222 lines
7.5 KiB
Python
222 lines
7.5 KiB
Python
|
# -*- coding: utf-8 -*-
|
||
|
from sympy.core.function import Function
|
||
|
from sympy.integrals.integrals import Integral
|
||
|
from sympy.printing.latex import latex
|
||
|
from sympy.printing.pretty import pretty as xpretty
|
||
|
from sympy.vector import CoordSys3D, Del, Vector, express
|
||
|
from sympy.abc import a, b, c
|
||
|
from sympy.testing.pytest import XFAIL
|
||
|
|
||
|
|
||
|
def pretty(expr):
|
||
|
"""ASCII pretty-printing"""
|
||
|
return xpretty(expr, use_unicode=False, wrap_line=False)
|
||
|
|
||
|
|
||
|
def upretty(expr):
|
||
|
"""Unicode pretty-printing"""
|
||
|
return xpretty(expr, use_unicode=True, wrap_line=False)
|
||
|
|
||
|
|
||
|
# Initialize the basic and tedious vector/dyadic expressions
|
||
|
# needed for testing.
|
||
|
# Some of the pretty forms shown denote how the expressions just
|
||
|
# above them should look with pretty printing.
|
||
|
N = CoordSys3D('N')
|
||
|
C = N.orient_new_axis('C', a, N.k) # type: ignore
|
||
|
v = []
|
||
|
d = []
|
||
|
v.append(Vector.zero)
|
||
|
v.append(N.i) # type: ignore
|
||
|
v.append(-N.i) # type: ignore
|
||
|
v.append(N.i + N.j) # type: ignore
|
||
|
v.append(a*N.i) # type: ignore
|
||
|
v.append(a*N.i - b*N.j) # type: ignore
|
||
|
v.append((a**2 + N.x)*N.i + N.k) # type: ignore
|
||
|
v.append((a**2 + b)*N.i + 3*(C.y - c)*N.k) # type: ignore
|
||
|
f = Function('f')
|
||
|
v.append(N.j - (Integral(f(b)) - C.x**2)*N.k) # type: ignore
|
||
|
upretty_v_8 = """\
|
||
|
⎛ 2 ⌠ ⎞ \n\
|
||
|
j_N + ⎜x_C - ⎮ f(b) db⎟ k_N\n\
|
||
|
⎝ ⌡ ⎠ \
|
||
|
"""
|
||
|
pretty_v_8 = """\
|
||
|
j_N + / / \\\n\
|
||
|
| 2 | |\n\
|
||
|
|x_C - | f(b) db|\n\
|
||
|
| | |\n\
|
||
|
\\ / / \
|
||
|
"""
|
||
|
|
||
|
v.append(N.i + C.k) # type: ignore
|
||
|
v.append(express(N.i, C)) # type: ignore
|
||
|
v.append((a**2 + b)*N.i + (Integral(f(b)))*N.k) # type: ignore
|
||
|
upretty_v_11 = """\
|
||
|
⎛ 2 ⎞ ⎛⌠ ⎞ \n\
|
||
|
⎝a + b⎠ i_N + ⎜⎮ f(b) db⎟ k_N\n\
|
||
|
⎝⌡ ⎠ \
|
||
|
"""
|
||
|
pretty_v_11 = """\
|
||
|
/ 2 \\ + / / \\\n\
|
||
|
\\a + b/ i_N| | |\n\
|
||
|
| | f(b) db|\n\
|
||
|
| | |\n\
|
||
|
\\/ / \
|
||
|
"""
|
||
|
|
||
|
for x in v:
|
||
|
d.append(x | N.k) # type: ignore
|
||
|
s = 3*N.x**2*C.y # type: ignore
|
||
|
upretty_s = """\
|
||
|
2\n\
|
||
|
3⋅y_C⋅x_N \
|
||
|
"""
|
||
|
pretty_s = """\
|
||
|
2\n\
|
||
|
3*y_C*x_N \
|
||
|
"""
|
||
|
|
||
|
# This is the pretty form for ((a**2 + b)*N.i + 3*(C.y - c)*N.k) | N.k
|
||
|
upretty_d_7 = """\
|
||
|
⎛ 2 ⎞ \n\
|
||
|
⎝a + b⎠ (i_N|k_N) + (3⋅y_C - 3⋅c) (k_N|k_N)\
