mgf = moment_generating_function(Normal('x', a, b))(t)
|
||
|
assert mgf == exp(a*t + b**2*t**2/2)
|
||
|
|
||
|
mgf = moment_generating_function(Pareto('x', a, b))(t)
|
||
|
assert mgf == b*(-a*t)**b*uppergamma(-b, -a*t)
|
||
|
|
||
|
mgf = moment_generating_function(QuadraticU('x', a, b))(t)
|
||
|
assert str(mgf) == ("(3*(t*(-4*b + (a + b)**2) + 4)*exp(b*t) - "
|
||
|
"3*(t*(a**2 + 2*a*(b - 2) + b**2) + 4)*exp(a*t))/(t**2*(a - b)**3)")
|
||
|
|
||
|
mgf = moment_generating_function(RaisedCosine('x', a, b))(t)
|
||
|
assert mgf == pi**2*exp(a*t)*sinh(b*t)/(b*t*(b**2*t**2 + pi**2))
|
||
|
|
||
|
mgf = moment_generating_function(Rayleigh('x', a))(t)
|
||
|
assert mgf == sqrt(2)*sqrt(pi)*a*t*(erf(sqrt(2)*a*t/2) + 1)\
|
||
|
*exp(a**2*t**2/2)/2 + 1
|
||
|
|
||
|
mgf = moment_generating_function(Triangular('x', a, b, c))(t)
|
||
|
assert str(mgf) == ("(-2*(-a + b)*exp(c*t) + 2*(-a + c)*exp(b*t) + "
|
||
|
"2*(b - c)*exp(a*t))/(t**2*(-a + b)*(-a + c)*(b - c))")
|
||
|
|
||
|
mgf = moment_generating_function(Uniform('x', a, b))(t)
|
||
|
assert mgf == (-exp(a*t) + exp(b*t))/(t*(-a + b))
|
||
|
|
||
|
mgf = moment_generating_function(UniformSum('x', a))(t)
|
||
|
assert mgf == ((exp(t) - 1)/t)**a
|
||
|
|
||
|
mgf = moment_generating_function(WignerSemicircle('x', a))(t)
|
||
|
assert mgf == 2*besseli(1, a*t)/(a*t)
|
||
|
|
||
|
# Numeric tests
|
||
|
|
||
|
mgf = moment_generating_function(Beta('x', 1, 1))(t)
|
||
|
assert mgf.diff(t).subs(t, 1) == hyper((2,), (3,), 1)/2
|
||
|
|
||
|
mgf = moment_generating_function(Chi('x', 1))(t)
|
||
|
assert mgf.diff(t).subs(t, 1) == sqrt(2)*hyper((1,), (Rational(3, 2),), S.Half
|
||
|
)/sqrt(pi) + hyper((Rational(3, 2),), (Rational(3, 2),), S.Half) + 2*sqrt(2)*hyper((2,),
|
||
|
(Rational(5, 2),), S.Half)/(3*sqrt(pi))
|
||
|
|
||
|
mgf = moment_generating_function(ChiSquared('x', 1))(t)
|
||
|
assert mgf.diff(t).subs(t, 1) == I
|
||
|
|
||
|
mgf = moment_generating_function(Erlang('x', 1, 1))(t)
|
||
|
assert mgf.diff(t).subs(t, 0) == 1
|
||
|
|
||
|
mgf = moment_generating_function(ExGaussian("x", 0, 1, 1))(t)
|
||
|
assert mgf.diff(t).subs(t, 2) == -exp(2)
|
||
|
|
||
|
mgf = moment_generating_function(Exponential('x', 1))(t)
|
||
|
assert mgf.diff(t).subs(t, 0) == 1
|
||
|
|
||
|
mgf = moment_generating_function(Gamma('x', 1, 1))(t)
|
||
|
assert mgf.diff(t).subs(t, 0) == 1
|
||
|
|
||
|
mgf = moment_generating_function(Gumbel('x', 1, 1))(t)
|
||
|
assert mgf.diff(t).subs(t, 0) == EulerGamma + 1
|
||
|
|
||
|
mgf = moment_generating_function(Gompertz('x', 1, 1))(t)
|
||
|
assert mgf.diff(t).subs(t, 1) == -e*meijerg(((), (1, 1)),
|
||
|
((0, 0, 0), ()), 1)
|
||
|
|
||
|
mgf = moment_generating_function(Laplace('x', 1, 1))(t)
|
||
|
assert mgf.diff(t).subs(t, 0) == 1
|
||
|
|
||
|
mgf = moment_generating_function(Logistic('x', 1, 1))(t)
|
||
|
assert mgf.diff(t).subs(t, 0) == beta(1, 1)
|
||
|
|
||
|
mgf = moment_generating_function(Normal('x', 0, 1))(t)
|
||
|
assert mgf.diff(t).subs(t, 1) == exp(S.Half)
|
||
|
|
||
|
mgf = moment_generating_function(Pareto('x', 1, 1))(t)
|
||
|
assert mgf.diff(t).subs(t, 0) == expint(1, 0)
|
||
|
|
||
|
mgf = moment_generating_function(QuadraticU('x', 1, 2))(t)
|
||
|
assert mgf.diff(t).subs(t, 1) == -12*e - 3*exp(2)
|
||
|
|
||
|
mgf = moment_generating_function(RaisedCosine('x', 1, 1))(t)
|
||
|
assert mgf.diff(t).subs(t, 1) == -2*e*pi**2*sinh(1)/\
|
||
|
(1 + pi**2)**2 + e*pi**2*cosh(1)/(1 + pi**2)
|
||
|
|
||
|
mgf = moment_generating_function(Rayleigh('x', 1))(t)
|
||
|
assert mgf.diff(t).subs(t, 0) == sqrt(2)*sqrt(pi)/2
|
||
|
|
||
|
mgf = moment_generating_function(Triangular('x', 1, 3, 2))(t)
|
||
|
assert mgf.diff(t).subs(t, 1) == -e + exp(3)
|
||
|
|
||
|
mgf = moment_generating_function(Uniform('x', 0, 1))(t)
|
||
|
assert mgf.diff(t).subs(t, 1) == 1
|
||
|
|
||
|
mgf = moment_generating_function(UniformSum('x', 1))(t)
|
||
|
assert mgf.diff(t).subs(t, 1) == 1
|
||
|
|
||
|
mgf = moment_generating_function(WignerSemicircle('x', 1))(t)
|
||
|
assert mgf.diff(t).subs(t, 1) == -2*besseli(1, 1) + besseli(2, 1) +\
|
||
|
besseli(0, 1)
|
||
|
|
||
|
|
||
|
def test_ContinuousRV():
|
||
|
pdf = sqrt(2)*exp(-x**2/2)/(2*sqrt(pi)) # Normal distribution
|
||
|
# X and Y should be equivalent
|
||
|
X = ContinuousRV(x, pdf, check=True)
|
||
|
Y = Normal('y', 0, 1)
|
||
|
|
||
|
assert variance(X) == variance(Y)
|
||
|
assert P(X > 0) == P(Y > 0)
|
||
|
Z = ContinuousRV(z, exp(-z), set=Interval(0, oo))
|
||
|
assert Z.pspace.domain.set == Interval(0, oo)
|
||
|
assert E(Z) == 1
|
||
|
assert P(Z > 5) == exp(-5)
|
||
|
raises(ValueError, lambda: ContinuousRV(z, exp(-z), set=Interval(0, 10), check=True))
|
||
|
|
||
|
# the correct pdf for Gamma(k, theta) but the integral in `check`
|
||
|
# integrates to something equivalent to 1 and not to 1 exactly
|
||
|
_x, k, theta = symbols("x k theta", positive=True)
|
||
|
pdf = 1/(gamma(k)*theta**k)*_x**(k-1)*exp(-_x/theta)
|
||
|
X = ContinuousRV(_x, pdf, set=Interval(0, oo))
|
||
|
Y = Gamma('y', k, theta)
|
||
|
assert (E(X) - E(Y)).simplify() == 0
|
||
|
assert (variance(X) - variance(Y)).simplify() == 0
|
||
|
|
||
|
|
||
|
def test_arcsin():
|
||
|
|
||
|
a = Symbol("a", real=True)
|
||
|
b = Symbol("b", real=True)
|
||
|
|
||
|
X = Arcsin('x', a, b)
|
||
|
assert density(X)(x) == 1/(pi*sqrt((-x + b)*(x - a)))
|
||
|
assert cdf(X)(x) == Piecewise((0, a > x),
|
||
|
(2*asin(sqrt((-a + x)/(-a + b)))/pi, b >= x),
|
||
|
(1, True))
|
||
|
assert pspace(X).domain.set == Interval(a, b)
|
||
|
|
||
|
def test_benini():
|
||
|
alpha = Symbol("alpha", positive=True)
|
||
|
beta = Symbol("beta", positive=True)
|
||
|
sigma = Symbol("sigma", positive=True)
|
||
|
X = Benini('x', alpha, beta, sigma)
|
||
|
|
||
|
assert density(X)(x) == ((alpha/x + 2*beta*log(x/sigma)/x)
|
||
|
*exp(-alpha*log(x/sigma) - beta*log(x/sigma)**2))
|
||
|
|
||
|
assert pspace(X).domain.set == Interval(sigma, oo)
|
||
|
raises(NotImplementedError, lambda: moment_generating_function(X))
|
||
|
alpha = Symbol("alpha", nonpositive=True)
|
||
|
raises(ValueError, lambda: Benini('x', alpha, beta, sigma))
|
||
|
|
||
|
beta = Symbol("beta", nonpositive=True)
|
||
|
raises(ValueError, lambda: Benini('x', alpha, beta, sigma))
|
||
|
|
||
|
alpha = Symbol("alpha", positive=True)
|
||
|
raises(ValueError, lambda: Benini('x', alpha, beta, sigma))
|
||
|
|
||
|
beta = Symbol("beta", positive=True)
|
||
|
sigma = Symbol("sigma", nonpositive=True)
|
||
|
raises(ValueError, lambda: Benini('x', alpha, beta, sigma))
|
||
|
|
||
|
def test_beta():
|
||
|
a, b = symbols('alpha beta', positive=True)
|
||
|
B = Beta('x', a, b)
|
||
|
|
||
|
assert pspace(B).domain.set == Interval(0, 1)
|
||
|
assert characteristic_function(B)(x) == hyper((a,), (a + b,), I*x)
|
||
|
assert density(B)(x) == x**(a - 1)*(1 - x)**(b - 1)/beta(a, b)
|
||
|
|
||
|
assert simplify(E(B)) == a / (a + b)
|
||
|
assert simplify(variance(B)) == a*b / (a**3 + 3*a**2*b + a**2 + 3*a*b**2 + 2*a*b + b**3 + b**2)
|
||
|
|
||
|
# Full symbolic solution is too much, test with numeric version
|
||
|
a, b = 1, 2
|
||
|
B = Beta('x', a, b)
|
||
|
assert expand_func(E(B)) == a / S(a + b)
|
||
|
assert expand_func(variance(B)) == (a*b) / S((a + b)**2 * (a + b + 1))
