1749 lines
65 KiB
Python
1749 lines
65 KiB
Python
|
# mypy: ignore-errors
|
||
|
|
||
|
import contextlib
|
||
|
import functools
|
||
|
import inspect
|
||
|
import itertools
|
||
|
import logging
|
||
|
import math
|
||
|
import operator
|
||
|
import types
|
||
|
from collections import defaultdict, OrderedDict
|
||
|
from typing import Dict, List
|
||
|
|
||
|
import torch
|
||
|
from torch import sym_float, sym_int
|
||
|
|
||
|
from .. import config, polyfill, variables
|
||
|
from ..exc import (
|
||
|
AttributeMutationError,
|
||
|
unimplemented,
|
||
|
Unsupported,
|
||
|
UserError,
|
||
|
UserErrorType,
|
||
|
)
|
||
|
from ..guards import GuardBuilder, install_guard
|
||
|
from ..replay_record import DummyModule
|
||
|
from ..source import AttrSource, GetItemSource, is_constant_source, TypeSource
|
||
|
from ..utils import (
|
||
|
check_constant_args,
|
||
|
check_numpy_ndarray_args,
|
||
|
check_unspec_python_args,
|
||
|
extract_fake_example_value,
|
||
|
get_fake_value,
|
||
|
guard_if_dyn,
|
||
|
istype,
|
||
|
numpy_operator_wrapper,
|
||
|
proxy_args_kwargs,
|
||
|
tensortype_to_dtype,
|
||
|
)
|
||
|
from .base import MutableLocal, typestr, VariableTracker
|
||
|
from .constant import ConstantVariable
|
||
|
from .ctx_manager import EventVariable, StreamVariable
|
||
|
from .dicts import (
|
||
|
ConstDictVariable,
|
||
|
DefaultDictVariable,
|
||
|
DictView,
|
||
|
is_hashable,
|
||
|
SetVariable,
|
||
|
)
|
||
|
from .lists import (
|
||
|
BaseListVariable,
|
||
|
ListIteratorVariable,
|
||
|
ListVariable,
|
||
|
SizeVariable,
|
||
|
TupleIteratorVariable,
|
||
|
TupleVariable,
|
||
|
)
|
||
|
from .tensor import (
|
||
|
FakeItemVariable,
|
||
|
SymNodeVariable,
|
||
|
TensorVariable,
|
||
|
UnspecializedPythonVariable,
|
||
|
)
|
||
|
from .user_defined import UserDefinedVariable
|
||
|
|
||
|
log = logging.getLogger(__name__)
|
||
|
|
||
|
|
||
|
IN_PLACE_DESUGARING_MAP = {
|
||
|
operator.iadd: operator.add,
|
||
|
operator.isub: operator.sub,
|
||
|
operator.imul: operator.mul,
|
||
|
operator.ifloordiv: operator.floordiv,
|
||
|
operator.itruediv: operator.truediv,
|
||
|
operator.imod: operator.mod,
|
||
|
operator.imatmul: operator.imatmul,
|
||
|
operator.ilshift: operator.lshift,
|
||
|
operator.irshift: operator.rshift,
|
||
|
operator.ipow: operator.pow,
|
||
|
operator.iand: operator.and_,
|
||
|
operator.ior: operator.or_,
|
||
|
operator.ixor: operator.xor,
|
||
|
}
|
||
|
|
||
|
|
||
|
def _polyfill_call_impl(name):
|
||
|
"""Create a BuiltinVariable.call_{name} method that inlines through polyfill.{name}"""
|
||
|
|
||
|
def call_fn(self, tx, *args, **kwargs):
|
||
|
return tx.inline_user_function_return(
|
||
|
variables.UserFunctionVariable(fn), args, kwargs
|
||
|
)
|
||
|
|
||
|
fn = getattr(polyfill, name)
|
||
|
call_fn.__name__ = f"call_{name}"
|
||
|
return call_fn
|
||
|
|
||
|
|
||
|
class BuiltinVariable(VariableTracker):
|
||
|
_SENTINEL = object()
|
||
|
|
||
|
@classmethod
|
||
|
def create_with_source(cls, value, source):
|
||
|
install_guard(source.make_guard(GuardBuilder.BUILTIN_MATCH))
|
||
|
return BuiltinVariable(value, source=source)
|
||
|
|
||
|
@staticmethod
|
||
|
@functools.lru_cache(None)
|
||
|
def _constant_fold_functions():
|
||
|
fns = {
|
||
|
abs,
|
||
|
all,
|
||
|
any,
|
||
|
bool,
|
||
|
callable,
|
||
|
chr,
|
||
|
divmod,
|
||
|
float,
|
||
|
getattr,
|
||
|
int,
|
||
|
len,
|
||
|
max,
|
||
|
min,
|
||
|
ord,
|
||
|
pow,
|
||
|
repr,
|
||
|
round,
|
||
|
str,
|
||
|
str.format,
|
||
|
sum,
|
||
|
type,
|
||
|
operator.abs,
|
||
|
operator.pos,
|
||
|
operator.neg,
|
||
|
operator.not_,
|
||
|
operator.truth,
|
||
|
operator.invert,
|
||
|
operator.pow,
|
||
|
operator.mul,
|
||
|
operator.matmul,
|
||
|
operator.floordiv,
|
||
|
operator.truediv,
|
||
|
operator.mod,
|
||
|
operator.add,
|
||
|
operator.sub,
|
||
|
operator.getitem,
|
||
|
operator.length_hint,
|
||
|
operator.lshift,
|
||
|
operator.rshift,
|
||
|
operator.and_,
|
||
|
operator.or_,
|
||
|
operator.xor,
|
||
|
operator.ipow,
|
||
|
operator.imul,
|
||
|
operator.imatmul,
|
||
|
operator.ifloordiv,
|
||
|
operator.itruediv,
|
||
|
operator.imod,
|
||
|
operator.iadd,
|
||
|
operator.isub,
|
||
|
operator.ilshift,
|
||
|
operator.irshift,
|
||
|
operator.iand,
|
||
|
operator.ixor,
|
||
|
operator.ior,
|
||
|
operator.index,
|
||
|
}
|
||
|
fns.update(x for x in math.__dict__.values() if isinstance(x, type(math.sqrt)))
|
||
|
return fns
|
||
|
|
||
|
def can_constant_fold_through(self):
|
||
|
return self.fn in self._constant_fold_functions()
|
||
|
|
||
|
@staticmethod
|
||
|
@functools.lru_cache(None)
|
||
|
def _fx_graph_functions():
|
||
|
fns = {
|
||
|
operator.abs,
|
||
|
operator.pos,
|
||
|
operator.neg,
|
||
|
operator.not_,
|
||
|
operator.invert,
|
||
|
operator.pow,
|
||
|
operator.mul,
|
||
|
operator.matmul,
|
||
|
operator.floordiv,
|
||
|
operator.truediv,
|
||
|
operator.mod,
|
||
|
operator.add,
|
||
|
operator.lt,
|
||
|
operator.gt,
|
||
|
operator.ge,
|
||
|
operator.le,
|
||
|
operator.ne,
|
||
|
operator.eq,
|
||
|
operator.sub,
|
||
|
operator.getitem,
|
||
|
operator.length_hint,
|
||
|
operator.lshift,
|
||
|
operator.rshift,
|
||
|
operator.and_,
|
||
|
operator.or_,
|
||
|
operator.xor,
|
||
|
operator.ipow,
|
||
|
operator.imul,
|
||
|
operator.imatmul,
|
||
|
operator.ifloordiv,
|
||
|
operator.itruediv,
|
||
|
operator.imod,
|
||
|
operator.iadd,
|
||
|
operator.isub,
|
||
|
operator.ilshift,
|
||
|
operator.irshift,
|
||
|
operator.iand,
|
||
|
operator.ixor,
|
||
|
operator.ior,
|
||
|
}
|
||
|
return fns
|
||
|
|
||
|
@staticmethod
|
||
|
@functools.lru_cache(None)
|
||
|
def _binops():
|
||
|
# function -> ([forward name, reverse name, in-place name], in-place op)
|
||
|
fns = {
|
||
|
operator.add: (["__add__", "__radd__", "__iadd__"], operator.iadd),
|
||
|
operator.sub: (["__sub__", "__rsub__", "__isub__"], operator.isub),
|
||
|
operator.mul: (["__mul__", "__rmul__", "__imul__"], operator.imul),
|
||
|
operator.truediv: (
|
||
|
["__truediv__", "__rtruediv__", "__itruediv__"],
|
||
|
operator.itruediv,
|
||
|
),
|
||
|
operator.floordiv: (
|
||
|
["__floordiv__", "__rfloordiv__", "__ifloordiv__"],
|
||
|
operator.ifloordiv,
|
||
|
),
|
||
|
operator.mod: (["__mod__", "__rmod__", "__imod__"], operator.imod),
|
||
|
pow: (["__pow__", "__rpow__", "__ipow__"], operator.ipow),
|
||
|
operator.pow: (["__pow__", "__rpow__", "__ipow__"], operator.ipow),
|
||
|
operator.lshift: (
|
||
|
["__lshift__", "__rlshift__", "__ilshift__"],
|
||
|
operator.ilshift,
|
||
|
),
|
||
|
operator.rshift: (
|
||
|
["__rshift__", "__rrshift__", "__irshift__"],
|
||
|
operator.irshift,
|
||
|
),
|
||
|
# NB: The follow binary operators are not supported for now, since the
|
||
|
# corresponding magic methods aren't defined on SymInt / SymFloat:
|
||
|
# operator.matmul
|
||
|
# divmod
|
||
|
# operator.and_
|
||
|
# operator.or_
|
||
|
# operator.xor
|
||
|
}
|
||
|
return fns
|
||
|
|
||
|
@staticmethod
|
||
|
@functools.lru_cache(None)
|
||
|
def _binop_handlers():
|
||
|
# Multiple dispatch mechanism defining custom binop behavior for certain type
|
||
|
# combinations. Handlers are attempted in order, and will be used if the type checks
|
||
|
# match. They are expected to have the signature:
|
||
|
# fn(tx, arg0: VariableTracker, arg1: VariableTracker, options) -> VariableTracker
|
||
|
|
||
|
# Override table contains: op_fn -> [list of handlers]
|
||
|
op_handlers = {}
|
||
|
for (
|
||
|
op,
|
||
|
(magic_method_names, in_place_op),
|
||
|
) in BuiltinVariable._binops().items():
|
||
|
op_handlers[op] = []
|
||
|
op_handlers[in_place_op] = []
|
||
|
|
||
|
forward_name, reverse_name, inplace_name = magic_method_names
|
||
|
|
||
|
# User-defined args (highest precedence)
|
||
|
def user_defined_handler(
|
||
|
tx,
|
||
|
a,
|
||
|
b,
|
||
|
options,
|
||
|
forward_name=forward_name,
|
||
|
reverse_name=reverse_name,
|
||
|
):