|
||
|
"""
|
||
|
pretty_d_7 = """\
|
||
|
/ 2 \\ (i_N|k_N) + (3*y_C - 3*c) (k_N|k_N)\n\
|
||
|
\\a + b/ \
|
||
|
"""
|
||
|
|
||
|
|
||
|
def test_str_printing():
|
||
|
assert str(v[0]) == '0'
|
||
|
assert str(v[1]) == 'N.i'
|
||
|
assert str(v[2]) == '(-1)*N.i'
|
||
|
assert str(v[3]) == 'N.i + N.j'
|
||
|
assert str(v[8]) == 'N.j + (C.x**2 - Integral(f(b), b))*N.k'
|
||
|
assert str(v[9]) == 'C.k + N.i'
|
||
|
assert str(s) == '3*C.y*N.x**2'
|
||
|
assert str(d[0]) == '0'
|
||
|
assert str(d[1]) == '(N.i|N.k)'
|
||
|
assert str(d[4]) == 'a*(N.i|N.k)'
|
||
|
assert str(d[5]) == 'a*(N.i|N.k) + (-b)*(N.j|N.k)'
|
||
|
assert str(d[8]) == ('(N.j|N.k) + (C.x**2 - ' +
|
||
|
'Integral(f(b), b))*(N.k|N.k)')
|
||
|
|
||
|
|
||
|
@XFAIL
|
||
|
def test_pretty_printing_ascii():
|
||
|
assert pretty(v[0]) == '0'
|
||
|
assert pretty(v[1]) == 'i_N'
|
||
|
assert pretty(v[5]) == '(a) i_N + (-b) j_N'
|
||
|
assert pretty(v[8]) == pretty_v_8
|
||
|
assert pretty(v[2]) == '(-1) i_N'
|
||
|
assert pretty(v[11]) == pretty_v_11
|
||
|
assert pretty(s) == pretty_s
|
||
|
assert pretty(d[0]) == '(0|0)'
|
||
|
assert pretty(d[5]) == '(a) (i_N|k_N) + (-b) (j_N|k_N)'
|
||
|
assert pretty(d[7]) == pretty_d_7
|
||
|
assert pretty(d[10]) == '(cos(a)) (i_C|k_N) + (-sin(a)) (j_C|k_N)'
|
||
|
|
||
|
|
||
|
def test_pretty_print_unicode_v():
|
||
|
assert upretty(v[0]) == '0'
|
||
|
assert upretty(v[1]) == 'i_N'
|
||
|
assert upretty(v[5]) == '(a) i_N + (-b) j_N'
|
||
|
# Make sure the printing works in other objects
|
||
|
assert upretty(v[5].args) == '((a) i_N, (-b) j_N)'
|
||
|
assert upretty(v[8]) == upretty_v_8
|
||
|
assert upretty(v[2]) == '(-1) i_N'
|
||
|
assert upretty(v[11]) == upretty_v_11
|
||
|
assert upretty(s) == upretty_s
|
||
|
assert upretty(d[0]) == '(0|0)'
|
||
|
assert upretty(d[5]) == '(a) (i_N|k_N) + (-b) (j_N|k_N)'
|
||
|
assert upretty(d[7]) == upretty_d_7
|
||
|
assert upretty(d[10]) == '(cos(a)) (i_C|k_N) + (-sin(a)) (j_C|k_N)'
|
||
|
|
||
|
|
||
|
def test_latex_printing():
|
||
|
assert latex(v[0]) == '\\mathbf{\\hat{0}}'
|
||
|
assert latex(v[1]) == '\\mathbf{\\hat{i}_{N}}'
|
||
|
assert latex(v[2]) == '- \\mathbf{\\hat{i}_{N}}'
|
||
|
assert latex(v[5]) == ('\\left(a\\right)\\mathbf{\\hat{i}_{N}} + ' +
|
||
|
'\\left(- b\\right)\\mathbf{\\hat{j}_{N}}')
|
||
|
assert latex(v[6]) == ('\\left(\\mathbf{{x}_{N}} + a^{2}\\right)\\mathbf{\\hat{i}_' +
|
||
|
'{N}} + \\mathbf{\\hat{k}_{N}}')
|
||
|
assert latex(v[8]) == ('\\mathbf{\\hat{j}_{N}} + \\left(\\mathbf{{x}_' +
|
||
|
'{C}}^{2} - \\int f{\\left(b \\right)}\\,' +