|
||
|
assert median(B) == FiniteSet(1 - 1/sqrt(2))
|
||
|
|
||
|
def test_beta_noncentral():
|
||
|
a, b = symbols('a b', positive=True)
|
||
|
c = Symbol('c', nonnegative=True)
|
||
|
_k = Dummy('k')
|
||
|
|
||
|
X = BetaNoncentral('x', a, b, c)
|
||
|
|
||
|
assert pspace(X).domain.set == Interval(0, 1)
|
||
|
|
||
|
dens = density(X)
|
||
|
z = Symbol('z')
|
||
|
|
||
|
res = Sum( z**(_k + a - 1)*(c/2)**_k*(1 - z)**(b - 1)*exp(-c/2)/
|
||
|
(beta(_k + a, b)*factorial(_k)), (_k, 0, oo))
|
||
|
assert dens(z).dummy_eq(res)
|
||
|
|
||
|
# BetaCentral should not raise if the assumptions
|
||
|
# on the symbols can not be determined
|
||
|
a, b, c = symbols('a b c')
|
||
|
assert BetaNoncentral('x', a, b, c)
|
||
|
|
||
|
a = Symbol('a', positive=False, real=True)
|
||
|
raises(ValueError, lambda: BetaNoncentral('x', a, b, c))
|
||
|
|
||
|
a = Symbol('a', positive=True)
|
||
|
b = Symbol('b', positive=False, real=True)
|
||
|
raises(ValueError, lambda: BetaNoncentral('x', a, b, c))
|
||
|
|
||
|
a = Symbol('a', positive=True)
|
||
|
b = Symbol('b', positive=True)
|
||
|
c = Symbol('c', nonnegative=False, real=True)
|
||
|
raises(ValueError, lambda: BetaNoncentral('x', a, b, c))
|
||
|
|
||
|
def test_betaprime():
|
||
|
alpha = Symbol("alpha", positive=True)
|
||
|
|
||
|
betap = Symbol("beta", positive=True)
|
||
|
|
||
|
X = BetaPrime('x', alpha, betap)
|
||
|
assert density(X)(x) == x**(alpha - 1)*(x + 1)**(-alpha - betap)/beta(alpha, betap)
|
||
|
|
||
|
alpha = Symbol("alpha", nonpositive=True)
|
||
|
raises(ValueError, lambda: BetaPrime('x', alpha, betap))
|
||
|
|
||
|
alpha = Symbol("alpha", positive=True)
|
||
|
betap = Symbol("beta", nonpositive=True)
|
||
|
raises(ValueError, lambda: BetaPrime('x', alpha, betap))
|
||
|
X = BetaPrime('x', 1, 1)
|
||
|
assert median(X) == FiniteSet(1)
|
||
|
|
||
|
|
||
|
def test_BoundedPareto():
|
||
|
L, H = symbols('L, H', negative=True)
|
||
|
raises(ValueError, lambda: BoundedPareto('X', 1, L, H))
|
||
|
L, H = symbols('L, H', real=False)
|
||
|
raises(ValueError, lambda: BoundedPareto('X', 1, L, H))
|
||
|
L, H = symbols('L, H', positive=True)
|
||
|
raises(ValueError, lambda: BoundedPareto('X', -1, L, H))
|
||
|
|
||
|
X = BoundedPareto('X', 2, L, H)
|
||
|
assert X.pspace.domain.set == Interval(L, H)
|
||
|
assert density(X)(x) == 2*L**2/(x**3*(1 - L**2/H**2))
|
||
|
assert cdf(X)(x) == Piecewise((-H**2*L**2/(x**2*(H**2 - L**2)) \
|
||
|
+ H**2/(H**2 - L**2), L <= x), (0, True))
|
||
|
assert E(X).simplify() == 2*H*L/(H + L)
|
||
|
X = BoundedPareto('X', 1, 2, 4)
|
||
|
assert E(X).simplify() == log(16)
|
||
|
assert median(X) == FiniteSet(Rational(8, 3))
|
||
|
assert variance(X).simplify() == 8 - 16*log(2)**2
|
||
|
|
||
|
|
||
|
def test_cauchy():
|
||
|
x0 = Symbol("x0", real=True)
|
||
|
gamma = Symbol("gamma", positive=True)
|
||
|
p = Symbol("p", positive=True)
|
||
|
|
||
|
X = Cauchy('x', x0, gamma)
|
||
|
# Tests the characteristic function
|
||
|
assert characteristic_function(X)(x) == exp(-gamma*Abs(x) + I*x*x0)
|
||
|
raises(NotImplementedError, lambda: moment_generating_function(X))
|
||
|
assert density(X)(x) == 1/(pi*gamma*(1 + (x - x0)**2/gamma**2))
|
||
|
assert diff(cdf(X)(x), x) == density(X)(x)
|
||
|
assert quantile(X)(p) == gamma*tan(pi*(p - S.Half)) + x0
|
||
|
|
||
|
x1 = Symbol("x1", real=False)
|
||
|
raises(ValueError, lambda: Cauchy('x', x1, gamma))
|
||
|
gamma = Symbol("gamma", nonpositive=True)
|
||
|
raises(ValueError, lambda: Cauchy('x', x0, gamma))
|
||
|
assert median(X) == FiniteSet(x0)
|
||
|
|
||
|
def test_chi():
|
||
|
from sympy.core.numbers import I
|
||
|
k = Symbol("k", integer=True)
|
||
|
|
||
|
X = Chi('x', k)
|
||
|
assert density(X)(x) == 2**(-k/2 + 1)*x**(k - 1)*exp(-x**2/2)/gamma(k/2)
|
||
|
|
||
|
# Tests the characteristic function
|
||
|
assert characteristic_function(X)(x) == sqrt(2)*I*x*gamma(k/2 + S(1)/2)*hyper((k/2 + S(1)/2,),
|
||
|
(S(3)/2,), -x**2/2)/gamma(k/2) + hyper((k/2,), (S(1)/2,), -x**2/2)
|
||
|
|
||
|
# Tests the moment generating function
|
||
|
assert moment_generating_function(X)(x) == sqrt(2)*x*gamma(k/2 + S(1)/2)*hyper((k/2 + S(1)/2,),
|
||
|
(S(3)/2,), x**2/2)/gamma(k/2) + hyper((k/2,), (S(1)/2,), x**2/2)
|
||
|
|
||
|
k = Symbol("k", integer=True, positive=False)
|
||
|
raises(ValueError, lambda: Chi('x', k))
|
||
|
|
||
|
k = Symbol("k", integer=False, positive=True)
|
||
|
raises(ValueError, lambda: Chi('x', k))
|
||
|
|
||
|
def test_chi_noncentral():
|
||
|
k = Symbol("k", integer=True)
|
||
|
l = Symbol("l")
|
||
|
|
||
|
X = ChiNoncentral("x", k, l)
|
||
|
assert density(X)(x) == (x**k*l*(x*l)**(-k/2)*
|
||
|
exp(-x**2/2 - l**2/2)*besseli(k/2 - 1, x*l))
|
||
|
|
||
|
k = Symbol("k", integer=True, positive=False)
|
||
|
raises(ValueError, lambda: ChiNoncentral('x', k, l))
|
||
|
|
||
|
k = Symbol("k", integer=True, positive=True)
|
||
|
l = Symbol("l", nonpositive=True)
|
||
|
raises(ValueError, lambda: ChiNoncentral('x', k, l))
|
||
|
|
||
|
k = Symbol("k", integer=False)
|
||
|
l = Symbol("l", positive=True)
|
||
|
raises(ValueError, lambda: ChiNoncentral('x', k, l))
|
||
|
|
||
|
|
||
|
def test_chi_squared():
|
||
|
k = Symbol("k", integer=True)
|
||
|
X = ChiSquared('x', k)
|
||
|
|
||
|
# Tests the characteristic function
|
||
|
assert characteristic_function(X)(x) == ((-2*I*x + 1)**(-k/2))
|
||
|
|
||
|
assert density(X)(x) == 2**(-k/2)*x**(k/2 - 1)*exp(-x/2)/gamma(k/2)
|
||
|
assert cdf(X)(x) == Piecewise((lowergamma(k/2, x/2)/gamma(k/2), x >= 0), (0, True))
|
||
|
assert E(X) == k
|
||
|
assert variance(X) == 2*k
|
||
|
|
||
|
X = ChiSquared('x', 15)
|
||
|
assert cdf(X)(3) == -14873*sqrt(6)*exp(Rational(-3, 2))/(5005*sqrt(pi)) + erf(sqrt(6)/2)
|
||
|
|
||
|
k = Symbol("k", integer=True, positive=False)
|
||
|
raises(ValueError, lambda: ChiSquared('x', k))
|
||
|
|
||
|
k = Symbol("k", integer=False, positive=True)
|
||
|
raises(ValueError, lambda: ChiSquared('x', k))
|
||
|
|
||
|
|
||
|
def test_dagum():
|
||
|
p = Symbol("p", positive=True)
|
||
|
b = Symbol("b", positive=True)
|
||
|
a = Symbol("a", positive=True)
|
||
|
|
||
|
X = Dagum('x', p, a, b)
|
||
|
assert density(X)(x) == a*p*(x/b)**(a*p)*((x/b)**a + 1)**(-p - 1)/x
|
||
|
assert cdf(X)(x) == Piecewise(((1 + (x/b)**(-a))**(-p), x >= 0),
|
||
|
(0, True))
|
||
|
|
||
|
p = Symbol("p", nonpositive=True)
|
||
|
raises(ValueError, lambda: Dagum('x', p, a, b))
|
||
|
|
||
|
p = Symbol("p", positive=True)
|
||
|
b = Symbol("b", nonpositive=True)
|
||
|
raises(ValueError, lambda: Dagum('x', p, a, b))
|
||
|
|
||
|
b = Symbol("b", positive=True)
|
||
|
a = Symbol("a", nonpositive=True)
|
||
|
raises(ValueError, lambda: Dagum('x', p, a, b))
|
||
|
X = Dagum('x', 1, 1, 1)
|
||
|
assert median(X) == FiniteSet(1)
|
||
|
|
||
|
def test_erlang():
|
||
|
k = Symbol("k", integer=True, positive=True)
|
||
|
l = Symbol("l", positive=True)
|
||
|
|
||
|
X = Erlang("x", k, l)
|
||
|
assert density(X)(x) == x**(k - 1)*l**k*exp(-x*l)/gamma(k)
|
||
|
assert cdf(X)(x) == Piecewise((lowergamma(k, l*x)/gamma(k), x > 0),
|
||
|
(0, True))
|
||
|
|
||
|
|
||
|
def test_exgaussian():
|
||
|
m, z = symbols("m, z")
|
||
|
s, l = symbols("s, l", positive=True)
|
||
|
X = ExGaussian("x", m, s, l)
