ai-content-maker/.venv/Lib/site-packages/thinc/backends/_custom_kernels.cu

659 lines
18 KiB
Plaintext
Raw Permalink Normal View History

2024-05-03 04:18:51 +03:00
// Use grid strided loops, described here:
// https://devblogs.nvidia.com/cuda-pro-tip-write-flexible-kernels-grid-stride-loops/
// This pattern ensures that all of the loop values are visited once, no matter
// what grid parameters are used for the function.
// We cannot include CUDA header for mathematical constants, since it requires
// that the development headers of the CUDA toolkit are installed.
template <typename T>
struct Constants {};
template <>
struct Constants<double> {
static constexpr double INV_SQRT_2 = 0.7071067811865475;
static constexpr double INV_SQRT_2PI = 0.3989422804014327;
};
template <>
struct Constants<float> {
static constexpr float INV_SQRT_2 = 0.70710677;
static constexpr float INV_SQRT_2PI = 0.3989423;
};
template <typename U>
__global__ void gather_add(U* out_bo, const U* table_to, const int* indices_bk,
int T, int O, int B, int K)
{
int _loop_start = blockIdx.x * blockDim.x + threadIdx.x;
int _loop_stride = blockDim.x * gridDim.x;
for (int b = _loop_start; b < B; b += _loop_stride) {
for (int k = 0; k < K; ++k) {
int idx = indices_bk[b * K + k];
const U* table = table_to + idx * O;
U* out = out_bo + b * O;
for (int o = 0; o < O; ++o) {
out[o] += table[o];
}
}
}
}
template <typename T>
__global__ void seq2col(T* output, const T* X, const int* lengths,
int nW, int B, int I, int nL)
{
// Let's say nW is 1 (it usually is). Then we want to take:
// 1a 1b 1c
// 2a 2b 2c
// 3a 3b 3c
// And make
// __ __ __ 1a 1b 1c 2a 2b 2c
// 1a 1b 1c 2a 2b 2c 3a 3b 3c
// 2a 2b 2c 3a 3b 3c __ __ __
// Where __ is padding.
// Now let's say nW is 2. Then we want to take:
// 1a 1b 1c
// 2a 2b 2c
// 3a 3b 3c
// And make
// __ __ __ __ __ __ 1a 1b 1c 2a 2b 2c 3a 3b 3c
// __ __ __ 1a 1b 1c 2a 2b 2c 3a 3b 3c __ __ __
// 1a 1b 1c 2a 2b 2c 3a 3b 3c __ __ __ __ __ __
// * x_start=-6, x_end=9 : (0-2) * 3, (0+2+1) * 3
// * x_start=-3, x_end=13 : (1-2) * 3, (1+2+1) * 3
// * x_start=0, x_end=16 : (2-2) * 3, (2+2+1) * 3
//
// If lengths > 1, then the sequence lengths dictate
// the boundaries/padding rather than the begin/end
// of X.
int _loop_start = blockIdx.x * blockDim.x + threadIdx.x;
int _loop_stride = blockDim.x * gridDim.x;
int nF = nW * 2 + 1;
int seq = 0;
int seq_start = 0;
for (int b = _loop_start; b < B; b += _loop_stride)
{
// Find sequence sequence in which b lies.
for (; seq < nL; ++seq) {
if (b < seq_start + lengths[seq]) {
break;
}
seq_start += lengths[seq];
}
// Calculate the bounds of the sequence wherein b lies.
int seq_end = seq_start + lengths[seq];
// Find the unconstrained window around b, which
// may be out of the sequence bounds.
int window_start = b - nW;
int window_end = b + nW + 1;
// Find the sequence-constrained window around b.
int x_start = max(seq_start, window_start);
int x_end = min(seq_end, window_end);
int n_elems = x_end - x_start;
// If the left window is cut short, we want to start by
// the same amount in the output.
