ai-content-maker/.venv/Lib/site-packages/thinc-8.2.3.dist-info/METADATA

267 lines
15 KiB
Plaintext
Raw Permalink Normal View History

2024-05-03 04:18:51 +03:00
Metadata-Version: 2.1
Name: thinc
Version: 8.2.3
Summary: A refreshing functional take on deep learning, compatible with your favorite libraries
Home-page: https://github.com/explosion/thinc
Author: Explosion
Author-email: contact@explosion.ai
License: MIT
Classifier: Development Status :: 5 - Production/Stable
Classifier: Environment :: Console
Classifier: Intended Audience :: Developers
Classifier: Intended Audience :: Science/Research
Classifier: License :: OSI Approved :: MIT License
Classifier: Operating System :: POSIX :: Linux
Classifier: Operating System :: MacOS :: MacOS X
Classifier: Operating System :: Microsoft :: Windows
Classifier: Programming Language :: Cython
Classifier: Programming Language :: Python :: 3
Classifier: Programming Language :: Python :: 3.6
Classifier: Programming Language :: Python :: 3.7
Classifier: Programming Language :: Python :: 3.8
Classifier: Programming Language :: Python :: 3.9
Classifier: Programming Language :: Python :: 3.10
Classifier: Programming Language :: Python :: 3.11
Classifier: Programming Language :: Python :: 3.12
Classifier: Topic :: Scientific/Engineering
Requires-Python: >=3.6
Description-Content-Type: text/markdown
License-File: LICENSE
Requires-Dist: blis <0.8.0,>=0.7.8
Requires-Dist: murmurhash <1.1.0,>=1.0.2
Requires-Dist: cymem <2.1.0,>=2.0.2
Requires-Dist: preshed <3.1.0,>=3.0.2
Requires-Dist: wasabi <1.2.0,>=0.8.1
Requires-Dist: srsly <3.0.0,>=2.4.0
Requires-Dist: catalogue <2.1.0,>=2.0.4
Requires-Dist: confection <1.0.0,>=0.0.1
Requires-Dist: setuptools
Requires-Dist: pydantic !=1.8,!=1.8.1,<3.0.0,>=1.7.4
Requires-Dist: packaging >=20.0
Requires-Dist: dataclasses <1.0,>=0.6 ; python_version < "3.7"
Requires-Dist: contextvars <3,>=2.4 ; python_version < "3.7"
Requires-Dist: typing-extensions <4.5.0,>=3.7.4.1 ; python_version < "3.8"
Requires-Dist: numpy >=1.15.0 ; python_version < "3.9"
Requires-Dist: numpy >=1.19.0 ; python_version >= "3.9"
Provides-Extra: cuda
Requires-Dist: cupy >=5.0.0b4 ; extra == 'cuda'
Provides-Extra: cuda-autodetect
Requires-Dist: cupy-wheel >=11.0.0 ; extra == 'cuda-autodetect'
Provides-Extra: cuda100
Requires-Dist: cupy-cuda100 >=5.0.0b4 ; extra == 'cuda100'
Provides-Extra: cuda101
Requires-Dist: cupy-cuda101 >=5.0.0b4 ; extra == 'cuda101'
Provides-Extra: cuda102
Requires-Dist: cupy-cuda102 >=5.0.0b4 ; extra == 'cuda102'
Provides-Extra: cuda110
Requires-Dist: cupy-cuda110 >=5.0.0b4 ; extra == 'cuda110'
Provides-Extra: cuda111
Requires-Dist: cupy-cuda111 >=5.0.0b4 ; extra == 'cuda111'
Provides-Extra: cuda112
Requires-Dist: cupy-cuda112 >=5.0.0b4 ; extra == 'cuda112'
Provides-Extra: cuda113
Requires-Dist: cupy-cuda113 >=5.0.0b4 ; extra == 'cuda113'
Provides-Extra: cuda114
Requires-Dist: cupy-cuda114 >=5.0.0b4 ; extra == 'cuda114'
Provides-Extra: cuda115
Requires-Dist: cupy-cuda115 >=5.0.0b4 ; extra == 'cuda115'
Provides-Extra: cuda116