|
||
|
# Manually handle reversing logic if needed (e.g. call __radd__)
|
||
|
|
||
|
# TODO: If we expand this to handle tensor args, we need to manually
|
||
|
# handle cases like this:
|
||
|
#
|
||
|
# class A(int):
|
||
|
# def __radd__(self, other):
|
||
|
# print("woof")
|
||
|
# torch.randn(3) + A(3)
|
||
|
#
|
||
|
# In this example, A.__radd__() is not called -> nothing is printed, because
|
||
|
# Tensor.__add__ only does a subtype test against int, ignoring the subclass.
|
||
|
# To be fully correct, we should not call A.__radd__() here, and there may be
|
||
|
# other cases to reason about and add exceptions for.
|
||
|
if isinstance(a, UserDefinedVariable):
|
||
|
return a.call_method(tx, forward_name, [b], {})
|
||
|
else:
|
||
|
return b.call_method(tx, reverse_name, [a], {})
|
||
|
|
||
|
op_handlers[op].append(
|
||
|
((UserDefinedVariable, VariableTracker), user_defined_handler)
|
||
|
)
|
||
|
op_handlers[op].append(
|
||
|
((VariableTracker, UserDefinedVariable), user_defined_handler)
|
||
|
)
|
||
|
|
||
|
def user_defined_inplace_handler(
|
||
|
tx, a, b, options, forward_name=inplace_name
|
||
|
):
|
||
|
return a.call_method(tx, forward_name, [b], {})
|
||
|
|
||
|
op_handlers[in_place_op].append(
|
||
|
((UserDefinedVariable, VariableTracker), user_defined_inplace_handler)
|
||
|
)
|
||
|
op_handlers[in_place_op].append(
|
||
|
((VariableTracker, UserDefinedVariable), user_defined_inplace_handler)
|
||
|
)
|
||
|
|
||
|
# Dynamic shape args
|
||
|
def dynamic_handler(tx, a, b, options, fn=op):
|
||
|
from .builder import wrap_fx_proxy
|
||
|
|
||
|
return wrap_fx_proxy(
|
||
|
tx,
|
||
|
tx.output.create_proxy(
|
||
|
"call_function", fn, *proxy_args_kwargs([a, b], {})
|
||
|
),
|
||
|
**options,
|
||
|
)
|
||
|
|
||
|
op_handlers[op].append(
|
||
|
((SymNodeVariable, VariableTracker), dynamic_handler)
|
||
|
)
|
||
|
op_handlers[op].append(
|
||
|
((VariableTracker, SymNodeVariable), dynamic_handler)
|
||
|
)
|
||
|
|
||
|
# NB: Prefer out-of-place op when calling in-place op to generate valid graph
|
||
|
op_handlers[in_place_op].append(
|
||
|
((SymNodeVariable, VariableTracker), dynamic_handler)
|
||
|
)
|
||
|
op_handlers[in_place_op].append(
|
||
|
((VariableTracker, SymNodeVariable), dynamic_handler)
|
||
|
)
|
||
|
|
||
|
# Special cases - lower precedence but still prefer these over constant folding
|
||
|
|
||
|
# List-like addition (e.g. [1, 2] + [3, 4])
|
||
|
def tuple_add_handler(tx, a, b, options):
|
||
|
return TupleVariable(a.items + list(b.unpack_var_sequence(tx)), **options)
|
||
|
|
||
|
def size_add_handler(tx, a, b, options):
|
||
|
return SizeVariable(a.items + list(b.unpack_var_sequence(tx)), **options)
|
||
|
|
||
|
list_like_addition_handlers = [
|
||
|
# NB: Prefer the tuple-specific logic over base logic because of
|
||
|
# some SizeVariable weirdness. Specifically, the tuple-specific logic
|
||
|
# drops the subclass type (e.g. SizeVariable) and returns TupleVariables.
|
||
|
(
|
||
|
(SizeVariable, SizeVariable),
|
||
|
size_add_handler,
|
||
|
),
|
||
|
(
|
||
|
(TupleVariable, TupleVariable),
|
||
|
tuple_add_handler,
|
||
|
),
|
||
|
(
|
||
|
(TupleVariable, ConstantVariable),
|
||
|
tuple_add_handler,
|
||
|
),
|
||
|
(
|
||
|
(ConstantVariable, TupleVariable),
|
||
|
lambda tx, a, b, options: TupleVariable(
|
||
|
list(a.unpack_var_sequence(tx)) + b.items, **options
|
||
|
),
|
||
|
),
|
||
|
(
|
||
|
(BaseListVariable, BaseListVariable),
|
||
|
lambda tx, a, b, options: type(a)(a.items + b.items, **options),
|
||
|
),
|
||
|
]
|
||
|
op_handlers[operator.add].extend(list_like_addition_handlers)
|
||
|
|
||
|
def list_iadd_handler(tx, a, b, _):
|
||
|
if not a.mutable_local or not b.has_unpack_var_sequence(tx):
|
||
|
# Handler doesn't apply
|
||
|
return None
|
||
|
|
||
|
seq = b.unpack_var_sequence(tx)
|
||
|
tx.output.side_effects.mutation(a)
|
||
|
a.items.extend(seq)
|
||
|
return a
|
||
|
|
||
|
list_like_iadd_handlers = [
|
||
|
(
|
||
|
(ListVariable, VariableTracker),
|
||
|
list_iadd_handler,
|
||
|
),
|
||
|
(
|
||
|
(TupleVariable, TupleVariable),
|
||
|
tuple_add_handler,
|
||
|
),
|
||
|
(
|
||
|
(TupleVariable, ConstantVariable),
|
||
|
tuple_add_handler,
|
||
|
),
|
||
|
]
|
||
|
op_handlers[operator.iadd].extend(list_like_iadd_handlers)
|
||
|
|
||
|
# List-like expansion (e.g. [1, 2, 3] * 3)
|
||
|
def expand_list_like(tx, lst, const, options):
|
||
|
return lst.__class__(
|
||
|
items=lst.items * const.as_python_constant(),
|
||
|
mutable_local=MutableLocal(),
|
||
|
**options,
|
||
|
)
|
||
|
|
||
|
list_like_expansion_handlers = [
|
||
|
((ListVariable, ConstantVariable), expand_list_like),
|
||
|
((TupleVariable, ConstantVariable), expand_list_like),
|
||
|
(
|
||
|
(ConstantVariable, ListVariable),
|
||
|
lambda tx, a, b, options: expand_list_like(tx, b, a, options),
|
||
|
),
|
||
|
(
|
||
|
(ConstantVariable, TupleVariable),
|
||
|
lambda tx, a, b, options: expand_list_like(tx, b, a, options),
|
||
|
),
|
||
|
]
|
||
|
op_handlers[operator.mul].extend(list_like_expansion_handlers)
|
||
|
|
||
|
return op_handlers
|
||
|
|
||
|
@staticmethod
|
||
|
def _find_binop_handler(op, a, b):
|
||
|
handlers = BuiltinVariable._binop_handlers()
|
||
|
if op not in handlers:
|
||
|
return None
|
||
|
|
||
|
# Return first handler that matches the type checks
|
||
|
for (type1, type2), handler in handlers[op]:
|
||
|
if isinstance(a, type1) and isinstance(b, type2):
|
||
|
return handler
|
||
|
|
||
|
return None
|
||
|
|
||
|
def can_insert_in_graph(self):
|
||
|
return self.fn in self._fx_graph_functions()
|
||
|
|
||
|
def __init__(self, fn, **kwargs):
|
||
|
super().__init__(**kwargs)
|
||
|
self.fn = fn
|
||
|
|
||
|
def __str__(self):
|
||
|
if self.fn is None:
|
||
|
name = "None"
|
||
|
else:
|
||
|
name = self.fn.__name__
|
||
|
|
||
|
return f"{self.__class__.__name__}({name})"
|
||
|
|
||
|
def python_type(self):
|
||
|
return type(self.fn)
|
||
|
|
||
|
def as_python_constant(self):
|
||
|
return self.fn
|
||
|
|
||
|
def as_proxy(self):
|
||
|
DTYPE = {
|
||
|
bool: torch.bool,
|
||
|
int: torch.int64,
|
||
|
float: torch.float64,
|
||
|
}
|
||
|
if self.fn in DTYPE:
|
||
|
return DTYPE[self.fn]
|
||
|
return super().as_proxy()
|
||
|
|
||
|
def reconstruct(self, codegen):
|
||
|
name = self.fn.__name__
|
||
|
assert self.fn.__module__ == "builtins"
|
||
|
assert name not in codegen.tx.f_globals, "shadowed global"
|
||
|