int out_offset = x_start - window_start;
for (int i = 0; i < n_elems * I; i++) {
output[(b * I * nF) + (out_offset * I) + i] =
X[(x_start * I) + i];
}
}
}
template <typename T>
__global__ void pad(T* out, T const **seqs, int const *lengths, int stride, int N, int L)
{
int _loop_start = blockIdx.x * blockDim.x + threadIdx.x;
int _loop_stride = blockDim.x * gridDim.x;
for (int i = _loop_start; i < L * stride; i += _loop_stride) {
for (int j = 0; j < N; ++j) {
T const *seq = seqs[j];
if (i < lengths[j] * stride) {
out[j * L * stride + i] = seq[i];
} else {
out[j * L * stride + i] = T();
}
}
}
}
template <typename T>
__global__ void maxout(T* best, int* which, const T* cands, int B, int O, int P)
{
int _loop_start = blockIdx.x * blockDim.x + threadIdx.x;
int _loop_stride = blockDim.x * gridDim.x;
for (int bo = _loop_start; bo < B * O; bo += _loop_stride)
{
// Go to the candidates at the output we're working on
const T* cands_bo = &cands[bo * P];
int best_idx = 0;
T best_val = cands_bo[0];
for (int p = 1; p < P; ++p)
{
if (cands_bo[p] > best_val) {
best_idx = p;
best_val = cands_bo[p];
}
}
which[bo] = best_idx;
best[bo] = best_val;
}
}
template <typename T>
__global__ void clipped_linear(T* Y, const T* X, double slope, double offset, double min_val, double max_val, int N)
{
int _loop_start = blockIdx.x * blockDim.x + threadIdx.x;
int _loop_stride = blockDim.x * gridDim.x;
for (int i = _loop_start; i < N; i += _loop_stride)
{
T y = X[i] * slope + offset;
Y[i] = min(max(y, min_val), max_val);
}
}
template <typename T>
__global__ void dish(T* Y, const T* X, int N)
{
int _loop_start = blockIdx.x * blockDim.x + threadIdx.x;
int _loop_stride = blockDim.x * gridDim.x;
for (int i = _loop_start; i < N; i += _loop_stride)
{
T x = X[i];
Y[i] = 0.5 * x * (x / sqrt(1 + x * x) + 1);
}
}
template <typename T>
__global__ void gelu(T* Y, const T* X, double threshold, int N)
{
int _loop_start = blockIdx.x * blockDim.x + threadIdx.x;
int _loop_stride = blockDim.x * gridDim.x;
for (int i = _loop_start; i < N; i += _loop_stride)
{
T x = X[i];
if (x >= threshold) {
Y[i] = x;
} else if (x <= -threshold) {
Y[i] = 0.0;
} else {
T cdf = 0.5 * (1.0 + erf(Constants<T>::INV_SQRT_2 * x));
Y[i] = x * cdf;
}
}
}
template <typename T>
__global__ void mish(T* Y, const T* X, double threshold, int N)
{
int _loop_start = blockIdx.x * blockDim.x + threadIdx.x;
int _loop_stride = blockDim.x * gridDim.x;
T one = 1.;
for (int i = _loop_start; i < N; i += _loop_stride)
{
if (X[i] >= threshold)
Y[i] = X[i];
else
Y[i] = X[i] * tanh(log(one + exp(X[i])));
}
}
template <typename T>
__global__ void swish(T* Y, const T* X, double threshold, int N)
{
int _loop_start = blockIdx.x * blockDim.x + threadIdx.x;
int _loop_stride = blockDim.x * gridDim.x;
for (int i = _loop_start; i < N; i += _loop_stride)
{
if (X[i] >= threshold) {
Y[i] = X[i];
} else if (X[i] <= -threshold) {
Y[i] = 0.0;
} else {
T logistic_cdf = 1.0 / (1.0 + exp(-X[i]));
Y[i] = X[i] * logistic_cdf;
}
}
}
template <typename U>
__global__ void reduce_sum(U* output, const U* X,
const int* lengths, int B, int T, int O)
{
// Compute sums of a batch of concatenated sequences
int _loop_start = blockIdx.x * blockDim.x + threadIdx.x;
int _loop_stride = blockDim.x * gridDim.x;
for (int b = _loop_start; b < B; b += _loop_stride)
{
// Go to the regions we're working on
U* output_b = &output[b*O];
// Find the sequence item we're working on
int t = 0;
for (int i=0; i < b; ++i) {
t += lengths[i];
}
int length = lengths[b];
// Each invocation of the kernel sums one batch.