|
||
|
|
||
|
assert density(X)(z) == l*exp(l*(l*s**2 + 2*m - 2*z)/2) *\
|
||
|
erfc(sqrt(2)*(l*s**2 + m - z)/(2*s))/2
|
||
|
|
||
|
# Note: actual_output simplifies to expected_output.
|
||
|
# Ideally cdf(X)(z) would return expected_output
|
||
|
# expected_output = (erf(sqrt(2)*(l*s**2 + m - z)/(2*s)) - 1)*exp(l*(l*s**2 + 2*m - 2*z)/2)/2 - erf(sqrt(2)*(m - z)/(2*s))/2 + S.Half
|
||
|
u = l*(z - m)
|
||
|
v = l*s
|
||
|
GaussianCDF1 = cdf(Normal('x', 0, v))(u)
|
||
|
GaussianCDF2 = cdf(Normal('x', v**2, v))(u)
|
||
|
actual_output = GaussianCDF1 - exp(-u + (v**2/2) + log(GaussianCDF2))
|
||
|
assert cdf(X)(z) == actual_output
|
||
|
# assert simplify(actual_output) == expected_output
|
||
|
|
||
|
assert variance(X).expand() == s**2 + l**(-2)
|
||
|
|
||
|
assert skewness(X).expand() == 2/(l**3*s**2*sqrt(s**2 + l**(-2)) + l *
|
||
|
sqrt(s**2 + l**(-2)))
|
||
|
|
||
|
|
||
|
@slow
|
||
|
def test_exponential():
|
||
|
rate = Symbol('lambda', positive=True)
|
||
|
X = Exponential('x', rate)
|
||
|
p = Symbol("p", positive=True, real=True)
|
||
|
|
||
|
assert E(X) == 1/rate
|
||
|
assert variance(X) == 1/rate**2
|
||
|
assert skewness(X) == 2
|
||
|
assert skewness(X) == smoment(X, 3)
|
||
|
assert kurtosis(X) == 9
|
||
|
assert kurtosis(X) == smoment(X, 4)
|
||
|
assert smoment(2*X, 4) == smoment(X, 4)
|
||
|
assert moment(X, 3) == 3*2*1/rate**3
|
||
|
assert P(X > 0) is S.One
|
||
|
assert P(X > 1) == exp(-rate)
|
||
|
assert P(X > 10) == exp(-10*rate)
|
||
|
assert quantile(X)(p) == -log(1-p)/rate
|
||
|
|
||
|
assert where(X <= 1).set == Interval(0, 1)
|
||
|
Y = Exponential('y', 1)
|
||
|
assert median(Y) == FiniteSet(log(2))
|
||
|
#Test issue 9970
|
||
|
z = Dummy('z')
|
||
|
assert P(X > z) == exp(-z*rate)
|
||
|
assert P(X < z) == 0
|
||
|
#Test issue 10076 (Distribution with interval(0,oo))
|
||
|
x = Symbol('x')
|
||
|
_z = Dummy('_z')
|
||
|
b = SingleContinuousPSpace(x, ExponentialDistribution(2))
|
||
|
|
||
|
with ignore_warnings(UserWarning): ### TODO: Restore tests once warnings are removed
|
||
|
expected1 = Integral(2*exp(-2*_z), (_z, 3, oo))
|
||
|
assert b.probability(x > 3, evaluate=False).rewrite(Integral).dummy_eq(expected1)
|
||
|
|
||
|
expected2 = Integral(2*exp(-2*_z), (_z, 0, 4))
|
||
|
assert b.probability(x < 4, evaluate=False).rewrite(Integral).dummy_eq(expected2)
|
||
|
Y = Exponential('y', 2*rate)
|
||
|
assert coskewness(X, X, X) == skewness(X)
|
||
|
assert coskewness(X, Y + rate*X, Y + 2*rate*X) == \
|
||
|
4/(sqrt(1 + 1/(4*rate**2))*sqrt(4 + 1/(4*rate**2)))
|
||
|
assert coskewness(X + 2*Y, Y + X, Y + 2*X, X > 3) == \
|
||
|
sqrt(170)*Rational(9, 85)
|
||
|
|
||
|
def test_exponential_power():
|
||
|
mu = Symbol('mu')
|
||
|
z = Symbol('z')
|
||
|
alpha = Symbol('alpha', positive=True)
|
||
|
beta = Symbol('beta', positive=True)
|
||
|
|
||
|
X = ExponentialPower('x', mu, alpha, beta)
|
||
|
|
||
|
assert density(X)(z) == beta*exp(-(Abs(mu - z)/alpha)
|
||
|
** beta)/(2*alpha*gamma(1/beta))
|
||
|
assert cdf(X)(z) == S.Half + lowergamma(1/beta,
|
||
|
(Abs(mu - z)/alpha)**beta)*sign(-mu + z)/\
|
||
|
(2*gamma(1/beta))
|
||
|
|
||
|
|
||
|
def test_f_distribution():
|
||
|
d1 = Symbol("d1", positive=True)
|
||
|
d2 = Symbol("d2", positive=True)
|
||
|
|
||
|
X = FDistribution("x", d1, d2)
|
||
|
|
||
|
assert density(X)(x) == (d2**(d2/2)*sqrt((d1*x)**d1*(d1*x + d2)**(-d1 - d2))
|
||
|
/(x*beta(d1/2, d2/2)))
|
||
|
|
||
|
raises(NotImplementedError, lambda: moment_generating_function(X))
|
||
|
d1 = Symbol("d1", nonpositive=True)
|
||
|
raises(ValueError, lambda: FDistribution('x', d1, d1))
|
||
|
|
||
|
d1 = Symbol("d1", positive=True, integer=False)
|
||
|
raises(ValueError, lambda: FDistribution('x', d1, d1))
|
||
|
|
||
|
d1 = Symbol("d1", positive=True)
|
||
|
d2 = Symbol("d2", nonpositive=True)
|
||
|
raises(ValueError, lambda: FDistribution('x', d1, d2))
|
||
|
|
||
|
d2 = Symbol("d2", positive=True, integer=False)
|
||
|
raises(ValueError, lambda: FDistribution('x', d1, d2))
|
||
|
|
||
|
|
||
|
def test_fisher_z():
|
||
|
d1 = Symbol("d1", positive=True)
|
||
|
d2 = Symbol("d2", positive=True)
|
||
|
|
||
|
X = FisherZ("x", d1, d2)
|
||
|
assert density(X)(x) == (2*d1**(d1/2)*d2**(d2/2)*(d1*exp(2*x) + d2)
|
||
|
**(-d1/2 - d2/2)*exp(d1*x)/beta(d1/2, d2/2))
|
||
|
|
||
|
def test_frechet():
|
||
|
a = Symbol("a", positive=True)
|
||
|
s = Symbol("s", positive=True)
|
||
|
m = Symbol("m", real=True)
|
||
|
|
||
|
X = Frechet("x", a, s=s, m=m)
|
||
|
assert density(X)(x) == a*((x - m)/s)**(-a - 1)*exp(-((x - m)/s)**(-a))/s
|
||
|
assert cdf(X)(x) == Piecewise((exp(-((-m + x)/s)**(-a)), m <= x), (0, True))
|
||
|
|
||
|
@slow
|
||
|
def test_gamma():
|
||
|
k = Symbol("k", positive=True)
|
||
|
theta = Symbol("theta", positive=True)
|
||
|
|
||
|
X = Gamma('x', k, theta)
|
||
|
|
||
|
# Tests characteristic function
|
||
|
assert characteristic_function(X)(x) == ((-I*theta*x + 1)**(-k))
|
||
|
|
||
|
assert density(X)(x) == x**(k - 1)*theta**(-k)*exp(-x/theta)/gamma(k)
|
||
|
assert cdf(X, meijerg=True)(z) == Piecewise(
|
||
|
(-k*lowergamma(k, 0)/gamma(k + 1) +
|
||
|
k*lowergamma(k, z/theta)/gamma(k + 1), z >= 0),
|
||
|
(0, True))
|
||
|
|
||
|
# assert simplify(variance(X)) == k*theta**2 # handled numerically below
|
||
|
assert E(X) == moment(X, 1)
|
||
|
|
||
|
k, theta = symbols('k theta', positive=True)
|
||
|
X = Gamma('x', k, theta)
|
||
|
assert E(X) == k*theta
|
||
|
assert variance(X) == k*theta**2
|
||
|
assert skewness(X).expand() == 2/sqrt(k)
|
||
|
assert kurtosis(X).expand() == 3 + 6/k
|
||
|
|
||
|
Y = Gamma('y', 2*k, 3*theta)
|
||
|
assert coskewness(X, theta*X + Y, k*X + Y).simplify() == \