|
||
|
' db\\right)\\mathbf{\\hat{k}_{N}}')
|
||
|
assert latex(s) == '3 \\mathbf{{y}_{C}} \\mathbf{{x}_{N}}^{2}'
|
||
|
assert latex(d[0]) == '(\\mathbf{\\hat{0}}|\\mathbf{\\hat{0}})'
|
||
|
assert latex(d[4]) == ('\\left(a\\right)\\left(\\mathbf{\\hat{i}_{N}}{\\middle|}' +
|
||
|
'\\mathbf{\\hat{k}_{N}}\\right)')
|
||
|
assert latex(d[9]) == ('\\left(\\mathbf{\\hat{k}_{C}}{\\middle|}' +
|
||
|
'\\mathbf{\\hat{k}_{N}}\\right) + \\left(' +
|
||
|
'\\mathbf{\\hat{i}_{N}}{\\middle|}\\mathbf{' +
|
||
|
'\\hat{k}_{N}}\\right)')
|
||
|
assert latex(d[11]) == ('\\left(a^{2} + b\\right)\\left(\\mathbf{\\hat{i}_{N}}' +
|
||
|
'{\\middle|}\\mathbf{\\hat{k}_{N}}\\right) + ' +
|
||
|
'\\left(\\int f{\\left(b \\right)}\\, db\\right)\\left(' +
|
||
|
'\\mathbf{\\hat{k}_{N}}{\\middle|}\\mathbf{' +
|
||
|
'\\hat{k}_{N}}\\right)')
|
||
|
|
||
|
def test_issue_23058():
|
||
|
from sympy import symbols, sin, cos, pi, UnevaluatedExpr
|
||
|
|
||
|
delop = Del()
|
||
|
CC_ = CoordSys3D("C")
|
||
|
y = CC_.y
|
||
|
xhat = CC_.i
|
||
|
|
||
|
t = symbols("t")
|
||
|
ten = symbols("10", positive=True)
|
||
|
eps, mu = 4*pi*ten**(-11), ten**(-5)
|
||
|
|
||
|
Bx = 2 * ten**(-4) * cos(ten**5 * t) * sin(ten**(-3) * y)
|
||
|
vecB = Bx * xhat
|
||
|
vecE = (1/eps) * Integral(delop.cross(vecB/mu).doit(), t)
|
||
|
vecE = vecE.doit()
|
||
|
|
||
|
vecB_str = """\
|
||
|
⎛ ⎛y_C⎞ ⎛ 5 ⎞⎞ \n\
|
||
|
⎜2⋅sin⎜───⎟⋅cos⎝10 ⋅t⎠⎟ i_C\n\
|
||
|
⎜ ⎜ 3⎟ ⎟ \n\
|
||
|
⎜ ⎝10 ⎠ ⎟ \n\
|
||
|
⎜─────────────────────⎟ \n\
|
||
|
⎜ 4 ⎟ \n\
|
||
|
⎝ 10 ⎠ \
|
||
|
"""
|
||
|
vecE_str = """\
|
||
|
⎛ 4 ⎛ 5 ⎞ ⎛y_C⎞ ⎞ \n\
|
||
|
⎜-10 ⋅sin⎝10 ⋅t⎠⋅cos⎜───⎟ ⎟ k_C\n\
|
||
|
⎜ ⎜ 3⎟ ⎟ \n\
|
||
|
⎜ ⎝10 ⎠ ⎟ \n\
|
||
|
⎜─────────────────────────⎟ \n\
|
||
|
⎝ 2⋅π ⎠ \
|
||
|
"""
|
||
|
|
||
|
assert upretty(vecB) == vecB_str
|
||
|
assert upretty(vecE) == vecE_str
|
||
|
|
||
|
ten = UnevaluatedExpr(10)
|
||
|
eps, mu = 4*pi*ten**(-11), ten**(-5)
|
||
|
|
||
|
Bx = 2 * ten**(-4) * cos(ten**5 * t) * sin(ten**(-3) * y)
|
||
|
vecB = Bx * xhat
|
||
|
|
||
|
vecB_str = """\
|
||
|
⎛ -4 ⎛ 5⎞ ⎛ -3⎞⎞ \n\
|
||
|
⎝2⋅10 ⋅cos⎝t⋅10 ⎠⋅sin⎝y_C⋅10 ⎠⎠ i_C \
|
||
|
"""
|
||
|
assert upretty(vecB) == vecB_str
|
||
|
|
||
|
def test_custom_names():
|
||
|
A = CoordSys3D('A', vector_names=['x', 'y', 'z'],
|
||
|
variable_names=['i', 'j', 'k'])
|
||
|
assert A.i.__str__() == 'A.i'
|
||
|
assert A.x.__str__() == 'A.x'
|
||
|
assert A.i._pretty_form == 'i_A'
|
||
|
assert A.x._pretty_form == 'x_A'
|
||
|
assert A.i._latex_form == r'\mathbf{{i}_{A}}'
|
||
|
assert A.x._latex_form == r"\mathbf{\hat{x}_{A}}"
|