Requires-Dist: cupy-cuda116 >=5.0.0b4 ; extra == 'cuda116'
Provides-Extra: cuda117
Requires-Dist: cupy-cuda117 >=5.0.0b4 ; extra == 'cuda117'
Provides-Extra: cuda11x
Requires-Dist: cupy-cuda11x >=11.0.0 ; extra == 'cuda11x'
Provides-Extra: cuda12x
Requires-Dist: cupy-cuda12x >=11.5.0 ; extra == 'cuda12x'
Provides-Extra: cuda80
Requires-Dist: cupy-cuda80 >=5.0.0b4 ; extra == 'cuda80'
Provides-Extra: cuda90
Requires-Dist: cupy-cuda90 >=5.0.0b4 ; extra == 'cuda90'
Provides-Extra: cuda91
Requires-Dist: cupy-cuda91 >=5.0.0b4 ; extra == 'cuda91'
Provides-Extra: cuda92
Requires-Dist: cupy-cuda92 >=5.0.0b4 ; extra == 'cuda92'
Provides-Extra: datasets
Requires-Dist: ml-datasets <0.3.0,>=0.2.0 ; extra == 'datasets'
Provides-Extra: mxnet
Requires-Dist: mxnet <1.6.0,>=1.5.1 ; extra == 'mxnet'
Provides-Extra: tensorflow
Requires-Dist: tensorflow <2.6.0,>=2.0.0 ; extra == 'tensorflow'
Provides-Extra: torch
Requires-Dist: torch >=1.6.0 ; extra == 'torch'
<a href="https://explosion.ai"><img src="https://explosion.ai/assets/img/logo.svg" width="125" height="125" align="right" /></a>
# Thinc: A refreshing functional take on deep learning, compatible with your favorite libraries
### From the makers of [spaCy](https://spacy.io) and [Prodigy](https://prodi.gy)
[Thinc](https://thinc.ai) is a **lightweight deep learning library** that offers
an elegant, type-checked, functional-programming API for **composing models**,
with support for layers defined in other frameworks such as **PyTorch,
TensorFlow and MXNet**. You can use Thinc as an interface layer, a standalone
toolkit or a flexible way to develop new models. Previous versions of Thinc have
been running quietly in production in thousands of companies, via both
[spaCy](https://spacy.io) and [Prodigy](https://prodi.gy). We wrote the new
version to let users **compose, configure and deploy custom models** built with
their favorite framework.
[![tests](https://github.com/explosion/thinc/actions/workflows/tests.yml/badge.svg)](https://github.com/explosion/thinc/actions/workflows/tests.yml)
[![Current Release Version](https://img.shields.io/github/v/release/explosion/thinc.svg?include_prereleases&sort=semver&style=flat-square&logo=github)](https://github.com/explosion/thinc/releases)
[![PyPi Version](https://img.shields.io/pypi/v/thinc.svg?include_prereleases&sort=semver&style=flat-square&logo=pypi&logoColor=white)](https://pypi.python.org/pypi/thinc)
[![conda Version](https://img.shields.io/conda/vn/conda-forge/thinc.svg?style=flat-square&logo=conda-forge&logoColor=white)](https://anaconda.org/conda-forge/thinc)
[![Python wheels](https://img.shields.io/badge/wheels-%E2%9C%93-4c1.svg?longCache=true&style=flat-square&logo=python&logoColor=white)](https://github.com/explosion/wheelwright/releases)
[![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg?style=flat-square)](https://github.com/ambv/black)
[![Open demo in Colab][colab]][intro_to_thinc_colab]
## 🔥 Features
- **Type-check** your model definitions with custom types and
[`mypy`](https://mypy.readthedocs.io/en/latest/) plugin.
