ai-content-maker/.venv/Lib/site-packages/tensorboard/plugins/histogram/summary_v2.py

294 lines
13 KiB
Python
Raw Permalink Normal View History

2024-05-03 04:18:51 +03:00
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Histogram summaries and TensorFlow operations to create them, V2 versions.
A histogram summary stores a list of buckets. Each bucket is encoded as a triple
`[left_edge, right_edge, count]`. Thus, a full histogram is encoded as a tensor
of dimension `[k, 3]`, where the first `k - 1` buckets are closed-open and the
last bucket is closed-closed.
In general, the shape of the output histogram is always constant (`[k, 3]`).
In the case of empty data, the output will be an all-zero histogram of shape
`[k, 3]`, where all edges and counts are zeros. If there is data but all points
have the same value, then all buckets' left and right edges are the same and only
the last bucket has nonzero count.
"""
import numpy as np
from tensorboard.compat import tf2 as tf
from tensorboard.compat.proto import summary_pb2
from tensorboard.plugins.histogram import metadata
from tensorboard.util import lazy_tensor_creator
from tensorboard.util import tensor_util
DEFAULT_BUCKET_COUNT = 30
def histogram_pb(tag, data, buckets=None, description=None):
"""Create a histogram summary protobuf.
Arguments:
tag: String tag for the summary.
data: A `np.array` or array-like form of any shape. Must have type
castable to `float`.
buckets: Optional positive `int`. The output shape will always be
[buckets, 3]. If there is no data, then an all-zero array of shape
[buckets, 3] will be returned. If there is data but all points have
the same value, then all buckets' left and right endpoints are the
same and only the last bucket has nonzero count. Defaults to 30 if
not specified.
description: Optional long-form description for this summary, as a
`str`. Markdown is supported. Defaults to empty.
Returns:
A `summary_pb2.Summary` protobuf object.
"""
bucket_count = DEFAULT_BUCKET_COUNT if buckets is None else buckets
data = np.array(data).flatten().astype(float)
if bucket_count == 0 or data.size == 0:
histogram_buckets = np.zeros((bucket_count, 3))
else:
min_ = np.min(data)
max_ = np.max(data)
range_ = max_ - min_
if range_ == 0:
left_edges = right_edges = np.array([min_] * bucket_count)
bucket_counts = np.array([0] * (bucket_count - 1) + [data.size])
histogram_buckets = np.array(
[left_edges, right_edges, bucket_counts]
).transpose()
else:
bucket_width = range_ / bucket_count
offsets = data - min_
bucket_indices = np.floor(offsets / bucket_width).astype(int)
clamped_indices = np.minimum(bucket_indices, bucket_count - 1)
one_hots = np.array([clamped_indices]).transpose() == np.arange(
0, bucket_count
) # broadcast
assert one_hots.shape == (data.size, bucket_count), (
one_hots.shape,
(data.size, bucket_count),
)
bucket_counts = np.sum(one_hots, axis=0)
edges = np.linspace(min_, max_, bucket_count + 1)
left_edges = edges[:-1]
right_edges = edges[1:]
histogram_buckets = np.array(
[left_edges, right_edges, bucket_counts]
).transpose()
tensor = tensor_util.make_tensor_proto(histogram_buckets, dtype=np.float64)
summary_metadata = metadata.create_summary_metadata(
display_name=None, description=description
)
summary = summary_pb2.Summary()
summary.value.add(tag=tag, metadata=summary_metadata, tensor=tensor)
return summary
# This is the TPU compatible V3 histogram implementation as of 2021-12-01.
def histogram(name, data, step=None, buckets=None, description=None):
"""Write a histogram summary.
See also `tf.summary.scalar`, `tf.summary.SummaryWriter`.
Writes a histogram to the current default summary writer, for later analysis
in TensorBoard's 'Histograms' and 'Distributions' dashboards (data written
using this API will appear in both places). Like `tf.summary.scalar` points,
each histogram is associated with a `step` and a `name`. All the histograms
with the same `name` constitute a time series of histograms.
The histogram is calculated over all the elements of the given `Tensor`
without regard to its shape or rank.
This example writes 2 histograms:
```python
w = tf.summary.create_file_writer('test/logs')
with w.as_default():
tf.summary.histogram("activations", tf.random.uniform([100, 50]), step=0)
tf.summary.histogram("initial_weights", tf.random.normal([1000]), step=0)
```
A common use case is to examine the changing activation patterns (or lack
thereof) at specific layers in a neural network, over time.
```python
w = tf.summary.create_file_writer('test/logs')
with w.as_default():
for step in range(100):
# Generate fake "activations".
activations = [
tf.random.normal([1000], mean=step, stddev=1),
tf.random.normal([1000], mean=step, stddev=10),
tf.random.normal([1000], mean=step, stddev=100),
]
tf.summary.histogram("layer1/activate", activations[0], step=step)
tf.summary.histogram("layer2/activate", activations[1], step=step)
tf.summary.histogram("layer3/activate", activations[2], step=step)
```
Arguments:
name: A name for this summary. The summary tag used for TensorBoard will
be this name prefixed by any active name scopes.
data: A `Tensor` of any shape. The histogram is computed over its elements,
which must be castable to `float64`.
step: Explicit `int64`-castable monotonic step value for this summary. If
omitted, this defaults to `tf.summary.experimental.get_step()`, which must
not be None.
buckets: Optional positive `int`. The output will have this
many buckets, except in two edge cases. If there is no data, then
there are no buckets. If there is data but all points have the
same value, then all buckets' left and right endpoints are the same
and only the last bucket has nonzero count. Defaults to 30 if not
specified.
description: Optional long-form description for this summary, as a
constant `str`. Markdown is supported. Defaults to empty.