|
||
|
2*531441**(-k)*sqrt(k)*theta*(3*3**(12*k) - 2*531441**k) \
|
||
|
/(sqrt(k**2 + 18)*sqrt(theta**2 + 18))
|
||
|
|
||
|
def test_gamma_inverse():
|
||
|
a = Symbol("a", positive=True)
|
||
|
b = Symbol("b", positive=True)
|
||
|
X = GammaInverse("x", a, b)
|
||
|
assert density(X)(x) == x**(-a - 1)*b**a*exp(-b/x)/gamma(a)
|
||
|
assert cdf(X)(x) == Piecewise((uppergamma(a, b/x)/gamma(a), x > 0), (0, True))
|
||
|
assert characteristic_function(X)(x) == 2 * (-I*b*x)**(a/2) \
|
||
|
* besselk(a, 2*sqrt(b)*sqrt(-I*x))/gamma(a)
|
||
|
raises(NotImplementedError, lambda: moment_generating_function(X))
|
||
|
|
||
|
def test_gompertz():
|
||
|
b = Symbol("b", positive=True)
|
||
|
eta = Symbol("eta", positive=True)
|
||
|
|
||
|
X = Gompertz("x", b, eta)
|
||
|
|
||
|
assert density(X)(x) == b*eta*exp(eta)*exp(b*x)*exp(-eta*exp(b*x))
|
||
|
assert cdf(X)(x) == 1 - exp(eta)*exp(-eta*exp(b*x))
|
||
|
assert diff(cdf(X)(x), x) == density(X)(x)
|
||
|
|
||
|
|
||
|
def test_gumbel():
|
||
|
beta = Symbol("beta", positive=True)
|
||
|
mu = Symbol("mu")
|
||
|
x = Symbol("x")
|
||
|
y = Symbol("y")
|
||
|
X = Gumbel("x", beta, mu)
|
||
|
Y = Gumbel("y", beta, mu, minimum=True)
|
||
|
assert density(X)(x).expand() == \
|
||
|
exp(mu/beta)*exp(-x/beta)*exp(-exp(mu/beta)*exp(-x/beta))/beta
|
||
|
assert density(Y)(y).expand() == \
|
||
|
exp(-mu/beta)*exp(y/beta)*exp(-exp(-mu/beta)*exp(y/beta))/beta
|
||
|
assert cdf(X)(x).expand() == \
|
||
|
exp(-exp(mu/beta)*exp(-x/beta))
|
||
|
assert characteristic_function(X)(x) == exp(I*mu*x)*gamma(-I*beta*x + 1)
|
||
|
|
||
|
def test_kumaraswamy():
|
||
|
a = Symbol("a", positive=True)
|
||
|
b = Symbol("b", positive=True)
|
||
|
|
||
|
X = Kumaraswamy("x", a, b)
|
||
|
assert density(X)(x) == x**(a - 1)*a*b*(-x**a + 1)**(b - 1)
|
||
|
assert cdf(X)(x) == Piecewise((0, x < 0),
|
||
|
(-(-x**a + 1)**b + 1, x <= 1),
|
||
|
(1, True))
|
||
|
|
||
|
|
||
|
def test_laplace():
|
||
|
mu = Symbol("mu")
|
||
|
b = Symbol("b", positive=True)
|
||
|
|
||
|
X = Laplace('x', mu, b)
|
||
|
|
||
|
#Tests characteristic_function
|
||
|
assert characteristic_function(X)(x) == (exp(I*mu*x)/(b**2*x**2 + 1))
|
||
|
|
||
|
assert density(X)(x) == exp(-Abs(x - mu)/b)/(2*b)
|
||
|
assert cdf(X)(x) == Piecewise((exp((-mu + x)/b)/2, mu > x),
|
||
|
(-exp((mu - x)/b)/2 + 1, True))
|
||
|
X = Laplace('x', [1, 2], [[1, 0], [0, 1]])
|
||
|
assert isinstance(pspace(X).distribution, MultivariateLaplaceDistribution)
|
||
|
|
||
|
def test_levy():
|
||
|
mu = Symbol("mu", real=True)
|
||
|
c = Symbol("c", positive=True)
|
||
|
|
||
|
X = Levy('x', mu, c)
|
||
|
assert X.pspace.domain.set == Interval(mu, oo)
|
||
|
assert density(X)(x) == sqrt(c/(2*pi))*exp(-c/(2*(x - mu)))/((x - mu)**(S.One + S.Half))
|
||
|
assert cdf(X)(x) == erfc(sqrt(c/(2*(x - mu))))
|
||
|
|
||
|
raises(NotImplementedError, lambda: moment_generating_function(X))
|
||
|
mu = Symbol("mu", real=False)
|
||
|
raises(ValueError, lambda: Levy('x',mu,c))
|
||
|
|
||
|
c = Symbol("c", nonpositive=True)
|
||
|
raises(ValueError, lambda: Levy('x',mu,c))
|
||
|
|
||
|
mu = Symbol("mu", real=True)
|
||
|
raises(ValueError, lambda: Levy('x',mu,c))
|
||
|
|
||
|
def test_logcauchy():
|
||
|
mu = Symbol("mu", positive=True)
|
||
|
sigma = Symbol("sigma", positive=True)
|
||
|
|
||
|
X = LogCauchy("x", mu, sigma)
|
||
|
|
||
|
assert density(X)(x) == sigma/(x*pi*(sigma**2 + (-mu + log(x))**2))
|
||
|
assert cdf(X)(x) == atan((log(x) - mu)/sigma)/pi + S.Half
|
||
|
|
||
|
|
||
|
def test_logistic():
|
||
|
mu = Symbol("mu", real=True)
|
||
|
s = Symbol("s", positive=True)
|
||
|
p = Symbol("p", positive=True)
|
||
|
|
||
|
X = Logistic('x', mu, s)
|
||
|
|
||
|
#Tests characteristics_function
|
||
|
assert characteristic_function(X)(x) == \
|
||
|
(Piecewise((pi*s*x*exp(I*mu*x)/sinh(pi*s*x), Ne(x, 0)), (1, True)))
|
||
|
|
||
|
assert density(X)(x) == exp((-x + mu)/s)/(s*(exp((-x + mu)/s) + 1)**2)
|
||
|
assert cdf(X)(x) == 1/(exp((mu - x)/s) + 1)
|
||
|
assert quantile(X)(p) == mu - s*log(-S.One + 1/p)
|
||
|
|
||
|
def test_loglogistic():
|
||
|
a, b = symbols('a b')
|
||
|
assert LogLogistic('x', a, b)
|
||
|
|
||
|
a = Symbol('a', negative=True)
|
||
|
b = Symbol('b', positive=True)
|
||
|
raises(ValueError, lambda: LogLogistic('x', a, b))
|
||
|
|
||
|
a = Symbol('a', positive=True)
|
||
|
b = Symbol('b', negative=True)
|
||
|
raises(ValueError, lambda: LogLogistic('x', a, b))
|
||
|
|
||
|
a, b, z, p = symbols('a b z p', positive=True)
|
||
|
X = LogLogistic('x', a, b)
|
||
|
assert density(X)(z) == b*(z/a)**(b - 1)/(a*((z/a)**b + 1)**2)
|
||
|
assert cdf(X)(z) == 1/(1 + (z/a)**(-b))
|
||
|
assert quantile(X)(p) == a*(p/(1 - p))**(1/b)
|
||
|
|
||
|
# Expectation
|
||
|
assert E(X) == Piecewise((S.NaN, b <= 1), (pi*a/(b*sin(pi/b)), True))
|
||
|
b = symbols('b', prime=True) # b > 1
|
||
|
X = LogLogistic('x', a, b)
|
||
|
assert E(X) == pi*a/(b*sin(pi/b))
|
||
|
X = LogLogistic('x', 1, 2)
|
||
|
assert median(X) == FiniteSet(1)
|
||
|
|
||
|
def test_logitnormal():
|
||
|
mu = Symbol('mu', real=True)
|
||
|
s = Symbol('s', positive=True)
|
||
|
X = LogitNormal('x', mu, s)
|
||
|
x = Symbol('x')
|
||
|
|
||
|
assert density(X)(x) == sqrt(2)*exp(-(-mu + log(x/(1 - x)))**2/(2*s**2))/(2*sqrt(pi)*s*x*(1 - x))
|
||
|
assert cdf(X)(x) == erf(sqrt(2)*(-mu + log(x/(1 - x)))/(2*s))/2 + S(1)/2
|
||
|
|
||
|
def test_lognormal():
|
||
|
mean = Symbol('mu', real=True)
|
||
|
std = Symbol('sigma', positive=True)
|
||
|
X = LogNormal('x', mean, std)
|
||
|
# The sympy integrator can't do this too well
|
||
|
#assert E(X) == exp(mean+std**2/2)
|
||
|
#assert variance(X) == (exp(std**2)-1) * exp(2*mean + std**2)