for (int i=0; i < length; ++i) // Iterate over rows
{
const U* X_t = &X[(t+i)*O];
for (int j=0; j < O; ++j)
{
output_b[j] += X_t[j];
}
}
}
}
template <typename U>
__global__ void reduce_max(U* maxes, int* which,
const U* X, const int* lengths, int B, int T, int O)
{
int _loop_start = blockIdx.x * blockDim.x + threadIdx.x;
int _loop_stride = blockDim.x * gridDim.x;
for (int b = _loop_start; b < B; b += _loop_stride)
{
// Go to the regions we're working on
U* maxes_b = &maxes[b*O];
int* which_b = &which[b*O];
// Find the sequence item we're working on
const U* X_t = X;
for (int i=0; i < b; ++i) {
X_t += lengths[i] * O;
}
// Each invocation of the kernel maxes one sequence.
// Start by assuming maxes are the first element.
for (int i=0; i < O; ++i) {
maxes_b[i] = X_t[i];
which_b[i] = 0;
}
int length = lengths[b];
for (int i=1; i < length; ++i) // Iterate over rows
{
X_t += O;
for (int j=0; j < O; ++j)
{
if (X_t[j] > maxes_b[j])
{
maxes_b[j] = X_t[j];
which_b[j] = i;
}
}
}
}
}
template <typename T>
__global__ void backprop_seq2col(T* d_seqs, const T* d_cols, const int* lengths,
int nW, int B, int I, int nL)
{
// Here's what we're doing, if we had 2d indexing.
//for i in range(B):
// d_seq[i] += d_cols[i-2, 4]
// d_seq[i] += d_cols[i-1, 3]
// d_seq[i] += d_cols[i, 2]
// d_seq[i] += d_cols[i+1, 1]
// d_seq[i] += d_cols[i+2, 0]
int _loop_start = blockIdx.x * blockDim.x + threadIdx.x;
int _loop_stride = blockDim.x * gridDim.x;
int nF = nW * 2 + 1;
int seq = 0;
int seq_start = 0;
for (int b = _loop_start; b < B; b += _loop_stride)
{
// Find sequence offset in which b lies.
// Fixme: do not restart offset search for every b.
for (; seq < nL; ++seq) {
if (b < seq_start + lengths[seq]) {
break;
}
seq_start += lengths[seq];
}
// Calculate the bounds of the sequence wherein b lies.
int seq_end = seq_start + lengths[seq];
// Find the unconstrained window around b, which
// may be out of the sequence bounds.
int window_start = b - nW;
int window_end = b + nW + 1;
// Find the sequence-constrained window around b.
int d_seqs_start = max(seq_start, window_start);
int d_seqs_end = min(seq_end, window_end);
// The here update proceeds differently than the other seq2col
// implementations. We have to do all the updates for the b in this loop
// iteration, otherwise we get data races due to parallelism in CUDA.
//
// A batch item b occurs, given nw=1, in:
//
// position 0 in b - 1 (if present) <- window_start
// position 1 in b
// position 2 in b + 1 (if present) <- window_end
//
// The following loop sums the gradients for those occurrences.