codegen.append_output(codegen.create_load_global(name, False, add=True))
|
||
|
|
||
|
def constant_args(self, *args, **kwargs):
|
||
|
return check_constant_args(args, kwargs)
|
||
|
|
||
|
def tensor_args(self, *args, **kwargs):
|
||
|
return any(
|
||
|
isinstance(i, variables.TensorVariable)
|
||
|
for i in itertools.chain(args, kwargs.values())
|
||
|
) and not any(
|
||
|
isinstance(i, variables.GetAttrVariable)
|
||
|
for i in itertools.chain(args, kwargs.values())
|
||
|
)
|
||
|
|
||
|
def python_and_tensor_constant_only(self, *args, **kwargs):
|
||
|
tensor_args = []
|
||
|
non_tensor_args = []
|
||
|
for i in itertools.chain(args, kwargs.values()):
|
||
|
if isinstance(i, variables.TensorVariable):
|
||
|
tensor_args.append(i)
|
||
|
else:
|
||
|
non_tensor_args.append(i)
|
||
|
return all(
|
||
|
is_constant_source(t.source) if t.source is not None else False
|
||
|
for t in tensor_args
|
||
|
) and self.constant_args(*non_tensor_args)
|
||
|
|
||
|
def unspec_python_args(self, *args, **kwargs):
|
||
|
return check_unspec_python_args(args, kwargs)
|
||
|
|
||
|
@staticmethod
|
||
|
def unwrap_unspec_args_kwargs(args, kwargs):
|
||
|
return [x.as_python_constant() for x in args], {
|
||
|
k: v.as_python_constant() for k, v in kwargs.items()
|
||
|
}
|
||
|
|
||
|
def has_constant_handler(self, args, kwargs):
|
||
|
constant_args = check_constant_args(args, kwargs)
|
||
|
unspec_python_args = self.unspec_python_args(*args, **kwargs)
|
||
|
return self.can_constant_fold_through() and (
|
||
|
constant_args or unspec_python_args
|
||
|
)
|
||
|
|
||
|
def call_function(
|
||
|
self, tx, args: "List[VariableTracker]", kwargs: "Dict[str, VariableTracker]"
|
||
|
) -> "VariableTracker":
|
||
|
from . import UserFunctionVariable
|
||
|
from .builder import wrap_fx_proxy, wrap_fx_proxy_cls
|
||
|
|
||
|
args = [v.realize() for v in args]
|
||
|
kwargs = {k: v.realize() for k, v in kwargs.items()}
|
||
|
assert isinstance(args, (list, tuple))
|
||
|
assert isinstance(kwargs, dict)
|
||
|
tensor_args = self.tensor_args(*args, **kwargs)
|
||
|
|
||
|
# args[0] is list and args[1] is unspec
|
||
|
if self.fn is operator.getitem and not isinstance(
|
||
|
args[0], variables.TensorVariable
|
||
|
):
|
||
|
tensor_args = False
|
||
|
|
||
|
if (
|
||
|
self.can_insert_in_graph()
|
||
|
and tensor_args
|
||
|
and not (
|
||
|
self.fn is operator.getitem
|
||
|
and isinstance(args[0], ConstDictVariable)
|
||
|
and isinstance(args[1], variables.TensorVariable)
|
||
|
)
|
||
|
):
|
||
|
try:
|
||
|
fn = self.fn
|
||
|
|
||
|
# Constant fold for constant tensor and python constants
|
||
|
if tensor_args and self.python_and_tensor_constant_only(
|
||
|
*args, **kwargs
|
||
|
):
|
||
|
from ..bytecode_transformation import unique_id
|
||
|
from .functions import invoke_and_store_as_constant
|
||
|
|
||
|
return invoke_and_store_as_constant(
|
||
|
tx, fn, unique_id(fn.__name__), args, kwargs
|
||
|
)
|
||
|
|
||
|
if self.fn in IN_PLACE_DESUGARING_MAP and isinstance(
|
||
|
args[0], variables.ConstantVariable
|
||
|
):
|
||
|
# In-place operators like += usually mustate tensor
|
||
|
# values, but in the edge case of immutable values they
|
||
|
# re-bind the variable.
|
||
|
#
|
||
|
# The easiest way to keep the graph consistent in this
|
||
|
# scenario is to de-sugar eagerly.
|
||
|
fn, args = IN_PLACE_DESUGARING_MAP[self.fn], [args[0], args[1]]
|
||
|
|
||
|
if self.fn is operator.getitem and isinstance(args[1], SymNodeVariable):
|
||
|
# Standard indexing will force specialization due to
|
||
|
# __index__. Rewrite as a regular torch op which will
|
||
|
# trace fine
|
||
|
fn, args = torch.select, [
|
||
|
args[0],
|
||
|
variables.ConstantVariable.create(0),
|
||
|
args[1],
|
||
|
]
|
||
|
|
||
|
# Interaction between ndarray and tensors:
|
||
|
# We prefer the tensor op whenever there are tensors involved
|
||
|
if check_numpy_ndarray_args(args, kwargs) and not any(
|
||
|
type(arg) == variables.TensorVariable for arg in args
|
||
|
):
|
||
|
proxy = tx.output.create_proxy(
|
||
|
"call_function",
|
||
|
numpy_operator_wrapper(self.fn),
|
||
|
*proxy_args_kwargs(args, kwargs),
|
||
|
)
|
||
|
|
||
|
return wrap_fx_proxy_cls(variables.NumpyNdarrayVariable, tx, proxy)
|
||
|
|
||
|
proxy = tx.output.create_proxy(
|
||
|
"call_function",
|
||
|
fn,
|
||
|
*proxy_args_kwargs(args, kwargs),
|
||
|
)
|
||
|
if any(isinstance(arg, FakeItemVariable) for arg in args):
|
||
|
return wrap_fx_proxy_cls(
|
||
|
FakeItemVariable,
|
||
|
tx,
|
||
|
proxy,
|
||
|
)
|
||
|
elif self.unspec_python_args(*args, **kwargs):
|
||
|
_args, _kwargs = self.unwrap_unspec_args_kwargs(args, kwargs)
|
||
|
raw_value = self.fn(*_args, **_kwargs)
|
||
|
|
||
|
need_unwrap = any(
|
||
|
x.need_unwrap
|
||
|
for x in itertools.chain(args, kwargs.values())
|
||
|
if isinstance(x, variables.UnspecializedPythonVariable)
|
||
|
)
|
||
|
|
||
|
return wrap_fx_proxy_cls(
|
||
|
UnspecializedPythonVariable,
|
||
|
tx,
|
||
|
proxy,
|
||
|
raw_value=raw_value,
|
||
|
need_unwrap=need_unwrap,
|
||
|
)
|
||
|
elif all(isinstance(x, SymNodeVariable) for x in args):
|
||
|
return SymNodeVariable.create(tx, proxy, None)
|
||
|
else:
|
||
|
# Work around for vision_maskrcnn due to precision difference
|
||
|
# specialize the dividend when float divide by tensor
|
||
|
if self.fn is operator.truediv and isinstance(
|
||
|
args[0], variables.UnspecializedPythonVariable
|
||
|
):
|
||
|
args[0] = args[0].convert_to_constant(tx)
|
||
|
return wrap_fx_proxy(tx, proxy)
|
||
|
|
||
|
except NotImplementedError:
|
||
|
unimplemented(f"partial tensor op: {self} {args} {kwargs}")
|
||
|
|
||
|
# Handle cases like int(torch.seed())
|
||
|
# Also handle sym_float to sym_int cases
|
||
|
if self.fn in (int, float) and isinstance(
|
||
|
args[0], (SymNodeVariable, variables.TensorVariable)
|
||
|
):
|
||
|
if isinstance(args[0], variables.TensorVariable):
|
||
|
item = args[0].call_method(tx, "item", [], {})
|
||
|
else:
|
||
|
item = args[0]
|
||
|
fn_ = sym_int if self.fn is int else sym_float
|
||
|
out = wrap_fx_proxy(
|
||
|
tx=tx,
|
||
|
proxy=tx.output.create_proxy(
|
||
|
"call_function",
|
||
|
fn_,
|
||
|
(item.as_proxy(),),
|
||
|
{},
|
||
|
),
|
||
|
)
|
||
|
return out
|
||
|
|
||
|
# Handle `str` on a user defined function
|
||
|
if self.fn == str and args and isinstance(args[0], (UserFunctionVariable)):
|
||
|
return variables.ConstantVariable.create(value=str(args[0].fn))