Returns:
True on success, or false if no summary was emitted because no default
summary writer was available.
Raises:
ValueError: if a default writer exists, but no step was provided and
`tf.summary.experimental.get_step()` is None.
"""
# Avoid building unused gradient graphs for conds below. This works around
# an error building second-order gradient graphs when XlaDynamicUpdateSlice
# is used, and will generally speed up graph building slightly.
data = tf.stop_gradient(data)
summary_metadata = metadata.create_summary_metadata(
display_name=None, description=description
)
# TODO(https://github.com/tensorflow/tensorboard/issues/2109): remove fallback
summary_scope = (
getattr(tf.summary.experimental, "summary_scope", None)
or tf.summary.summary_scope
)
# TODO(ytjing): add special case handling.
with summary_scope(
name, "histogram_summary", values=[data, buckets, step]
) as (tag, _):
# Defer histogram bucketing logic by passing it as a callable to
# write(), wrapped in a LazyTensorCreator for backwards
# compatibility, so that we only do this work when summaries are
# actually written.
@lazy_tensor_creator.LazyTensorCreator
def lazy_tensor():
return _buckets(data, buckets)
return tf.summary.write(
tag=tag,
tensor=lazy_tensor,
step=step,
metadata=summary_metadata,
)
def _buckets(data, bucket_count=None):
"""Create a TensorFlow op to group data into histogram buckets.
Arguments:
data: A `Tensor` of any shape. Must be castable to `float64`.
bucket_count: Optional non-negative `int` or scalar `int32` `Tensor`,
defaults to 30.
Returns:
A `Tensor` of shape `[k, 3]` and type `float64`. The `i`th row is
a triple `[left_edge, right_edge, count]` for a single bucket.
The value of `k` is either `bucket_count` or `0` (when input data
is empty).
"""
if bucket_count is None:
bucket_count = DEFAULT_BUCKET_COUNT
with tf.name_scope("buckets"):
tf.debugging.assert_scalar(bucket_count)
tf.debugging.assert_type(bucket_count, tf.int32)
# Treat a negative bucket count as zero.
bucket_count = tf.math.maximum(0, bucket_count)
data = tf.reshape(data, shape=[-1]) # flatten
data = tf.cast(data, tf.float64)
data_size = tf.size(input=data)
is_empty = tf.logical_or(
tf.equal(data_size, 0), tf.less_equal(bucket_count, 0)
)
def when_empty():
"""When input data is empty or bucket_count is zero.
1. If bucket_count is specified as zero, an empty tensor of shape
(0, 3) will be returned.
2. If the input data is empty, a tensor of shape (bucket_count, 3)
of all zero values will be returned.
"""
return tf.zeros((bucket_count, 3), dtype=tf.float64)
def when_nonempty():
min_ = tf.reduce_min(input_tensor=data)
max_ = tf.reduce_max(input_tensor=data)
range_ = max_ - min_
has_single_value = tf.equal(range_, 0)
def when_multiple_values():
"""When input data contains multiple values."""
bucket_width = range_ / tf.cast(bucket_count, tf.float64)
offsets = data - min_
bucket_indices = tf.cast(
tf.floor(offsets / bucket_width), dtype=tf.int32
)
clamped_indices = tf.minimum(bucket_indices, bucket_count - 1)
# Use float64 instead of float32 to avoid accumulating floating point error
# later in tf.reduce_sum when summing more than 2^24 individual `1.0` values.
# See https://github.com/tensorflow/tensorflow/issues/51419 for details.
one_hots = tf.one_hot(
clamped_indices, depth=bucket_count, dtype=tf.float64
)
bucket_counts = tf.cast(
tf.reduce_sum(input_tensor=one_hots, axis=0),
dtype=tf.float64,
)
edges = tf.linspace(min_, max_, bucket_count + 1)
# Ensure edges[-1] == max_, which TF's linspace implementation does not
# do, leaving it subject to the whim of floating point rounding error.
edges = tf.concat([edges[:-1], [max_]], 0)
left_edges = edges[:-1]
right_edges = edges[1:]
return tf.transpose(
a=tf.stack([left_edges, right_edges, bucket_counts])
)
def when_single_value():
"""When input data contains a single unique value."""
# Left and right edges are the same for single value input.
edges = tf.fill([bucket_count], max_)
# Bucket counts are 0 except the last bucket (if bucket_count > 0),
# which is `data_size`. Ensure that the resulting counts vector has
# length `bucket_count` always, including the bucket_count==0 case.
zeroes = tf.fill([bucket_count], 0)
bucket_counts = tf.cast(
tf.concat([zeroes[:-1], [data_size]], 0)[:bucket_count],
dtype=tf.float64,
)
return tf.transpose(a=tf.stack([edges, edges, bucket_counts]))
return tf.cond(
has_single_value, when_single_value, when_multiple_values
)
return tf.cond(is_empty, when_empty, when_nonempty)