// b_w loops over [b - 1, b, b + 1] and computes the position
// of b within the column gradients of [b - 1 ... b + 1].
for (int b_w = d_seqs_start; b_w < d_seqs_end; ++b_w) {
int position = (2 * nW) - (b_w - window_start);
int start = (b_w * I * nF) + (position * I);
for (int i = 0; i < I; ++i) {
d_seqs[(b*I + i)] += d_cols[start + i];
}
}
}
}
template <typename T>
__global__ void backprop_clipped_linear(T* dX, const T* dY, const T* X, double slope, double offset, double min_val, double max_val, int N)
{
int _loop_start = blockIdx.x * blockDim.x + threadIdx.x;
int _loop_stride = blockDim.x * gridDim.x;
T low = (min_val - offset) / slope;
T high = (max_val - offset) / slope;
for (int i = _loop_start; i < N; i += _loop_stride)
{
T x = X[i];
if (low < x && x < high) {
dX[i] = dY[i] * slope;
} else {
dX[i] = 0;
}
}
}
template <typename T>
__global__ void backprop_hard_swish(T* dX, const T* dY, const T* X, int N)
{
int _loop_start = blockIdx.x * blockDim.x + threadIdx.x;
int _loop_stride = blockDim.x * gridDim.x;
for (int i = _loop_start; i < N; i += _loop_stride)
{
if (X[i] > 2.5) {
dX[i] = dY[i];
} else if (X[i] < -2.5) {
dX[i] = 0;
} else {
dX[i] = dY[i] * (X[i] * 0.4 + 0.5);
}
}
}
template <typename T>
__global__ void backprop_hard_swish_mobilenet(T* dX, const T* dY, const T* X, int N)
{
int _loop_start = blockIdx.x * blockDim.x + threadIdx.x;
int _loop_stride = blockDim.x * gridDim.x;
for (int i = _loop_start; i < N; i += _loop_stride)
{
if (X[i] > 3.0) {
dX[i] = dY[i];
} else if (X[i] < -3.0) {
dX[i] = 0;
} else {
dX[i] = dY[i] * ((X[i] * 2.0 + 3.0) / 6.0);
}
}
}
template <typename T>
__global__ void backprop_dish(T* dX, const T* dY, const T* X, int N)
{
int _loop_start = blockIdx.x * blockDim.x + threadIdx.x;
int _loop_stride = blockDim.x * gridDim.x;
for (int i = _loop_start; i < N; i += _loop_stride)
{
T x = X[i];
T x_sq = x * x;
T x_sq_plus_one = x_sq + 1.0;
dX[i] = dY[i] * (x/sqrt(x_sq_plus_one) - (0.5 * x * x_sq)
/ pow(x_sq_plus_one, static_cast<T>(1.5)) + 0.5);
}
}
template <typename T>
__global__ void backprop_gelu(T* dX, const T* dY, const T* X,
double threshold, int N)
{
int _loop_start = blockIdx.x * blockDim.x + threadIdx.x;
int _loop_stride = blockDim.x * gridDim.x;
for (int i = _loop_start; i < N; i += _loop_stride)
{
T x = X[i];
if (x >= threshold) {
dX[i] = dY[i];
} else if (x <= -threshold) {
dX[i] = 0.0;
} else {
T cdf = 0.5 * (1.0 + erf(Constants<T>::INV_SQRT_2 * x));
T pdf = Constants<T>::INV_SQRT_2PI * exp(-0.5 * x * x);
dX[i] = dY[i] * (cdf + x * pdf);
}
}
}
template <typename T>
__global__ void backprop_maxout(T* dX,
const T* dY, const int* which, int B, int O, int P)
{
int _loop_start = blockIdx.x * blockDim.x + threadIdx.x;
int _loop_stride = blockDim.x * gridDim.x;
for (int b = _loop_start; b < B; b += _loop_stride)
{
// Go to the regions we're working on
T* dX_b = &dX[b*O*P];
const T* dY_b = &dY[b*O];
const int* which_b = &which[b*O];
for (int i=0; i < O; ++i)
dX_b[(i*P)+which_b[i]] = dY_b[i];
}
}
template <typename T>
__global__ void backprop_mish(T* dX,
const T* dY, const T* X, double threshold, int N)
{
int _loop_start = blockIdx.x * blockDim.x + threadIdx.x;