|
||
|
|
||
|
# Handle binary ops (e.g. __add__ / __radd__, __iadd__, etc.)
|
||
|
# NB: Tensor args are handled above and not here
|
||
|
if len(kwargs) == 0 and len(args) == 2:
|
||
|
# Try to find a handler for the arg types; otherwise, fall through to constant handler
|
||
|
binop_handler = BuiltinVariable._find_binop_handler(
|
||
|
self.fn, args[0], args[1]
|
||
|
)
|
||
|
if binop_handler:
|
||
|
res = binop_handler(tx, args[0], args[1], {})
|
||
|
if res is not None:
|
||
|
return res
|
||
|
|
||
|
handler = getattr(self, f"call_{self.fn.__name__}", None)
|
||
|
|
||
|
if handler:
|
||
|
try:
|
||
|
result = handler(tx, *args, **kwargs)
|
||
|
if result is not None:
|
||
|
return result
|
||
|
except TypeError:
|
||
|
# Check if binding is bad. inspect signature bind is expensive.
|
||
|
# So check only when handler call fails.
|
||
|
try:
|
||
|
inspect.signature(handler).bind(tx, *args, **kwargs)
|
||
|
except TypeError as e:
|
||
|
has_constant_handler = self.has_constant_handler(args, kwargs)
|
||
|
if not has_constant_handler:
|
||
|
log.warning(
|
||
|
"incorrect arg count %s %s and no constant handler",
|
||
|
handler,
|
||
|
e,
|
||
|
)
|
||
|
unimplemented(f"invalid handler args {handler} {args} {kwargs}")
|
||
|
else:
|
||
|
raise
|
||
|
except Unsupported as exc:
|
||
|
has_constant_handler = self.has_constant_handler(args, kwargs)
|
||
|
if not has_constant_handler:
|
||
|
raise
|
||
|
# Actually, we will handle this just fine
|
||
|
exc.remove_from_stats()
|
||
|
|
||
|
# NB: call to has_constant_handler is deliberately delayed post generic
|
||
|
# handler because has_constant_handler calls as_python_constant
|
||
|
# internally which realizes LazyVariableTracker for ConstantVariables,
|
||
|
# unnecessarily putting guards on objects which might not actually be used.
|
||
|
has_constant_handler = self.has_constant_handler(args, kwargs)
|
||
|
if has_constant_handler:
|
||
|
from .builder import SourcelessBuilder
|
||
|
|
||
|
# constant fold
|
||
|
return SourcelessBuilder()(
|
||
|
tx,
|
||
|
self.as_python_constant()(
|
||
|
*[x.as_python_constant() for x in args],
|
||
|
**{k: v.as_python_constant() for k, v in kwargs.items()},
|
||
|
),
|
||
|
)
|
||
|
|
||
|
return super().call_function(tx, args, kwargs)
|
||
|
|
||
|
def call_method(
|
||
|
self,
|
||
|
tx,
|
||
|
name,
|
||
|
args: "List[VariableTracker]",
|
||
|
kwargs: "Dict[str, VariableTracker]",
|
||
|
) -> "VariableTracker":
|
||
|
if self.fn == dict and name == "fromkeys":
|
||
|
return BuiltinVariable.call_custom_dict_fromkeys(tx, dict, *args, **kwargs)
|
||
|
if self.fn == itertools.chain and name == "from_iterable":
|
||
|
assert len(args) == 1
|
||
|
assert len(kwargs) == 0
|
||
|
obj = args[0]
|
||
|
items = []
|
||
|
for item in obj.unpack_var_sequence(tx):
|
||
|
items.extend(item.unpack_var_sequence(tx))
|
||
|
return variables.TupleVariable(items)
|
||
|
|
||
|
return super().call_method(tx, name, args, kwargs)
|
||
|
|
||
|
def _call_min_max(self, tx, *args):
|
||
|
if len(args) == 1 and args[0].has_unpack_var_sequence(tx):
|
||
|
# expand iterable
|
||
|
items = args[0].unpack_var_sequence(tx)
|
||
|
return self._call_min_max_seq(tx, items)
|
||
|
elif len(args) == 2:
|
||
|
return self._call_min_max_binary(tx, args[0], args[1])
|
||
|
elif len(args) > 2:
|
||
|
return self._call_min_max_seq(tx, args)
|
||
|
|
||
|
def _call_min_max_seq(self, tx, items):
|
||
|
assert len(items) > 0
|
||
|
if len(items) == 1:
|
||
|
return items[0]
|
||
|
|
||
|
return functools.reduce(functools.partial(self._call_min_max_binary, tx), items)
|
||
|
|
||
|
def _call_min_max_binary(self, tx, a, b):
|
||
|
if self.tensor_args(a, b):
|
||
|
if not isinstance(a, variables.TensorVariable):
|
||
|
a, b = b, a
|
||
|
assert isinstance(a, variables.TensorVariable)
|
||
|
|
||
|
# result of an item call is a scalar convert to a tensor
|
||
|
if isinstance(a, FakeItemVariable):
|
||
|
a = variables.TorchInGraphFunctionVariable(torch.tensor).call_function(
|
||
|
tx, [a], {}
|
||
|
)
|
||
|
|
||
|
# Dynamic input does not get resolved, rather, gets stored as call_function
|
||
|
if isinstance(a, SymNodeVariable) or isinstance(b, SymNodeVariable):
|
||
|
from .builder import wrap_fx_proxy_cls
|
||
|
|
||
|
return wrap_fx_proxy_cls(
|
||
|
type(a),
|
||
|
tx=tx,
|
||
|
proxy=tx.output.create_proxy(
|
||
|
"call_function",
|
||
|
self.fn,
|
||
|
*proxy_args_kwargs([a, b], {}),
|
||
|
),
|
||
|
)
|
||
|
|
||
|
# convert min/max to torch ops
|
||
|
if b.is_python_constant():
|
||
|
if isinstance(a, variables.NumpyNdarrayVariable):
|
||
|
import numpy as np
|
||
|
|
||
|
fn = variables.NumpyVariable(np.clip)
|
||
|
else:
|
||
|
fn = variables.TorchInGraphFunctionVariable(torch.clamp)
|
||
|
kwargs = {"min": b} if (self.fn is max) else {"max": b}
|
||
|
result = fn.call_function(tx, [a], kwargs)
|
||
|
else:
|
||
|
if isinstance(a, variables.NumpyNdarrayVariable):
|
||
|
import numpy as np
|
||
|
|
||
|
fn = {max: np.maximum, min: np.minimum}[self.fn]
|
||
|
fn = variables.NumpyVariable(fn)
|
||
|
else:
|
||
|
fn = {max: torch.maximum, min: torch.minimum}[self.fn]
|
||
|
fn = variables.TorchInGraphFunctionVariable(fn)
|
||
|
result = fn.call_function(tx, [a, b], {})
|
||
|
|
||
|
# return unspec if both a, b are unspec or const
|
||
|
if all(
|
||
|
isinstance(
|
||
|
i,
|
||
|
(
|
||
|
variables.UnspecializedPythonVariable,
|
||
|
variables.ConstantVariable,
|
||
|
),
|
||
|
)
|
||
|
for i in [a, b]
|
||
|
):
|
||
|
if any(isinstance(val, FakeItemVariable) for val in [a, b]):
|
||
|
return variables.FakeItemVariable.from_tensor_variable(result)
|
||
|
|
||
|
if b.is_python_constant():
|
||
|
raw_b = b.as_python_constant()
|
||
|
else:
|
||
|
raw_b = b.raw_value
|
||
|
if self.fn is max:
|
||
|
raw_res = max(a.raw_value, raw_b)
|
||
|
else:
|
||
|
raw_res = min(a.raw_value, raw_b)
|
||
|
|
||
|
need_unwrap = any(
|
||
|
x.need_unwrap
|
||
|
for x in [a, b]
|
||
|
if isinstance(x, variables.UnspecializedPythonVariable)
|
||
|
)
|
||
|
return variables.UnspecializedPythonVariable.from_tensor_variable(
|
||
|
result, raw_res, need_unwrap
|
||
|
)
|
||
|
# otherwise return tensor
|
||
|
else:
|
||
|
return result
|
||
|
elif isinstance(a, SymNodeVariable) or isinstance(b, SymNodeVariable):
|
||
|
fn = torch.sym_max if self.fn is max else torch.sym_min
|
||
|
proxy = tx.output.create_proxy(
|
||
|
"call_function", fn, *proxy_args_kwargs([a, b], {})
|
||
|
)
|
||
|
return SymNodeVariable.create(tx, proxy, None)
|
||
|
|
||
|
call_min = _call_min_max
|
||
|
call_max = _call_min_max
|
||
|
|
||
|
def call_abs(self, tx, arg: "VariableTracker"):
|
||
|
# Call arg.__abs__()
|
||
|