- Wrap **PyTorch**, **TensorFlow** and **MXNet** models for use in your network.
- Concise **functional-programming** approach to model definition, using
composition rather than inheritance.
- Optional custom infix notation via **operator overloading**.
- Integrated **config system** to describe trees of objects and hyperparameters.
- Choice of **extensible backends**.
- **[Read more &rarr;](https://thinc.ai/docs)**
## 🚀 Quickstart
Thinc is compatible with **Python 3.6+** and runs on **Linux**, **macOS** and
**Windows**. The latest releases with binary wheels are available from
[pip](https://pypi.python.org/pypi/thinc). Before you install Thinc and its
dependencies, make sure that your `pip`, `setuptools` and `wheel` are up to
date. For the most recent releases, pip 19.3 or newer is recommended.
```bash
pip install -U pip setuptools wheel
pip install thinc
```
See the [extended installation docs](https://thinc.ai/docs/install#extended) for
details on optional dependencies for different backends and GPU. You might also
want to
[set up static type checking](https://thinc.ai/docs/install#type-checking) to
take advantage of Thinc's type system.
> ⚠️ If you have installed PyTorch and you are using Python 3.7+, uninstall the
> package `dataclasses` with `pip uninstall dataclasses`, since it may have been
> installed by PyTorch and is incompatible with Python 3.7+.
### 📓 Selected examples and notebooks
Also see the [`/examples`](examples) directory and
[usage documentation](https://thinc.ai/docs) for more examples. Most examples
are Jupyter notebooks to launch them on
[Google Colab](https://colab.research.google.com) (with GPU support!) click on
the button next to the notebook name.
| Notebook | Description |
| --------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| [`intro_to_thinc`][intro_to_thinc]<br />[![Open in Colab][colab]][intro_to_thinc_colab] | Everything you need to know to get started. Composing and training a model on the MNIST data, using config files, registering custom functions and wrapping PyTorch, TensorFlow and MXNet models. |
| [`transformers_tagger_bert`][transformers_tagger_bert]<br />[![Open in Colab][colab]][transformers_tagger_bert_colab] | How to use Thinc, `transformers` and PyTorch to train a part-of-speech tagger. From model definition and config to the training loop. |
| [`pos_tagger_basic_cnn`][pos_tagger_basic_cnn]<br />[![Open in Colab][colab]][pos_tagger_basic_cnn_colab] | Implementing and training a basic CNN for part-of-speech tagging model without external dependencies and using different levels of Thinc's config system. |
| [`parallel_training_ray`][parallel_training_ray]<br />[![Open in Colab][colab]][parallel_training_ray_colab] | How to set up synchronous and asynchronous parameter server training with Thinc and [Ray](https://ray.readthedocs.io/en/latest/). |
**[View more &rarr;](examples)**
[colab]:
https://gistcdn.githack.com/ines/dcf354aa71a7665ae19871d7fd14a4e0/raw/461fc1f61a7bc5860f943cd4b6bcfabb8c8906e7/colab-badge.svg
[intro_to_thinc]: examples/00_intro_to_thinc.ipynb
[intro_to_thinc_colab]:
https://colab.research.google.com/github/explosion/thinc/blob/master/examples/00_intro_to_thinc.ipynb
[transformers_tagger_bert]: examples/02_transformers_tagger_bert.ipynb
[transformers_tagger_bert_colab]:
https://colab.research.google.com/github/explosion/thinc/blob/master/examples/02_transformers_tagger_bert.ipynb
[pos_tagger_basic_cnn]: examples/03_pos_tagger_basic_cnn.ipynb
[pos_tagger_basic_cnn_colab]:
https://colab.research.google.com/github/explosion/thinc/blob/master/examples/03_pos_tagger_basic_cnn.ipynb
[parallel_training_ray]: examples/04_parallel_training_ray.ipynb
[parallel_training_ray_colab]:
https://colab.research.google.com/github/explosion/thinc/blob/master/examples/04_parallel_training_ray.ipynb