|
||
|
|
||
|
# The sympy integrator can't do this too well
|
||
|
#assert E(X) ==
|
||
|
raises(NotImplementedError, lambda: moment_generating_function(X))
|
||
|
mu = Symbol("mu", real=True)
|
||
|
sigma = Symbol("sigma", positive=True)
|
||
|
|
||
|
X = LogNormal('x', mu, sigma)
|
||
|
assert density(X)(x) == (sqrt(2)*exp(-(-mu + log(x))**2
|
||
|
/(2*sigma**2))/(2*x*sqrt(pi)*sigma))
|
||
|
# Tests cdf
|
||
|
assert cdf(X)(x) == Piecewise(
|
||
|
(erf(sqrt(2)*(-mu + log(x))/(2*sigma))/2
|
||
|
+ S(1)/2, x > 0), (0, True))
|
||
|
|
||
|
X = LogNormal('x', 0, 1) # Mean 0, standard deviation 1
|
||
|
assert density(X)(x) == sqrt(2)*exp(-log(x)**2/2)/(2*x*sqrt(pi))
|
||
|
|
||
|
|
||
|
def test_Lomax():
|
||
|
a, l = symbols('a, l', negative=True)
|
||
|
raises(ValueError, lambda: Lomax('X', a, l))
|
||
|
a, l = symbols('a, l', real=False)
|
||
|
raises(ValueError, lambda: Lomax('X', a, l))
|
||
|
|
||
|
a, l = symbols('a, l', positive=True)
|
||
|
X = Lomax('X', a, l)
|
||
|
assert X.pspace.domain.set == Interval(0, oo)
|
||
|
assert density(X)(x) == a*(1 + x/l)**(-a - 1)/l
|
||
|
assert cdf(X)(x) == Piecewise((1 - (1 + x/l)**(-a), x >= 0), (0, True))
|
||
|
a = 3
|
||
|
X = Lomax('X', a, l)
|
||
|
assert E(X) == l/2
|
||
|
assert median(X) == FiniteSet(l*(-1 + 2**Rational(1, 3)))
|
||
|
assert variance(X) == 3*l**2/4
|
||
|
|
||
|
|
||
|
def test_maxwell():
|
||
|
a = Symbol("a", positive=True)
|
||
|
|
||
|
X = Maxwell('x', a)
|
||
|
|
||
|
assert density(X)(x) == (sqrt(2)*x**2*exp(-x**2/(2*a**2))/
|
||
|
(sqrt(pi)*a**3))
|
||
|
assert E(X) == 2*sqrt(2)*a/sqrt(pi)
|
||
|
assert variance(X) == -8*a**2/pi + 3*a**2
|
||
|
assert cdf(X)(x) == erf(sqrt(2)*x/(2*a)) - sqrt(2)*x*exp(-x**2/(2*a**2))/(sqrt(pi)*a)
|
||
|
assert diff(cdf(X)(x), x) == density(X)(x)
|
||
|
|
||
|
|
||
|
@slow
|
||
|
def test_Moyal():
|
||
|
mu = Symbol('mu',real=False)
|
||
|
sigma = Symbol('sigma', positive=True)
|
||
|
raises(ValueError, lambda: Moyal('M',mu, sigma))
|
||
|
|
||
|
mu = Symbol('mu', real=True)
|
||
|
sigma = Symbol('sigma', negative=True)
|
||
|
raises(ValueError, lambda: Moyal('M',mu, sigma))
|
||
|
|
||
|
sigma = Symbol('sigma', positive=True)
|
||
|
M = Moyal('M', mu, sigma)
|
||
|
assert density(M)(z) == sqrt(2)*exp(-exp((mu - z)/sigma)/2
|
||
|
- (-mu + z)/(2*sigma))/(2*sqrt(pi)*sigma)
|
||
|
assert cdf(M)(z).simplify() == 1 - erf(sqrt(2)*exp((mu - z)/(2*sigma))/2)
|
||
|
assert characteristic_function(M)(z) == 2**(-I*sigma*z)*exp(I*mu*z) \
|
||
|
*gamma(-I*sigma*z + Rational(1, 2))/sqrt(pi)
|
||
|
assert E(M) == mu + EulerGamma*sigma + sigma*log(2)
|
||
|
assert moment_generating_function(M)(z) == 2**(-sigma*z)*exp(mu*z) \
|
||
|
*gamma(-sigma*z + Rational(1, 2))/sqrt(pi)
|
||
|
|
||
|
|
||
|
def test_nakagami():
|
||
|
mu = Symbol("mu", positive=True)
|
||
|
omega = Symbol("omega", positive=True)
|
||
|
|
||
|
X = Nakagami('x', mu, omega)
|
||
|
assert density(X)(x) == (2*x**(2*mu - 1)*mu**mu*omega**(-mu)
|
||
|
*exp(-x**2*mu/omega)/gamma(mu))
|
||
|
assert simplify(E(X)) == (sqrt(mu)*sqrt(omega)
|
||
|
*gamma(mu + S.Half)/gamma(mu + 1))
|
||
|
assert simplify(variance(X)) == (
|
||
|
omega - omega*gamma(mu + S.Half)**2/(gamma(mu)*gamma(mu + 1)))
|
||
|
assert cdf(X)(x) == Piecewise(
|
||
|
(lowergamma(mu, mu*x**2/omega)/gamma(mu), x > 0),
|
||
|
(0, True))
|
||
|
X = Nakagami('x', 1, 1)
|
||
|
assert median(X) == FiniteSet(sqrt(log(2)))
|
||
|
|
||
|
def test_gaussian_inverse():
|
||
|
# test for symbolic parameters
|
||
|
a, b = symbols('a b')
|
||
|
assert GaussianInverse('x', a, b)
|
||
|
|
||
|
# Inverse Gaussian distribution is also known as Wald distribution
|
||
|
# `GaussianInverse` can also be referred by the name `Wald`
|
||
|
a, b, z = symbols('a b z')
|
||
|
X = Wald('x', a, b)
|
||
|
assert density(X)(z) == sqrt(2)*sqrt(b/z**3)*exp(-b*(-a + z)**2/(2*a**2*z))/(2*sqrt(pi))
|
||
|
|
||
|
a, b = symbols('a b', positive=True)
|
||
|
z = Symbol('z', positive=True)
|
||
|
|
||
|
X = GaussianInverse('x', a, b)
|
||
|
assert density(X)(z) == sqrt(2)*sqrt(b)*sqrt(z**(-3))*exp(-b*(-a + z)**2/(2*a**2*z))/(2*sqrt(pi))
|
||
|
assert E(X) == a
|
||
|
assert variance(X).expand() == a**3/b
|
||
|
assert cdf(X)(z) == (S.Half - erf(sqrt(2)*sqrt(b)*(1 + z/a)/(2*sqrt(z)))/2)*exp(2*b/a) +\
|
||
|
erf(sqrt(2)*sqrt(b)*(-1 + z/a)/(2*sqrt(z)))/2 + S.Half
|
||
|
|
||
|
a = symbols('a', nonpositive=True)
|
||
|
raises(ValueError, lambda: GaussianInverse('x', a, b))
|
||
|
|
||
|
a = symbols('a', positive=True)
|
||
|
b = symbols('b', nonpositive=True)
|
||
|
raises(ValueError, lambda: GaussianInverse('x', a, b))
|
||
|
|
||
|
def test_pareto():
|
||
|
xm, beta = symbols('xm beta', positive=True)
|
||
|
alpha = beta + 5
|
||
|
X = Pareto('x', xm, alpha)
|
||
|
|
||
|
dens = density(X)
|
||
|
|
||
|
#Tests cdf function
|
||
|
assert cdf(X)(x) == \
|
||
|
Piecewise((-x**(-beta - 5)*xm**(beta + 5) + 1, x >= xm), (0, True))
|
||
|
|
||
|
#Tests characteristic_function
|
||
|
assert characteristic_function(X)(x) == \
|
||
|
((-I*x*xm)**(beta + 5)*(beta + 5)*uppergamma(-beta - 5, -I*x*xm))
|
||
|
|
||
|
assert dens(x) == x**(-(alpha + 1))*xm**(alpha)*(alpha)
|
||
|
|
||
|
assert simplify(E(X)) == alpha*xm/(alpha-1)
|
||
|
|
||
|
# computation of taylor series for MGF still too slow
|
||
|
#assert simplify(variance(X)) == xm**2*alpha / ((alpha-1)**2*(alpha-2))
|
||
|
|
||
|
|
||
|
def test_pareto_numeric():
|
||
|
xm, beta = 3, 2
|
||
|
alpha = beta + 5
|
||
|
X = Pareto('x', xm, alpha)
|
||
|
|
||
|
assert E(X) == alpha*xm/S(alpha - 1)
|
||
|
assert variance(X) == xm**2*alpha / S((alpha - 1)**2*(alpha - 2))
|
||
|
assert median(X) == FiniteSet(3*2**Rational(1, 7))