abs_method = BuiltinVariable(getattr).call_function(
|
||
|
tx, [arg, ConstantVariable.create("__abs__")], {}
|
||
|
)
|
||
|
return abs_method.call_function(tx, [], {})
|
||
|
|
||
|
def call_pos(self, tx, arg: "VariableTracker"):
|
||
|
# Call arg.__pos__()
|
||
|
pos_method = BuiltinVariable(getattr).call_function(
|
||
|
tx, [arg, ConstantVariable.create("__pos__")], {}
|
||
|
)
|
||
|
return pos_method.call_function(tx, [], {})
|
||
|
|
||
|
def call_round(self, tx, arg, *args, **kwargs):
|
||
|
# Call arg.__round__()
|
||
|
round_method = BuiltinVariable(getattr).call_function(
|
||
|
tx, [arg, ConstantVariable.create("__round__")], {}
|
||
|
)
|
||
|
return round_method.call_function(tx, args, kwargs)
|
||
|
|
||
|
def call_range(self, tx, *args):
|
||
|
if self.unspec_python_args(*args) or self.constant_args(*args):
|
||
|
return variables.RangeVariable(args)
|
||
|
elif self._dynamic_args(*args):
|
||
|
args = [
|
||
|
variables.ConstantVariable.create(guard_if_dyn(arg)) for arg in args
|
||
|
]
|
||
|
return variables.RangeVariable(args)
|
||
|
# None no-ops this handler and lets the driving function proceed
|
||
|
return None
|
||
|
|
||
|
def _dynamic_args(self, *args, **kwargs):
|
||
|
return any(isinstance(x, SymNodeVariable) for x in args) or any(
|
||
|
isinstance(x, SymNodeVariable) for x in kwargs.values()
|
||
|
)
|
||
|
|
||
|
def call_slice(self, tx, *args):
|
||
|
return variables.SliceVariable(args)
|
||
|
|
||
|
def _dyn_proxy(self, tx, *args, **kwargs):
|
||
|
from .builder import wrap_fx_proxy
|
||
|
|
||
|
return wrap_fx_proxy(
|
||
|
tx,
|
||
|
tx.output.create_proxy(
|
||
|
"call_function", self.fn, *proxy_args_kwargs(args, kwargs)
|
||
|
),
|
||
|
)
|
||
|
|
||
|
def _call_iter_tuple_list(self, tx, obj=None, *args, **kwargs):
|
||
|
if self._dynamic_args(*args, **kwargs):
|
||
|
return self._dyn_proxy(tx, *args, **kwargs)
|
||
|
|
||
|
if isinstance(obj, variables.IteratorVariable):
|
||
|
# For non-list iterators, we will guard on vars that
|
||
|
# determine the control flow
|
||
|
return obj
|
||
|
|
||
|
cls = variables.BaseListVariable.cls_for(self.fn)
|
||
|
if obj is None:
|
||
|
return cls(
|
||
|
[],
|
||
|
mutable_local=MutableLocal(),
|
||
|
)
|
||
|
elif obj.has_unpack_var_sequence(tx):
|
||
|
if obj.source and not is_constant_source(obj.source):
|
||
|
if isinstance(obj, TupleIteratorVariable):
|
||
|
install_guard(
|
||
|
obj.source.make_guard(GuardBuilder.TUPLE_ITERATOR_LEN)
|
||
|
)
|
||
|
else:
|
||
|
install_guard(obj.source.make_guard(GuardBuilder.SEQUENCE_LENGTH))
|
||
|
|
||
|
return cls(
|
||
|
list(obj.unpack_var_sequence(tx)),
|
||
|
mutable_local=MutableLocal(),
|
||
|
)
|
||
|
|
||
|
def call_iter(self, tx, obj, *args, **kwargs):
|
||
|
# Handle the case where we are iterating over a tuple, list or iterator
|
||
|
ret = self._call_iter_tuple_list(tx, obj, *args, **kwargs)
|
||
|
|
||
|
if ret is None:
|
||
|
# If the object doesn't implement a __iter__ method, it will be an error in eager mode when calling iter on it anyway.
|
||
|
# If the object implements a __iter__ method, inlining effectively forwards the call to another iter call
|
||
|
# (e.g. when __iter__ just returns iter(self.list)) or return a user-defined iterator.
|
||
|
return obj.call_method(tx, "__iter__", args, kwargs)
|
||
|
return ret
|
||
|
|
||
|
call_tuple = _call_iter_tuple_list
|
||
|
call_list = _call_iter_tuple_list
|
||
|
|
||
|
def call_callable(self, tx, arg):
|
||
|
from .functions import BaseUserFunctionVariable
|
||
|
|
||
|
if isinstance(
|
||
|
arg, (variables.UserDefinedClassVariable, BaseUserFunctionVariable)
|
||
|
):
|
||
|
return variables.ConstantVariable.create(True)
|
||
|
elif isinstance(arg, UserDefinedVariable):
|
||
|
return variables.ConstantVariable.create(callable(arg.value))
|
||
|
elif isinstance(arg, (ConstantVariable, SymNodeVariable, TensorVariable)):
|
||
|
return variables.ConstantVariable.create(False)
|
||
|
|
||
|
def call_cast(self, _, *args, **kwargs):
|
||
|
if len(args) == 2:
|
||
|
return args[1]
|
||
|
|
||
|
unimplemented(f"unsupported args to builtin cast(): {args} {kwargs}")
|
||
|
|
||
|
def call_dict(self, tx, *args, **kwargs):
|
||
|
return BuiltinVariable.call_custom_dict(tx, dict, *args, **kwargs)
|
||
|
|
||
|
@staticmethod
|
||
|
def call_custom_dict(tx, user_cls, *args, **kwargs):
|
||
|
if not kwargs:
|
||
|
if not args:
|
||
|
args = ({},)
|
||
|
assert len(args) == 1
|
||
|
arg = args[0]
|
||
|
if isinstance(arg, dict):
|
||
|
return ConstDictVariable(arg, user_cls, mutable_local=MutableLocal())
|
||
|
elif isinstance(arg, variables.ConstDictVariable):
|
||
|
return arg.clone(user_cls=user_cls, mutable_local=MutableLocal())
|
||
|
elif isinstance(
|
||
|
arg,
|
||
|
(
|
||
|
ListVariable,
|
||
|
TupleVariable,
|
||
|
ListIteratorVariable,
|
||
|
),
|
||
|
):
|
||
|
items = dict(
|
||
|
x.unpack_var_sequence(tx) for x in arg.unpack_var_sequence(tx)
|
||
|
)
|
||
|
return ConstDictVariable(items, user_cls, mutable_local=MutableLocal())
|
||
|
elif not args and kwargs:
|
||
|
items = {ConstantVariable.create(k): v for k, v in kwargs.items()}
|
||
|
return variables.ConstDictVariable(
|
||
|
items, user_cls=user_cls, mutable_local=MutableLocal()
|
||
|
)
|
||
|
unimplemented(f"{user_cls.__name__}(): {args} {kwargs}")
|
||
|
|
||
|
@staticmethod
|
||
|
def call_custom_dict_fromkeys(tx, user_cls, *args, **kwargs):
|
||
|
assert user_cls in {dict, OrderedDict, defaultdict}
|
||
|
if kwargs:
|
||
|
# Only `OrderedDict.fromkeys` accepts `value` passed by keyword
|
||
|
assert user_cls is OrderedDict
|
||
|
assert len(args) == 1 and len(kwargs) == 1 and "value" in kwargs
|
||
|
args = (*args, kwargs.pop("value"))
|
||
|
if len(args) == 0:
|
||
|
raise UserError(TypeError, "fromkeys expected at least 1 argument, got 0")
|
||
|
if len(args) == 1:
|
||
|
args = (*args, ConstantVariable.create(None))
|
||
|
assert len(args) == 2
|
||
|
arg, value = args
|
||
|
DictVariableType = (
|
||
|
ConstDictVariable if user_cls is not defaultdict else DefaultDictVariable
|
||
|
)
|
||
|
|
||
|
if isinstance(arg, dict):
|
||
|
arg = [ConstantVariable.create(k) for k in arg.keys()]
|
||
|
return DictVariableType(
|
||
|
dict.fromkeys(arg, value), user_cls, mutable_local=MutableLocal()
|
||
|
)
|
||
|
elif arg.has_unpack_var_sequence(tx) and all(
|
||
|
is_hashable(v) for v in arg.unpack_var_sequence(tx)
|
||
|
):
|
||
|
keys = arg.unpack_var_sequence(tx)
|
||
|
return DictVariableType(
|
||
|
dict.fromkeys(keys, value), user_cls, mutable_local=MutableLocal()
|
||
|
)
|
||
|
unimplemented(f"{user_cls.__name__}.fromkeys(): {args} {kwargs}")
|
||
|
|
||
|
def call_set(self, tx, *args, **kwargs):