### 📖 Documentation & usage guides
| Documentation | Description |
| --------------------------------------------------------------------------------- | ----------------------------------------------------- |
| [Introduction](https://thinc.ai/docs) | Everything you need to know. |
| [Concept & Design](https://thinc.ai/docs/concept) | Thinc's conceptual model and how it works. |
| [Defining and using models](https://thinc.ai/docs/usage-models) | How to compose models and update state. |
| [Configuration system](https://thinc.ai/docs/usage-config) | Thinc's config system and function registry. |
| [Integrating PyTorch, TensorFlow & MXNet](https://thinc.ai/docs/usage-frameworks) | Interoperability with machine learning frameworks |
| [Layers API](https://thinc.ai/docs/api-layers) | Weights layers, transforms, combinators and wrappers. |
| [Type Checking](https://thinc.ai/docs/usage-type-checking) | Type-check your model definitions and more. |
## 🗺 What's where
| Module | Description |
| ----------------------------------------- | --------------------------------------------------------------------------------- |
| [`thinc.api`](thinc/api.py) | **User-facing API.** All classes and functions should be imported from here. |
| [`thinc.types`](thinc/types.py) | Custom [types and dataclasses](https://thinc.ai/docs/api-types). |
| [`thinc.model`](thinc/model.py) | The `Model` class. All Thinc models are an instance (not a subclass) of `Model`. |
| [`thinc.layers`](thinc/layers) | The layers. Each layer is implemented in its own module. |
| [`thinc.shims`](thinc/shims) | Interface for external models implemented in PyTorch, TensorFlow etc. |
| [`thinc.loss`](thinc/loss.py) | Functions to calculate losses. |
| [`thinc.optimizers`](thinc/optimizers.py) | Functions to create optimizers. Currently supports "vanilla" SGD, Adam and RAdam. |
| [`thinc.schedules`](thinc/schedules.py) | Generators for different rates, schedules, decays or series. |
| [`thinc.backends`](thinc/backends) | Backends for `numpy` and `cupy`. |
| [`thinc.config`](thinc/config.py) | Config parsing and validation and function registry system. |
| [`thinc.util`](thinc/util.py) | Utilities and helper functions. |
## 🐍 Development notes
Thinc uses [`black`](https://github.com/psf/black) for auto-formatting,
[`flake8`](http://flake8.pycqa.org/en/latest/) for linting and
[`mypy`](https://mypy.readthedocs.io/en/latest/) for type checking. All code is
written compatible with **Python 3.6+**, with type hints wherever possible. See
the [type reference](https://thinc.ai/docs/api-types) for more details on
Thinc's custom types.
### 👷‍♀️ Building Thinc from source
Building Thinc from source requires the full dependencies listed in
[`requirements.txt`](requirements.txt) to be installed. You'll also need a
compiler to build the C extensions.
```bash
git clone https://github.com/explosion/thinc
cd thinc
python -m venv .env
source .env/bin/activate
pip install -U pip setuptools wheel
pip install -r requirements.txt
pip install --no-build-isolation .
```
Alternatively, install in editable mode:
```bash
pip install -r requirements.txt
pip install --no-build-isolation --editable .
```
Or by setting `PYTHONPATH`:
```bash
export PYTHONPATH=`pwd`
pip install -r requirements.txt
python setup.py build_ext --inplace
```
### 🚦 Running tests
Thinc comes with an [extensive test suite](thinc/tests). The following should
all pass and not report any warnings or errors:
```bash
python -m pytest thinc # test suite
python -m mypy thinc # type checks
python -m flake8 thinc # linting
```
To view test coverage, you can run `python -m pytest thinc --cov=thinc`. We aim
for a 100% test coverage. This doesn't mean that we meticulously write tests for
every single line we ignore blocks that are not relevant or difficult to test
and make sure that the tests execute all code paths.