|
||
|
# Skewness tests too slow. Try shortcutting function?
|
||
|
|
||
|
|
||
|
def test_PowerFunction():
|
||
|
alpha = Symbol("alpha", nonpositive=True)
|
||
|
a, b = symbols('a, b', real=True)
|
||
|
raises (ValueError, lambda: PowerFunction('x', alpha, a, b))
|
||
|
|
||
|
a, b = symbols('a, b', real=False)
|
||
|
raises (ValueError, lambda: PowerFunction('x', alpha, a, b))
|
||
|
|
||
|
alpha = Symbol("alpha", positive=True)
|
||
|
a, b = symbols('a, b', real=True)
|
||
|
raises (ValueError, lambda: PowerFunction('x', alpha, 5, 2))
|
||
|
|
||
|
X = PowerFunction('X', 2, a, b)
|
||
|
assert density(X)(z) == (-2*a + 2*z)/(-a + b)**2
|
||
|
assert cdf(X)(z) == Piecewise((a**2/(a**2 - 2*a*b + b**2) -
|
||
|
2*a*z/(a**2 - 2*a*b + b**2) + z**2/(a**2 - 2*a*b + b**2), a <= z), (0, True))
|
||
|
|
||
|
X = PowerFunction('X', 2, 0, 1)
|
||
|
assert density(X)(z) == 2*z
|
||
|
assert cdf(X)(z) == Piecewise((z**2, z >= 0), (0,True))
|
||
|
assert E(X) == Rational(2,3)
|
||
|
assert P(X < 0) == 0
|
||
|
assert P(X < 1) == 1
|
||
|
assert median(X) == FiniteSet(1/sqrt(2))
|
||
|
|
||
|
def test_raised_cosine():
|
||
|
mu = Symbol("mu", real=True)
|
||
|
s = Symbol("s", positive=True)
|
||
|
|
||
|
X = RaisedCosine("x", mu, s)
|
||
|
|
||
|
assert pspace(X).domain.set == Interval(mu - s, mu + s)
|
||
|
#Tests characteristics_function
|
||
|
assert characteristic_function(X)(x) == \
|
||
|
Piecewise((exp(-I*pi*mu/s)/2, Eq(x, -pi/s)), (exp(I*pi*mu/s)/2, Eq(x, pi/s)), (pi**2*exp(I*mu*x)*sin(s*x)/(s*x*(-s**2*x**2 + pi**2)), True))
|
||
|
|
||
|
assert density(X)(x) == (Piecewise(((cos(pi*(x - mu)/s) + 1)/(2*s),
|
||
|
And(x <= mu + s, mu - s <= x)), (0, True)))
|
||
|
|
||
|
|
||
|
def test_rayleigh():
|
||
|
sigma = Symbol("sigma", positive=True)
|
||
|
|
||
|
X = Rayleigh('x', sigma)
|
||
|
|
||
|
#Tests characteristic_function
|
||
|
assert characteristic_function(X)(x) == (-sqrt(2)*sqrt(pi)*sigma*x*(erfi(sqrt(2)*sigma*x/2) - I)*exp(-sigma**2*x**2/2)/2 + 1)
|
||
|
|
||
|
assert density(X)(x) == x*exp(-x**2/(2*sigma**2))/sigma**2
|
||
|
assert E(X) == sqrt(2)*sqrt(pi)*sigma/2
|
||
|
assert variance(X) == -pi*sigma**2/2 + 2*sigma**2
|
||
|
assert cdf(X)(x) == 1 - exp(-x**2/(2*sigma**2))
|
||
|
assert diff(cdf(X)(x), x) == density(X)(x)
|
||
|
|
||
|
def test_reciprocal():
|
||
|
a = Symbol("a", real=True)
|
||
|
b = Symbol("b", real=True)
|
||
|
|
||
|
X = Reciprocal('x', a, b)
|
||
|
assert density(X)(x) == 1/(x*(-log(a) + log(b)))
|
||
|
assert cdf(X)(x) == Piecewise((log(a)/(log(a) - log(b)) - log(x)/(log(a) - log(b)), a <= x), (0, True))
|
||
|
X = Reciprocal('x', 5, 30)
|
||
|
|
||
|
assert E(X) == 25/(log(30) - log(5))
|
||
|
assert P(X < 4) == S.Zero
|
||
|
assert P(X < 20) == log(20) / (log(30) - log(5)) - log(5) / (log(30) - log(5))
|
||
|
assert cdf(X)(10) == log(10) / (log(30) - log(5)) - log(5) / (log(30) - log(5))
|
||
|
|
||
|
a = symbols('a', nonpositive=True)
|
||
|
raises(ValueError, lambda: Reciprocal('x', a, b))
|
||
|
|
||
|
a = symbols('a', positive=True)
|
||
|
b = symbols('b', positive=True)
|
||
|
raises(ValueError, lambda: Reciprocal('x', a + b, a))
|
||
|
|
||
|
def test_shiftedgompertz():
|
||
|
b = Symbol("b", positive=True)
|
||
|
eta = Symbol("eta", positive=True)
|
||
|
X = ShiftedGompertz("x", b, eta)
|
||
|
assert density(X)(x) == b*(eta*(1 - exp(-b*x)) + 1)*exp(-b*x)*exp(-eta*exp(-b*x))
|
||
|
|
||
|
|
||
|
def test_studentt():
|
||
|
nu = Symbol("nu", positive=True)
|
||
|
|
||
|
X = StudentT('x', nu)
|
||
|
assert density(X)(x) == (1 + x**2/nu)**(-nu/2 - S.Half)/(sqrt(nu)*beta(S.Half, nu/2))
|
||
|
assert cdf(X)(x) == S.Half + x*gamma(nu/2 + S.Half)*hyper((S.Half, nu/2 + S.Half),
|
||
|
(Rational(3, 2),), -x**2/nu)/(sqrt(pi)*sqrt(nu)*gamma(nu/2))
|
||
|
raises(NotImplementedError, lambda: moment_generating_function(X))
|
||
|
|
||
|
def test_trapezoidal():
|
||
|
a = Symbol("a", real=True)
|
||
|
b = Symbol("b", real=True)
|
||
|
c = Symbol("c", real=True)
|
||
|
d = Symbol("d", real=True)
|
||
|
|
||
|
X = Trapezoidal('x', a, b, c, d)
|
||
|
assert density(X)(x) == Piecewise(((-2*a + 2*x)/((-a + b)*(-a - b + c + d)), (a <= x) & (x < b)),
|
||
|
(2/(-a - b + c + d), (b <= x) & (x < c)),
|
||
|
((2*d - 2*x)/((-c + d)*(-a - b + c + d)), (c <= x) & (x <= d)),
|
||
|
(0, True))
|
||
|
|
||
|
X = Trapezoidal('x', 0, 1, 2, 3)
|
||
|
assert E(X) == Rational(3, 2)
|
||
|
assert variance(X) == Rational(5, 12)
|
||
|
assert P(X < 2) == Rational(3, 4)
|
||
|
assert median(X) == FiniteSet(Rational(3, 2))
|
||
|
|
||
|
def test_triangular():
|
||
|
a = Symbol("a")
|
||
|
b = Symbol("b")
|
||
|
c = Symbol("c")
|
||
|
|
||
|
X = Triangular('x', a, b, c)
|
||
|
assert pspace(X).domain.set == Interval(a, b)
|
||
|
assert str(density(X)(x)) == ("Piecewise(((-2*a + 2*x)/((-a + b)*(-a + c)), (a <= x) & (c > x)), "
|
||
|
"(2/(-a + b), Eq(c, x)), ((2*b - 2*x)/((-a + b)*(b - c)), (b >= x) & (c < x)), (0, True))")
|
||
|
|
||
|
#Tests moment_generating_function
|
||
|
assert moment_generating_function(X)(x).expand() == \
|
||
|
((-2*(-a + b)*exp(c*x) + 2*(-a + c)*exp(b*x) + 2*(b - c)*exp(a*x))/(x**2*(-a + b)*(-a + c)*(b - c))).expand()
|
||
|
assert str(characteristic_function(X)(x)) == \
|
||
|
'(2*(-a + b)*exp(I*c*x) - 2*(-a + c)*exp(I*b*x) - 2*(b - c)*exp(I*a*x))/(x**2*(-a + b)*(-a + c)*(b - c))'
|
||
|
|
||
|
def test_quadratic_u():
|
||
|
a = Symbol("a", real=True)
|
||
|
b = Symbol("b", real=True)
|
||
|
|
||
|
X = QuadraticU("x", a, b)
|
||
|
Y = QuadraticU("x", 1, 2)
|
||
|
|
||
|
assert pspace(X).domain.set == Interval(a, b)
|
||
|
# Tests _moment_generating_function
|
||
|
assert moment_generating_function(Y)(1) == -15*exp(2) + 27*exp(1)
|
||
|
assert moment_generating_function(Y)(2) == -9*exp(4)/2 + 21*exp(2)/2
|
||
|
|
||
|
assert characteristic_function(Y)(1) == 3*I*(-1 + 4*I)*exp(I*exp(2*I))
|
||
|
assert density(X)(x) == (Piecewise((12*(x - a/2 - b/2)**2/(-a + b)**3,
|
||
|
And(x <= b, a <= x)), (0, True)))
|
||
|
|
||
|
|
||
|
def test_uniform():
|
||
|
l = Symbol('l', real=True)
|
||
|
w = Symbol('w', positive=True)
|
||
|
X = Uniform('x', l, l + w)
|
||
|
|
||
|
assert E(X) == l + w/2
|
||
|
assert variance(X).expand() == w**2/12
|
||
|
|
||
|
# With numbers all is well
|
||
|
X = Uniform('x', 3, 5)
|
||
|
assert P(X < 3) == 0 and P(X > 5) == 0
|
||
|
assert P(X < 4) == P(X > 4) == S.Half
|
||
|
assert median(X) == FiniteSet(4)
|
||
|
|
||
|
z = Symbol('z')
|
||
|
p = density(X)(z)
|
||
|
assert p.subs(z, 3.7) == S.Half
|
||
|
assert p.subs(z, -1) == 0
|
||
|
assert p.subs(z, 6) == 0
|
||
|
|
||
|
c = cdf(X)
|
||
|
assert c(2) == 0 and c(3) == 0
|
||
|
assert c(Rational(7, 2)) == Rational(1, 4)
|
||
|
assert c(5) == 1 and c(6) == 1
|
||
|
|
||
|
|
||
|
@XFAIL
|
||
|
@slow
|
||
|
def test_uniform_P():
|
||
|
""" This stopped working because SingleContinuousPSpace.compute_density no
|
||
|
longer calls integrate on a DiracDelta but rather just solves directly.