|
||
|
# Can we merge this implementation and call_dict's one?
|
||
|
assert not kwargs
|
||
|
if not args:
|
||
|
return SetVariable([], mutable_local=MutableLocal())
|
||
|
assert len(args) == 1
|
||
|
arg = args[0]
|
||
|
if isinstance(arg, variables.SetVariable):
|
||
|
return arg.clone(mutable_local=MutableLocal())
|
||
|
elif arg.has_unpack_var_sequence(tx):
|
||
|
items = arg.unpack_var_sequence(tx)
|
||
|
return SetVariable(items, mutable_local=MutableLocal())
|
||
|
else:
|
||
|
unimplemented(f"set(): {args} {kwargs}")
|
||
|
|
||
|
def call_zip(self, tx, *args, **kwargs):
|
||
|
if kwargs:
|
||
|
assert len(kwargs) == 1 and "strict" in kwargs
|
||
|
if all(x.has_unpack_var_sequence(tx) for x in args):
|
||
|
unpacked = [arg.unpack_var_sequence(tx) for arg in args]
|
||
|
if kwargs.pop("strict", False) and len(unpacked) > 0:
|
||
|
if not all(len(u) == len(unpacked[0]) for u in unpacked):
|
||
|
raise UserError(
|
||
|
ValueError,
|
||
|
"zip() has one argument of len differing from others",
|
||
|
)
|
||
|
items = [variables.TupleVariable(list(item)) for item in zip(*unpacked)]
|
||
|
return variables.TupleVariable(items)
|
||
|
|
||
|
def call_enumerate(self, tx, *args):
|
||
|
if len(args) == 1:
|
||
|
start = 0
|
||
|
else:
|
||
|
assert len(args) == 2
|
||
|
assert isinstance(args[1], variables.ConstantVariable)
|
||
|
start = args[1].as_python_constant()
|
||
|
if args[0].has_unpack_var_sequence(tx):
|
||
|
items = [
|
||
|
variables.TupleVariable(
|
||
|
[variables.ConstantVariable.create(idx), var],
|
||
|
)
|
||
|
for idx, var in enumerate(args[0].unpack_var_sequence(tx), start)
|
||
|
]
|
||
|
return variables.TupleVariable(items)
|
||
|
|
||
|
def call_len(self, tx, *args, **kwargs):
|
||
|
return args[0].call_method(tx, "__len__", args[1:], kwargs)
|
||
|
|
||
|
def call_getitem(self, tx, *args, **kwargs):
|
||
|
return args[0].call_method(tx, "__getitem__", args[1:], kwargs)
|
||
|
|
||
|
def call_isinstance(self, tx, arg, isinstance_type):
|
||
|
try:
|
||
|
arg_type = arg.python_type()
|
||
|
except NotImplementedError:
|
||
|
unimplemented(
|
||
|
f"isinstance({arg}, {isinstance_type}): can't determine type of {arg}"
|
||
|
)
|
||
|
|
||
|
isinstance_type = isinstance_type.as_python_constant()
|
||
|
|
||
|
if isinstance(arg, variables.TensorVariable) and arg.dtype is not None:
|
||
|
|
||
|
def _tensor_isinstance(tensor_var, tensor_type):
|
||
|
def check_type(ty):
|
||
|
if ty not in tensortype_to_dtype:
|
||
|
return issubclass(arg.python_type(), ty)
|
||
|
|
||
|
dtypes = tensortype_to_dtype[ty]
|
||
|
return arg.dtype in dtypes
|
||
|
|
||
|
if type(tensor_type) is tuple:
|
||
|
return any(check_type(ty) for ty in tensor_type)
|
||
|
else:
|
||
|
return check_type(tensor_type)
|
||
|
|
||
|
return variables.ConstantVariable.create(
|
||
|
_tensor_isinstance(arg, isinstance_type)
|
||
|
)
|
||
|
# UserDefinedObject with C extensions can have torch.Tensor attributes,
|
||
|
# so break graph.
|
||
|
if isinstance(arg, variables.UserDefinedObjectVariable) and isinstance(
|
||
|
arg.value, types.MemberDescriptorType
|
||
|
):
|
||
|
unimplemented(
|
||
|
f"isinstance called on UserDefinedClass {arg} {isinstance_type}"
|
||
|
)
|
||
|
# handle __instancecheck__ defined in user class
|
||
|
if (
|
||
|
isinstance(arg, variables.UserDefinedObjectVariable)
|
||
|
and "__instancecheck__" in isinstance_type.__class__.__dict__
|
||
|
):
|
||
|
return variables.ConstantVariable.create(
|
||
|
isinstance_type.__class__.__instancecheck__(isinstance_type, arg.value)
|
||
|
)
|
||
|
|
||
|
try:
|
||
|
val = issubclass(arg_type, isinstance_type)
|
||
|
except TypeError:
|
||
|
val = arg_type is isinstance_type
|
||
|
return variables.ConstantVariable.create(val)
|
||
|
|
||
|
def call_issubclass(self, tx, left_ty, right_ty):
|
||
|
"""Checks if first arg is subclass of right arg"""
|
||
|
left_ty = left_ty.as_python_constant()
|
||
|
right_ty = right_ty.as_python_constant()
|
||
|
|
||
|
return variables.ConstantVariable(issubclass(left_ty, right_ty))
|
||
|
|
||
|
def call_super(self, tx, a, b):
|
||
|
return variables.SuperVariable(a, b)
|
||
|
|
||
|
def call_next(self, tx, arg):
|
||
|
if isinstance(
|
||
|
arg, (variables.ListIteratorVariable, variables.IteratorVariable)
|
||
|
):
|
||
|
val, next_iter = arg.next_variables(tx)
|
||
|
return val
|
||
|
elif isinstance(arg, variables.BaseListVariable):
|
||
|
return arg.items[0]
|
||
|
|
||
|
def call_hasattr(self, tx, obj, attr):
|
||
|
if attr.is_python_constant():
|
||
|
name = attr.as_python_constant()
|
||
|
return obj.call_hasattr(tx, name)
|
||
|
|
||
|
def call_map(self, tx, fn, seq):
|
||
|
if seq.has_unpack_var_sequence(tx):
|
||
|
items = [fn.call_function(tx, [x], {}) for x in seq.unpack_var_sequence(tx)]
|
||
|
return variables.TupleVariable(items)
|
||
|
|
||
|
def call_sum(self, tx, seq, start=_SENTINEL):
|
||
|
# Special case for sum on tuple of floats and ints
|
||
|
if isinstance(seq, (variables.ListVariable, variables.TupleVariable)) and all(
|
||
|
isinstance(x, variables.ConstantVariable)
|
||
|
and isinstance(x.value, (int, float))
|
||
|
for x in seq.items
|
||
|
):
|
||
|
if start is self._SENTINEL:
|
||
|
return variables.ConstantVariable.create(
|
||
|
sum(x.value for x in seq.items),
|
||
|
)
|
||
|
if isinstance(start, variables.ConstantVariable) and isinstance(
|
||
|
start.value, (int, float)
|
||
|
):
|
||
|
return variables.ConstantVariable.create(
|
||
|
sum((x.value for x in seq.items), start=start.value),
|
||
|
)
|
||
|
if seq.has_unpack_var_sequence(tx):
|
||
|
if start is self._SENTINEL:
|
||
|
start = variables.ConstantVariable.create(0)
|
||
|
items = seq.unpack_var_sequence(tx)
|
||
|
return BuiltinVariable(functools.reduce).call_function(
|
||
|
tx,
|
||
|
[
|
||
|
BuiltinVariable(operator.add),
|
||
|
variables.TupleVariable(items),
|
||
|
start,
|
||
|
],
|
||
|
{},
|
||
|
)
|
||
|
|
||
|
def call_reduce(self, tx, function, iterable, initial=_SENTINEL):
|
||
|
if iterable.has_unpack_var_sequence(tx):
|
||
|
items = iterable.unpack_var_sequence(tx)
|
||
|
if initial is self._SENTINEL:
|
||
|
value, items = items[0], items[1:]
|
||
|
else:
|
||
|
value = initial
|
||
|
for element in items:
|
||
|
value = function.call_function(tx, [value, element], {})
|
||
|
return value
|
||
|
|
||
|
def call_getattr(
|
||
|
self, tx, obj: VariableTracker, name_var: VariableTracker, default=None
|
||
|
):
|
||
|
from .. import trace_rules
|
||
|
from . import (
|
||
|
ConstantVariable,
|
||
|
GetAttrVariable,
|
||
|
PythonModuleVariable,
|
||
|
TorchInGraphFunctionVariable,
|
||
|
UserFunctionVariable,
|
||
|
)
|
||
|
from .builder import SourcelessBuilder, VariableBuilder
|
||
|
|
||
|
name = name_var.as_python_constant()
|
||
|
|
||
|
if not name_var.is_python_constant():
|
||
|
unimplemented("non-const getattr() name")
|
||
|
|
||
|
if tx.output.side_effects.is_attribute_mutation(obj):
|
||
|
try:
|
||
|
# re-read a pending side effect?
|
||
|
return tx.output.side_effects.load_attr(obj, name)
|
||
|
except KeyError:
|
||
|
pass
|
||
|
|
||
|
if default is not None:
|
||
|
hasattr_var = self.call_hasattr(tx, obj, name_var)
|
||
|
assert hasattr_var.as_python_constant() in (True, False)
|
||
|
if not hasattr_var.as_python_constant():
|
||
|
return default
|
||
|
|
||
|
options = {}
|
||
|
if obj.source:
|
||
|
source = AttrSource(obj.source, name)
|
||
|
options["source"] = source
|
||
|
else:
|
||
|
source = None
|
||
|
|
||
|
if name == "__bases__":
|
||
|
try:
|
||
|
value = obj.as_python_constant()
|
||
|
if isinstance(value, type):
|
||
|
bases = value.__bases__
|
||
|
if source is not None:
|
||
|
tuple_args = [
|
||
|
VariableBuilder(tx, GetItemSource(source, i))(b)
|
||
|
for i, b in enumerate(bases)
|
||
|
]
|
||
|
else:
|
||
|
tuple_args = [SourcelessBuilder()(tx, b) for b in bases]
|
||
|
|
||
|
return variables.TupleVariable(tuple_args, **options)
|
||
|
except NotImplementedError:
|
||
|
pass
|
||
|
|
||
|
if isinstance(obj, variables.NNModuleVariable):
|
||
|
return obj.var_getattr(tx, name)
|
||
|
elif isinstance(
|
||
|
obj,
|
||
|
(
|
||
|
variables.TensorVariable,
|
||
|
variables.NamedTupleVariable,
|
||
|
variables.ConstantVariable,
|
||
|
variables.UserDefinedClassVariable,
|
||
|
variables.UserDefinedObjectVariable,
|
||
|
),
|
||
|
):
|
||
|
try:
|
||
|
return obj.var_getattr(tx, name)
|
||
|
except NotImplementedError:
|
||
|
return GetAttrVariable(obj, name, **options)
|
||
|
elif isinstance(obj, TorchInGraphFunctionVariable):