int _loop_stride = blockDim.x * gridDim.x;
for (int i = _loop_start; i < N; i += _loop_stride)
{
T x = X[i];
if (x >= threshold)
{
dX[i] = dY[i];
} else
{
T exp_x = exp(x);
T exp_2x = exp(2*x);
T exp_3x = exp(3*x);
T omega = (4. * (x+1)) + (4 * exp_2x) + exp_3x + exp_x * (4.*x+6);
T delta = 2 * exp_x + exp_2x + 2;
dX[i] = dY[i] * ((exp_x * omega) / (delta * delta));
}
}
}
template <typename T>
__global__ void backprop_swish(T* dX, const T* dY, const T* X,
const T* Y, double threshold, int N)
{
int _loop_start = blockIdx.x * blockDim.x + threadIdx.x;
int _loop_stride = blockDim.x * gridDim.x;
for (int i = _loop_start; i < N; i += _loop_stride)
{
T x = X[i];
T y = Y[i];
if (x >= threshold) {
dX[i] = dY[i];
} else if (x <= -threshold) {
dX[i] = 0.0;
} else {
T cdf = 1.0 / (1 + exp(-x));
T d = y + cdf * (1 - y);
dX[i] = dY[i] * d;
}
}
}
template <typename U>
__global__ void backprop_reduce_sum(U* dX, const U* d_sum, const int* lengths,
int B, int T, int O)
{
int _loop_start = blockIdx.x * blockDim.x + threadIdx.x;
int _loop_stride = blockDim.x * gridDim.x;
int seq_start = 0;
int b = 0;
for (int t = _loop_start; t < T; t += _loop_stride)
{
// Find the sequence item we're working on
while ((b < B) && (seq_start+lengths[b]) <= t)
{
seq_start += lengths[b];
b += 1;
}
if (lengths[b] == 0)
continue;
for (int i=0; i < O; ++i)
{
dX[t * O + i] = d_sum[b * O + i];
}
}
}
template <typename U>
__global__ void backprop_reduce_mean(U* dX, const U* d_mean, const int* lengths,
int B, int T, int O)
{
int _loop_start = blockIdx.x * blockDim.x + threadIdx.x;
int _loop_stride = blockDim.x * gridDim.x;
int seq_start = 0;
int b = 0;
for (int t = _loop_start; t < T; t += _loop_stride)
{
// Find the sequence item we're working on
while ((b < B) && (seq_start+lengths[b]) <= t)
{
seq_start += lengths[b];
b += 1;
}
if (lengths[b] == 0)
continue;
U* dX_t = &dX[t * O];
const U* d_mean_b = &d_mean[b * O];
int lengths_b = lengths[b];
for (int i=0; i < O; ++i)
{
dX_t[i] = d_mean_b[i] / lengths_b;
}
}
}
template <typename U>
__global__ void backprop_reduce_max(U* dX, const U* d_maxes,
const int* which, const int* lengths, int B, int T, int O)
{
int _loop_start = blockIdx.x * blockDim.x + threadIdx.x;
int _loop_stride = blockDim.x * gridDim.x;
int seq_start = 0;
int b = 0;
for (int t = _loop_start; t < T; t += _loop_stride)
{
// We're calculating the gradient of the unpooled sequences, from
// the gradient of the maxes. In this loop, we're getting the gradient
// of a single sequence item, t. We need to know the sequence index,
// b.
while ((b < B) && (seq_start+lengths[b]) <= t)
{
seq_start += lengths[b];
b += 1;
}
if (lengths[b] == 0)
continue;
// The "which" array tells us which rows were selected as the max.
// So we need to find the index of our t in the sequence.
int index_of_t = t-seq_start;
// Get the rows we're dealing with, to avoid cluttering the loop
// with the index math.
U* dX_t = &dX[t*O];
const U* d_maxes_b = &d_maxes[b*O];
const int* which_b = &which[b*O];
// Now loop over our row.
for (int i=0; i < O; ++i)
{
// If we used the value for this cell,
// pass the gradient
if (which_b[i] == index_of_t)
dX_t[i] = d_maxes_b[i];
}
}
}