|
||
|
integrate used to call UniformDistribution.expectation which special-cased
|
||
|
subsed out the Min and Max terms that Uniform produces
|
||
|
|
||
|
I decided to regress on this class for general cleanliness (and I suspect
|
||
|
speed) of the algorithm.
|
||
|
"""
|
||
|
l = Symbol('l', real=True)
|
||
|
w = Symbol('w', positive=True)
|
||
|
X = Uniform('x', l, l + w)
|
||
|
assert P(X < l) == 0 and P(X > l + w) == 0
|
||
|
|
||
|
|
||
|
def test_uniformsum():
|
||
|
n = Symbol("n", integer=True)
|
||
|
_k = Dummy("k")
|
||
|
x = Symbol("x")
|
||
|
|
||
|
X = UniformSum('x', n)
|
||
|
res = Sum((-1)**_k*(-_k + x)**(n - 1)*binomial(n, _k), (_k, 0, floor(x)))/factorial(n - 1)
|
||
|
assert density(X)(x).dummy_eq(res)
|
||
|
|
||
|
#Tests set functions
|
||
|
assert X.pspace.domain.set == Interval(0, n)
|
||
|
|
||
|
#Tests the characteristic_function
|
||
|
assert characteristic_function(X)(x) == (-I*(exp(I*x) - 1)/x)**n
|
||
|
|
||
|
#Tests the moment_generating_function
|
||
|
assert moment_generating_function(X)(x) == ((exp(x) - 1)/x)**n
|
||
|
|
||
|
|
||
|
def test_von_mises():
|
||
|
mu = Symbol("mu")
|
||
|
k = Symbol("k", positive=True)
|
||
|
|
||
|
X = VonMises("x", mu, k)
|
||
|
assert density(X)(x) == exp(k*cos(x - mu))/(2*pi*besseli(0, k))
|
||
|
|
||
|
|
||
|
def test_weibull():
|
||
|
a, b = symbols('a b', positive=True)
|
||
|
# FIXME: simplify(E(X)) seems to hang without extended_positive=True
|
||
|
# On a Linux machine this had a rapid memory leak...
|
||
|
# a, b = symbols('a b', positive=True)
|
||
|
X = Weibull('x', a, b)
|
||
|
|
||
|
assert E(X).expand() == a * gamma(1 + 1/b)
|
||
|
assert variance(X).expand() == (a**2 * gamma(1 + 2/b) - E(X)**2).expand()
|
||
|
assert simplify(skewness(X)) == (2*gamma(1 + 1/b)**3 - 3*gamma(1 + 1/b)*gamma(1 + 2/b) + gamma(1 + 3/b))/(-gamma(1 + 1/b)**2 + gamma(1 + 2/b))**Rational(3, 2)
|
||
|
assert simplify(kurtosis(X)) == (-3*gamma(1 + 1/b)**4 +\
|
||
|
6*gamma(1 + 1/b)**2*gamma(1 + 2/b) - 4*gamma(1 + 1/b)*gamma(1 + 3/b) + gamma(1 + 4/b))/(gamma(1 + 1/b)**2 - gamma(1 + 2/b))**2
|
||
|
|
||
|
def test_weibull_numeric():
|
||
|
# Test for integers and rationals
|
||
|
a = 1
|
||
|
bvals = [S.Half, 1, Rational(3, 2), 5]
|
||
|
for b in bvals:
|
||
|
X = Weibull('x', a, b)
|
||
|
assert simplify(E(X)) == expand_func(a * gamma(1 + 1/S(b)))
|
||
|
assert simplify(variance(X)) == simplify(
|
||
|
a**2 * gamma(1 + 2/S(b)) - E(X)**2)
|
||
|
# Not testing Skew... it's slow with int/frac values > 3/2
|
||
|
|
||
|
|
||
|
def test_wignersemicircle():
|
||
|
R = Symbol("R", positive=True)
|
||
|
|
||
|
X = WignerSemicircle('x', R)
|
||
|
assert pspace(X).domain.set == Interval(-R, R)
|
||
|
assert density(X)(x) == 2*sqrt(-x**2 + R**2)/(pi*R**2)
|
||
|
assert E(X) == 0
|
||
|
|
||
|
|
||
|
#Tests ChiNoncentralDistribution
|
||
|
assert characteristic_function(X)(x) == \
|
||
|
Piecewise((2*besselj(1, R*x)/(R*x), Ne(x, 0)), (1, True))
|
||
|
|
||
|
|
||
|
def test_input_value_assertions():
|
||
|
a, b = symbols('a b')
|
||
|
p, q = symbols('p q', positive=True)
|
||
|
m, n = symbols('m n', positive=False, real=True)
|
||
|
|
||
|
raises(ValueError, lambda: Normal('x', 3, 0))
|
||
|
raises(ValueError, lambda: Normal('x', m, n))
|
||
|
Normal('X', a, p) # No error raised
|
||
|
raises(ValueError, lambda: Exponential('x', m))
|
||
|
Exponential('Ex', p) # No error raised
|
||
|
for fn in [Pareto, Weibull, Beta, Gamma]:
|
||
|
raises(ValueError, lambda: fn('x', m, p))
|
||
|
raises(ValueError, lambda: fn('x', p, n))
|
||
|
fn('x', p, q) # No error raised
|
||
|
|
||
|
|
||
|
def test_unevaluated():
|
||
|
X = Normal('x', 0, 1)
|
||
|
k = Dummy('k')
|
||
|
expr1 = Integral(sqrt(2)*k*exp(-k**2/2)/(2*sqrt(pi)), (k, -oo, oo))
|
||
|
expr2 = Integral(sqrt(2)*exp(-k**2/2)/(2*sqrt(pi)), (k, 0, oo))
|
||
|
with ignore_warnings(UserWarning): ### TODO: Restore tests once warnings are removed
|
||
|
assert E(X, evaluate=False).rewrite(Integral).dummy_eq(expr1)
|
||
|
assert E(X + 1, evaluate=False).rewrite(Integral).dummy_eq(expr1 + 1)
|
||
|
assert P(X > 0, evaluate=False).rewrite(Integral).dummy_eq(expr2)
|
||
|
|
||
|
assert P(X > 0, X**2 < 1) == S.Half
|
||
|
|
||
|
|
||
|
def test_probability_unevaluated():
|
||
|
T = Normal('T', 30, 3)
|
||
|
with ignore_warnings(UserWarning): ### TODO: Restore tests once warnings are removed
|
||
|
assert type(P(T > 33, evaluate=False)) == Probability
|
||
|
|
||
|
|
||
|
def test_density_unevaluated():
|
||
|
X = Normal('X', 0, 1)
|
||
|
Y = Normal('Y', 0, 2)
|
||
|
assert isinstance(density(X+Y, evaluate=False)(z), Integral)
|
||
|
|
||
|
|
||
|
def test_NormalDistribution():
|
||
|
nd = NormalDistribution(0, 1)
|
||
|
x = Symbol('x')
|
||
|
assert nd.cdf(x) == erf(sqrt(2)*x/2)/2 + S.Half
|
||
|
assert nd.expectation(1, x) == 1
|
||
|
assert nd.expectation(x, x) == 0
|
||
|
assert nd.expectation(x**2, x) == 1
|
||
|
#Test issue 10076
|
||
|
a = SingleContinuousPSpace(x, NormalDistribution(2, 4))
|
||
|
_z = Dummy('_z')
|
||
|
|
||
|
expected1 = Integral(sqrt(2)*exp(-(_z - 2)**2/32)/(8*sqrt(pi)),(_z, -oo, 1))
|
||
|
assert a.probability(x < 1, evaluate=False).dummy_eq(expected1) is True
|
||
|
|
||
|
expected2 = Integral(sqrt(2)*exp(-(_z - 2)**2/32)/(8*sqrt(pi)),(_z, 1, oo))
|
||
|
assert a.probability(x > 1, evaluate=False).dummy_eq(expected2) is True
|
||
|
|
||
|
b = SingleContinuousPSpace(x, NormalDistribution(1, 9))
|
||
|
|
||
|
expected3 = Integral(sqrt(2)*exp(-(_z - 1)**2/162)/(18*sqrt(pi)),(_z, 6, oo))
|
||
|
assert b.probability(x > 6, evaluate=False).dummy_eq(expected3) is True
|
||
|
|
||
|
expected4 = Integral(sqrt(2)*exp(-(_z - 1)**2/162)/(18*sqrt(pi)),(_z, -oo, 6))
|
||
|
assert b.probability(x < 6, evaluate=False).dummy_eq(expected4) is True
|
||
|
|
||
|
|
||
|
def test_random_parameters():
|
||
|
mu = Normal('mu', 2, 3)
|
||
|
meas = Normal('T', mu, 1)
|
||
|
assert density(meas, evaluate=False)(z)
|
||
|
assert isinstance(pspace(meas), CompoundPSpace)
|
||
|
X = Normal('x', [1, 2], [[1, 0], [0, 1]])
|
||
|
assert isinstance(pspace(X).distribution, MultivariateNormalDistribution)
|
||
|
assert density(meas)(z).simplify() == sqrt(5)*exp(-z**2/20 + z/5 - S(1)/5)/(10*sqrt(pi))
|
||
|
|
||
|
|
||
|