|
||
|
# Get OpOverload from an OpOverloadPacket, e.g., torch.ops.aten.add.default.
|
||
|
member = getattr(obj.value, name)
|
||
|
if isinstance(
|
||
|
member, (torch._ops.OpOverloadPacket, torch._ops.OpOverload)
|
||
|
) and trace_rules.is_aten_op_or_tensor_method(member):
|
||
|
return TorchInGraphFunctionVariable(member, **options)
|
||
|
elif isinstance(obj, (PythonModuleVariable, DummyModule)):
|
||
|
if obj.is_torch:
|
||
|
member = getattr(obj.value, name)
|
||
|
else:
|
||
|
member = obj.value.__dict__[name]
|
||
|
|
||
|
if config.replay_record_enabled:
|
||
|
tx.exec_recorder.record_module_access(obj.value, name, member)
|
||
|
|
||
|
if source is not None:
|
||
|
return VariableBuilder(tx, source)(member)
|
||
|
else:
|
||
|
return SourcelessBuilder()(tx, member)
|
||
|
elif istype(obj, UserFunctionVariable) and name in ("__name__", "__module__"):
|
||
|
return ConstantVariable.create(getattr(obj.fn, name))
|
||
|
else:
|
||
|
try:
|
||
|
return obj.var_getattr(tx, name)
|
||
|
except NotImplementedError:
|
||
|
return GetAttrVariable(obj, name, **options)
|
||
|
|
||
|
def call_setattr(
|
||
|
self, tx, obj: VariableTracker, name_var: VariableTracker, val: VariableTracker
|
||
|
):
|
||
|
from .distributed import PlacementVariable
|
||
|
|
||
|
if isinstance(
|
||
|
obj,
|
||
|
(
|
||
|
variables.DataClassVariable,
|
||
|
variables.CustomizedDictVariable,
|
||
|
PlacementVariable,
|
||
|
),
|
||
|
):
|
||
|
return obj.call_method(tx, "__setattr__", [name_var, val], {})
|
||
|
elif (
|
||
|
tx.output.side_effects.is_attribute_mutation(obj)
|
||
|
and name_var.is_python_constant()
|
||
|
):
|
||
|
name = name_var.as_python_constant()
|
||
|
if isinstance(obj, variables.TensorVariable):
|
||
|
from .builder import wrap_fx_proxy
|
||
|
|
||
|
if name == "requires_grad":
|
||
|
# TODO(voz): Make it work properly
|
||
|
unimplemented(
|
||
|
"mutating requires_grad can introduce a new leaf from non-leaf or vice versa in "
|
||
|
"the middle of the graph, which aot_autograd does not currently know how to handle. "
|
||
|
)
|
||
|
if name == "data":
|
||
|
# Remove the old reference in tracked fakes - if we don't do this
|
||
|
# new .data value size and shape differences will cause
|
||
|
# tracked fakes to produce incorrect guards. This is sound because the TensorVariable
|
||
|
# coming out of set_() below will be a new one, and get
|
||
|
# installed in tracked fakes.
|
||
|
to_remove = []
|
||
|
for tf in tx.output.tracked_fakes:
|
||
|
if tf.source == obj.source:
|
||
|
to_remove.append(tf)
|
||
|
for tf in to_remove:
|
||
|
tx.output.tracked_fakes.remove(tf)
|
||
|
|
||
|
# Step 1 - disable grads
|
||
|
with dynamo_disable_grad(tx), torch.no_grad():
|
||
|
# Step 2 - call `set_`
|
||
|
out = wrap_fx_proxy(
|
||
|
tx,
|
||
|
tx.output.create_proxy(
|
||
|
"call_function",
|
||
|
torch.Tensor.set_,
|
||
|
*proxy_args_kwargs([obj, val], {}),
|
||
|
),
|
||
|
)
|
||
|
|
||
|
# Step 3 - drop the version counter - this is a step required to get
|
||
|
# .data setting to play correctly with the autograd engine.
|
||
|
# Esentially, dynamo is trying to faithful preserve the (absurd)
|
||
|
# behavior of .data= from eager mode
|
||
|
def _lower_version_count_by_1(x):
|
||
|
version = x._version
|
||
|
if version > 0:
|
||
|
version = version - 1
|
||
|
torch._C._autograd._unsafe_set_version_counter(x, version)
|
||
|
return x
|
||
|
|
||
|
tx.output.create_proxy(
|
||
|
"call_function",
|
||
|
_lower_version_count_by_1,
|
||
|
(out.as_proxy(),),
|
||
|
{},
|
||
|
)
|
||
|
_lower_version_count_by_1(obj.as_proxy().node.meta["example_value"])
|
||
|
# This handles options prop, guards and ends with a clone
|
||
|
# Step 4 - replace all reference to the current object with the new one
|
||
|
return out
|
||
|
|
||
|
tx.output.side_effects.store_attr(obj, name, val)
|
||
|
return val
|
||
|
elif isinstance(obj, variables.UserDefinedObjectVariable):
|
||
|
unimplemented(
|
||
|
f"setattr(UserDefinedObjectVariable) {type(obj.value).__setattr__}"
|
||
|
)
|
||
|
elif isinstance(obj, variables.NNModuleVariable):
|
||
|
if not tx.output.is_root_tracer():
|
||
|
raise AttributeMutationError(
|
||
|
"Can't inplace modify module params/buffers inside HigherOrderOp"
|
||
|
)
|
||
|
if name_var.is_python_constant() and isinstance(
|
||
|
val, variables.TensorVariable
|
||
|
):
|
||
|
assigning_fake_val = get_fake_value(val.as_proxy().node, tx)
|
||
|
|
||
|
try:
|
||
|
getattr_var = obj.var_getattr(tx, name_var.as_python_constant())
|
||
|
except AttributeError:
|
||
|
getattr_var = None
|
||
|
|
||
|
if isinstance(getattr_var, variables.TensorVariable):
|
||
|
# get_fake_val will get the same fake tensor
|
||
|
existing_fake_attr = get_fake_value(getattr_var.as_proxy().node, tx)
|
||
|
|
||
|
# same tensor identiy, setattr is a no-op
|
||
|
mod_setattr = inspect.getattr_static(obj.module_type, "__setattr__")
|
||
|
if (
|
||
|
existing_fake_attr is assigning_fake_val
|
||
|
and mod_setattr is torch.nn.Module.__setattr__
|
||
|
):
|
||
|
return getattr_var
|
||
|
|
||
|
obj.convert_to_unspecialized(tx)
