ai-content-maker/.venv/Lib/site-packages/thinc/tests/layers/test_softmax.py

93 lines
2.8 KiB
Python
Raw Permalink Normal View History

2024-05-03 04:18:51 +03:00
from typing import Tuple, cast
import numpy
import pytest
from numpy.testing import assert_allclose
from thinc.api import Model, NumpyOps, Softmax_v2
from thinc.types import Floats2d, Ints1d
from thinc.util import has_torch, torch2xp, xp2torch
OPS = NumpyOps()
inputs = OPS.xp.asarray([[4, 2, 3, 4], [1, 5, 3, 1], [9, 8, 5, 7]], dtype="f")
outputs = OPS.xp.asarray(
[
[0.39948627, 0.05406459, 0.14696279, 0.39948627],
[0.01562812, 0.8532666, 0.11547707, 0.01562812],
[0.657233, 0.24178252, 0.01203764, 0.08894681],
],
dtype="f",
)
def test_unnormalized_softmax_backprop():
model = Softmax_v2(normalize_outputs=False)
model.initialize(inputs, outputs)
_, backprop = model(inputs, is_train=False)
with pytest.raises(ValueError, match="backprop is not supported"):
backprop(OPS.xp.zeros_like(outputs))
# Backprop should not fail when training.
_, backprop = model(inputs, is_train=True)
dX = backprop(OPS.xp.zeros_like(outputs))
assert OPS.xp.all(dX == 0.0)
def torch_softmax_with_temperature(
model: Model, X: Floats2d, targets: Ints1d
) -> Tuple[Floats2d, Floats2d]:
import torch
Wt = xp2torch(model.get_param("W"))
bt = xp2torch(model.get_param("b"))
temperature = model.attrs["softmax_temperature"]
Xt = xp2torch(X, requires_grad=True)
Yt_gold = xp2torch(targets).long()
XWbt = (Xt @ Wt) + bt
XWbt_temp = XWbt / temperature
loss = torch.nn.CrossEntropyLoss()
output = loss(XWbt_temp, Yt_gold)
output.backward()
return cast(
Floats2d, torch2xp(torch.nn.functional.softmax(XWbt_temp, dim=-1))
), cast(Floats2d, torch2xp(cast(torch.Tensor, Xt.grad)))
@pytest.mark.skipif(not has_torch, reason="needs PyTorch")
@pytest.mark.parametrize("temperature", [0.5, 1.0, 2.0])
def test_softmax_temperature(temperature):
model = Softmax_v2(
temperature=temperature,
init_W=lambda ops, shape: ops.xp.eye(shape[1], dtype="f"),
init_b=lambda ops, shape: ops.xp.zeros(shape, dtype="f"),
)
X = OPS.xp.arange(-1, 1, 0.2, dtype="f").reshape(1, 10)
targets = OPS.asarray1i([4])
Y_gold = OPS.xp.eye(10, dtype="f")[targets]
model.initialize(X, Y_gold)
Yt, dXt = torch_softmax_with_temperature(model, X, targets)
Y, backprop = model(X, is_train=True)
dX = backprop(Y - Y_gold)
assert_allclose(Y, Yt, atol=1e-4)
assert_allclose(dX, dXt, atol=1e-4)
def test_reject_incorrect_temperature():
with pytest.raises(ValueError, match=r"softmax temperature.*zero"):
Softmax_v2(normalize_outputs=False, temperature=0.0)
model = Softmax_v2(normalize_outputs=False)
model.attrs["softmax_temperature"] = 0.0
model.initialize(inputs, outputs)
with pytest.raises(ValueError, match=r"softmax temperature.*zero"):
model(inputs, is_train=False)