def test_random_parameters_given():
|
||
|
mu = Normal('mu', 2, 3)
|
||
|
meas = Normal('T', mu, 1)
|
||
|
assert given(meas, Eq(mu, 5)) == Normal('T', 5, 1)
|
||
|
|
||
|
|
||
|
def test_conjugate_priors():
|
||
|
mu = Normal('mu', 2, 3)
|
||
|
x = Normal('x', mu, 1)
|
||
|
assert isinstance(simplify(density(mu, Eq(x, y), evaluate=False)(z)),
|
||
|
Mul)
|
||
|
|
||
|
|
||
|
def test_difficult_univariate():
|
||
|
""" Since using solve in place of deltaintegrate we're able to perform
|
||
|
substantially more complex density computations on single continuous random
|
||
|
variables """
|
||
|
x = Normal('x', 0, 1)
|
||
|
assert density(x**3)
|
||
|
assert density(exp(x**2))
|
||
|
assert density(log(x))
|
||
|
|
||
|
|
||
|
def test_issue_10003():
|
||
|
X = Exponential('x', 3)
|
||
|
G = Gamma('g', 1, 2)
|
||
|
assert P(X < -1) is S.Zero
|
||
|
assert P(G < -1) is S.Zero
|
||
|
|
||
|
|
||
|
def test_precomputed_cdf():
|
||
|
x = symbols("x", real=True)
|
||
|
mu = symbols("mu", real=True)
|
||
|
sigma, xm, alpha = symbols("sigma xm alpha", positive=True)
|
||
|
n = symbols("n", integer=True, positive=True)
|
||
|
distribs = [
|
||
|
Normal("X", mu, sigma),
|
||
|
Pareto("P", xm, alpha),
|
||
|
ChiSquared("C", n),
|
||
|
Exponential("E", sigma),
|
||
|
# LogNormal("L", mu, sigma),
|
||
|
]
|
||
|
for X in distribs:
|
||
|
compdiff = cdf(X)(x) - simplify(X.pspace.density.compute_cdf()(x))
|
||
|
compdiff = simplify(compdiff.rewrite(erfc))
|
||
|
assert compdiff == 0
|
||
|
|
||
|
|
||
|
@slow
|
||
|
def test_precomputed_characteristic_functions():
|
||
|
import mpmath
|
||
|
|
||
|
def test_cf(dist, support_lower_limit, support_upper_limit):
|
||
|
pdf = density(dist)
|
||
|
t = Symbol('t')
|
||
|
|
||
|
# first function is the hardcoded CF of the distribution
|
||
|
cf1 = lambdify([t], characteristic_function(dist)(t), 'mpmath')
|
||
|
|
||
|
# second function is the Fourier transform of the density function
|
||
|
f = lambdify([x, t], pdf(x)*exp(I*x*t), 'mpmath')
|
||
|
cf2 = lambda t: mpmath.quad(lambda x: f(x, t), [support_lower_limit, support_upper_limit], maxdegree=10)
|
||
|
|
||
|
# compare the two functions at various points
|
||
|
for test_point in [2, 5, 8, 11]:
|
||
|
n1 = cf1(test_point)
|
||
|
n2 = cf2(test_point)
|
||
|
|
||
|
assert abs(re(n1) - re(n2)) < 1e-12
|
||
|
assert abs(im(n1) - im(n2)) < 1e-12
|
||
|
|
||
|
test_cf(Beta('b', 1, 2), 0, 1)
|
||
|
test_cf(Chi('c', 3), 0, mpmath.inf)
|
||
|
test_cf(ChiSquared('c', 2), 0, mpmath.inf)
|
||
|
test_cf(Exponential('e', 6), 0, mpmath.inf)
|
||
|
test_cf(Logistic('l', 1, 2), -mpmath.inf, mpmath.inf)
|
||
|
test_cf(Normal('n', -1, 5), -mpmath.inf, mpmath.inf)
|
||
|
test_cf(RaisedCosine('r', 3, 1), 2, 4)
|
||
|
test_cf(Rayleigh('r', 0.5), 0, mpmath.inf)
|
||
|
test_cf(Uniform('u', -1, 1), -1, 1)
|
||
|
test_cf(WignerSemicircle('w', 3), -3, 3)
|
||
|
|
||
|
|
||
|
def test_long_precomputed_cdf():
|
||
|
x = symbols("x", real=True)
|
||
|
distribs = [
|
||
|
Arcsin("A", -5, 9),
|
||
|
Dagum("D", 4, 10, 3),
|
||
|
Erlang("E", 14, 5),
|
||
|
Frechet("F", 2, 6, -3),
|
||
|
Gamma("G", 2, 7),
|
||
|
GammaInverse("GI", 3, 5),
|
||
|
Kumaraswamy("K", 6, 8),
|
||
|
Laplace("LA", -5, 4),
|
||
|
Logistic("L", -6, 7),
|
||
|
Nakagami("N", 2, 7),
|
||
|
StudentT("S", 4)
|
||
|
]
|
||
|
for distr in distribs:
|
||
|
for _ in range(5):
|
||
|
assert tn(diff(cdf(distr)(x), x), density(distr)(x), x, a=0, b=0, c=1, d=0)
|
||
|
|
||
|
US = UniformSum("US", 5)
|
||
|
pdf01 = density(US)(x).subs(floor(x), 0).doit() # pdf on (0, 1)
|
||
|
cdf01 = cdf(US, evaluate=False)(x).subs(floor(x), 0).doit() # cdf on (0, 1)
|
||
|
assert tn(diff(cdf01, x), pdf01, x, a=0, b=0, c=1, d=0)
|
||
|
|
||
|
|
||
|
def test_issue_13324():
|
||
|
X = Uniform('X', 0, 1)
|
||
|
assert E(X, X > S.Half) == Rational(3, 4)
|
||
|
assert E(X, X > 0) == S.Half
|
||
|
|
||
|
def test_issue_20756():
|
||
|
X = Uniform('X', -1, +1)
|
||
|
Y = Uniform('Y', -1, +1)
|
||
|
assert E(X * Y) == S.Zero
|
||
|
assert E(X * ((Y + 1) - 1)) == S.Zero
|
||
|
assert E(Y * (X*(X + 1) - X*X)) == S.Zero
|
||
|
|
||
|
def test_FiniteSet_prob():
|
||
|
E = Exponential('E', 3)
|
||
|
N = Normal('N', 5, 7)
|
||
|
assert P(Eq(E, 1)) is S.Zero
|
||
|
assert P(Eq(N, 2)) is S.Zero
|
||
|
assert P(Eq(N, x)) is S.Zero
|
||
|
|
||
|
def test_prob_neq():
|
||
|
E = Exponential('E', 4)
|
||
|
X = ChiSquared('X', 4)
|
||
|
assert P(Ne(E, 2)) == 1
|
||
|
assert P(Ne(X, 4)) == 1
|
||
|
assert P(Ne(X, 4)) == 1
|
||
|
assert P(Ne(X, 5)) == 1
|
||
|
assert P(Ne(E, x)) == 1
|
||
|
|
||
|
def test_union():
|
||
|
N = Normal('N', 3, 2)
|
||
|
assert simplify(P(N**2 - N > 2)) == \
|
||
|
-erf(sqrt(2))/2 - erfc(sqrt(2)/4)/2 + Rational(3, 2)
|
||
|
assert simplify(P(N**2 - 4 > 0)) == \
|
||
|
-erf(5*sqrt(2)/4)/2 - erfc(sqrt(2)/4)/2 + Rational(3, 2)
|
||
|
|
||
|
def test_Or():
|
||
|
N = Normal('N', 0, 1)
|
||
|
assert simplify(P(Or(N > 2, N < 1))) == \
|
||
|
-erf(sqrt(2))/2 - erfc(sqrt(2)/2)/2 + Rational(3, 2)
|
||
|
assert P(Or(N < 0, N < 1)) == P(N < 1)
|
||
|
assert P(Or(N > 0, N < 0)) == 1
|
||
|
|
||
|
|
||
|
def test_conditional_eq():
|
||
|
E = Exponential('E', 1)
|
||
|
assert P(Eq(E, 1), Eq(E, 1)) == 1
|
||
|
assert P(Eq(E, 1), Eq(E, 2)) == 0
|
||
|
assert P(E > 1, Eq(E, 2)) == 1
|
||
|
assert P(E < 1, Eq(E, 2)) == 0
|
||
|
|
||
|
def test_ContinuousDistributionHandmade():
|
||
|
x = Symbol('x')
|
||
|
z = Dummy('z')
|
||
|
dens = Lambda(x, Piecewise((S.Half, (0<=x)&(x<1)), (0, (x>=1)&(x<2)),
|
||
|
(S.Half, (x>=2)&(x<3)), (0, True)))
|
||
|
dens = ContinuousDistributionHandmade(dens, set=Interval(0, 3))
|
||
|
space = SingleContinuousPSpace(z, dens)
|
||
|
assert dens.pdf == Lambda(x, Piecewise((S(1)/2, (x >= 0) & (x < 1)),
|
||
|
(0, (x >= 1) & (x < 2)), (S(1)/2, (x >= 2) & (x < 3)), (0, True)))
|
||
|
assert median(space.value) == Interval(1, 2)
|
||
|
assert E(space.value) == Rational(3, 2)
|
||
|
assert variance(space.value) == Rational(13, 12)
|
||
|
|
||
|
|
||
|
def test_issue_16318():
|
||
|
# test compute_expectation function of the SingleContinuousDomain
|
||
|
N = SingleContinuousDomain(x, Interval(0, 1))
|
||
|
raises(ValueError, lambda: SingleContinuousDomain.compute_expectation(N, x+1, {x, y}))
|