|
||
|
# FIXME (tmanlaibaatar) this is utter hack to unblock HuggingFace export
|
||
|
# Export generally doesn't want to allow mutations on objects directly,
|
||
|
# but we don't have good way to do this rn. For now, we make it an undefined
|
||
|
# behaviour and just set attributes directly on the PretrainedConfig object
|
||
|
# for now.
|
||
|
elif isinstance(obj, variables.dicts.HFPretrainedConfigVariable) and tx.export:
|
||
|
if name_var.is_python_constant() and isinstance(
|
||
|
val, variables.ConstantVariable
|
||
|
):
|
||
|
setattr(
|
||
|
obj.obj, name_var.as_python_constant(), val.as_python_constant()
|
||
|
)
|
||
|
return ConstantVariable(None)
|
||
|
|
||
|
def call_delattr(self, tx, obj: VariableTracker, name_var: VariableTracker):
|
||
|
return self.call_setattr(tx, obj, name_var, variables.DeletedVariable())
|
||
|
|
||
|
def call_type(self, tx, obj: VariableTracker):
|
||
|
from .builder import SourcelessBuilder, VariableBuilder
|
||
|
|
||
|
try:
|
||
|
py_type = obj.python_type()
|
||
|
except NotImplementedError as error:
|
||
|
raise UserError(
|
||
|
UserErrorType.INVALID_INPUT,
|
||
|
str(error),
|
||
|
case_name="unknown_python_type",
|
||
|
) from None
|
||
|
|
||
|
if obj.source is None:
|
||
|
return SourcelessBuilder()(tx, py_type)
|
||
|
else:
|
||
|
return VariableBuilder(tx, TypeSource(obj.source))(py_type)
|
||
|
|
||
|
def call_reversed(self, tx, obj: VariableTracker):
|
||
|
if obj.has_unpack_var_sequence(tx):
|
||
|
items = list(reversed(obj.unpack_var_sequence(tx)))
|
||
|
return variables.TupleVariable(items)
|
||
|
|
||
|
def call_sorted(self, tx, obj: VariableTracker, **kwargs):
|
||
|
if (
|
||
|
obj.has_unpack_var_sequence(tx)
|
||
|
and not isinstance(obj, variables.TensorVariable)
|
||
|
and all(x.is_python_constant() for x in obj.unpack_var_sequence(tx))
|
||
|
):
|
||
|
function = kwargs.pop("key", None)
|
||
|
reverse = kwargs.pop(
|
||
|
"reverse", ConstantVariable.create(False)
|
||
|
).as_python_constant()
|
||
|
assert len(kwargs) == 0
|
||
|
if function:
|
||
|
items = sorted(
|
||
|
obj.unpack_var_sequence(tx),
|
||
|
key=lambda x: function.call_function(
|
||
|
tx, [x], {}
|
||
|
).as_python_constant(),
|
||
|
reverse=reverse,
|
||
|
)
|
||
|
else:
|
||
|
items = sorted(
|
||
|
obj.unpack_var_sequence(tx),
|
||
|
key=lambda x: x.as_python_constant(),
|
||
|
reverse=reverse,
|
||
|
)
|
||
|
return variables.ListVariable(items)
|
||
|
|
||
|
def call_chain(self, tx, *args):
|
||
|
if all(obj.has_unpack_var_sequence(tx) for obj in args):
|
||
|
items = []
|
||
|
for obj in args:
|
||
|
items.extend(obj.unpack_var_sequence(tx))
|
||
|
return variables.TupleVariable(items)
|
||
|
|
||
|
def call_islice(self, tx, iterable, *args):
|
||
|
if iterable.has_unpack_var_sequence(tx) and all(
|
||
|
x.is_python_constant() for x in args
|
||
|
):
|
||
|
const_args = [x.as_python_constant() for x in args]
|
||
|
items = iterable.unpack_var_sequence(tx)
|
||
|
items = list(itertools.islice(items, *const_args))
|
||
|
return variables.TupleVariable(items)
|
||
|
|
||
|
# neg is a constant fold function, so we only get here if constant fold is not valid
|
||
|
def call_neg(self, tx, a):
|
||
|
if isinstance(a, SymNodeVariable):
|
||
|
return SymNodeVariable.create(
|
||
|
tx,
|
||
|
(operator.neg)(a.as_proxy()),
|
||
|
sym_num=None,
|
||
|
)
|
||
|
# None no-ops this handler and lets the driving function proceed
|
||
|
return None
|
||
|
|
||
|
def call_format(self, tx, _format_string, *args, **kwargs):
|
||
|
format_string = _format_string.as_python_constant()
|
||
|
return variables.StringFormatVariable.create(format_string, args, kwargs)
|
||
|
|
||
|
def call_id(self, tx, *args):
|
||
|
if len(args) > 0 and isinstance(args[0], variables.NNModuleVariable):
|
||
|
nn_mod_variable = args[0]
|
||
|
mod = tx.output.get_submodule(nn_mod_variable.module_key)
|
||
|
return variables.ConstantVariable.create(id(mod))
|
||
|
else:
|
||
|
unimplemented(f"call_id with args {args}")
|
||
|
|
||
|
def call_deepcopy(self, tx, x):
|
||
|
unimplemented(f"copy.deepcopy {repr(x)}")
|
||
|
|
||
|
def _comparison(self, tx, left, right):
|
||
|
"""
|
||
|
Used to implement comparison operators for different types.
|
||
|
For example, list1 < list2 is implemented differently from tensor1 < tensor2
|
||
|
"""
|
||
|
from . import (
|
||
|
BaseListVariable,
|
||
|
ConstantVariable,
|
||
|
NNModuleVariable,
|
||
|
TensorVariable,
|
||
|
UserDefinedObjectVariable,
|
||
|
UserFunctionVariable,
|
||
|
)
|
||
|
from .lists import SizeVariable
|
||
|
from .tensor import (
|
||
|
supported_const_comparison_ops,
|
||
|
supported_tensor_comparison_ops,
|
||
|
)
|
||
|
|
||
|
op = self.fn
|
||
|
|
||
|
def _unimplemented():
|
||
|
unimplemented(f"comparison {typestr(left)} {op} {typestr(right)}")
|
||
|
|
||
|
if (
|
||
|
all(
|
||
|
isinstance(x, (NNModuleVariable, ConstantVariable))
|
||
|
for x in [left, right]
|
||
|
)
|
||
|
and op in supported_const_comparison_ops.values()
|
||
|
):
|
||
|
left = (
|
||
|
tx.output.get_submodule(left.module_key)
|
||
|
if isinstance(left, NNModuleVariable)
|
||
|
else left.as_python_constant()
|
||
|
)
|
||
|
right = (
|
||
|
tx.output.get_submodule(right.module_key)
|
||
|
if isinstance(right, NNModuleVariable)
|
||
|
else right.as_python_constant()
|
||
|
)
|
||
|
return ConstantVariable.create(op(left, right))
|
||
|
|
||
|
if isinstance(left, UserFunctionVariable):
|
||
|
if op not in supported_const_comparison_ops.values():
|
||
|
_unimplemented()
|
||
|
if not isinstance(right, UserFunctionVariable):
|
||
|
_unimplemented()
|
||
|
return ConstantVariable.create(op(left.fn, right.fn))
|
||
|
|
||
|
# Note, we have a rare BaseListVariable subtype mismatch with valid comparison
|
||
|
# x = torch.randn([3, 3])
|
||
|
# x.size() == (3, 3) # True
|
||
|
# (3, 3) == x.size() # True
|
||
|
if isinstance(left, (SizeVariable, TupleVariable)) and isinstance(
|
||
|
right, (TupleVariable, SizeVariable)
|
||
|
):
|
||
|
return BaseListVariable.list_compare(tx, op, left, right)
|
||
|
|
||
|
if isinstance(left, BaseListVariable):
|
||
|
if not type(left) == type(right): # Mismatch in BaseListVariable subclasses
|
||
|
_unimplemented()
|
||
|
return BaseListVariable.list_compare(tx, op, left, right)
|
||
|
|
||
|
# If they implement set semantics (e.g. SetVariable or DictKeys)
|
||
|
if hasattr(left, "set_items") and hasattr(right, "set_items"):
|
||
|
return ConstantVariable.create(op(left.set_items, right.set_items))
|
||
|
|
||
|
if isinstance(left, TensorVariable) or isinstance(right, TensorVariable):
|
||
|
from .builder import wrap_fx_proxy_cls
|
||
|
|
||
|
if op in [operator.is_, operator.is_not]:
|
||
|
is_result = (
|
||
|
isinstance(left, TensorVariable)
|
||
|
and isinstance(right, TensorVariable)
|
||
|
and id(extract_fake_example_value(left.as_proxy().node))
|
||
|
== id(extract_fake_example_value(right.as_proxy().node))
|
||
|
)
|
||
|
if op is operator.is_:
|
||
|
return ConstantVariable.create(is_result)
|
||
|
else:
|
||
|
return ConstantVariable.create(not is_result)
|
||
|
|
||
|
if op not in supported_tensor_comparison_ops.values():
|
||
|
_unimplemented()
|
||
|
if (
|
||
|
isinstance(left, TensorVariable)
|
||
|
and isinstance(right, TensorVariable)
|
||
|
and (left.size and right.size) is not None
|
||
|
and left.size != right.size
|
||
|
):
|
||
|
try:
|
||
|
torch.broadcast_shapes(left.size, right.size)
|
||
|
except RuntimeError:
|
||
|
# not broadcastable, can't be compared
|
||
|
_unimplemented()
|
||
|
tensor_cls = left if isinstance(left, TensorVariable) else right
|
||
|
proxy = tx.output.create_proxy(
|
||
|
"call_function", op, (left.as_proxy(), right.as_proxy()), {}
|
||
|
)
|
||
|
return wrap_fx_proxy_cls(
|
||
|
type(tensor_cls), # handle Ndarrays and Tensors
|
||
|
tx,
|
||
|
proxy,
|
||
|
)
|
||
|
|
||
|
if isinstance(left, SymNodeVariable) or isinstance(right, SymNodeVariable):
|
||
|
if op not in supported_tensor_comparison_ops.values():
|
||
|
_unimplemented()
|
||
|
|
||
|
proxy = tx.output.create_proxy(
|
||
|
"call_function", op, (left.as_proxy(), right.as_proxy()), {}
|
||
|
)
|
||
|
return SymNodeVariable.create(
|
||
|
tx,
|
||
|
proxy,
|
||
|
sym_num=None,
|
||
|
)
|
||
|
|
||
|
if isinstance(left, UserDefinedObjectVariable) and isinstance(
|
||
|
right, UserDefinedObjectVariable
|
||
|
):
|
||
|
return ConstantVariable.create(op(left.value, right.value))
|
||
|
|
||
|
if isinstance(left, (StreamVariable, EventVariable)) or isinstance(
|
||
|
right, (StreamVariable, EventVariable)
|
||
|
):
|
||
|
if type(left) == type(right) and op is operator.eq:
|
||
|
return ConstantVariable(op(left.value, right.value))
|
||
|
|
||
|
if isinstance(right, ConstantVariable) or isinstance(
|
||
|
left, ConstantVariable
|
||
|
):
|
||
|
return ConstantVariable(op(left.value, right.value))
|
||
|
|
||
|
if op.__name__.startswith("is_"):
|
||
|
# If the two objects are of different type, we can safely return False and True for `is` and `is not`, respectively
|
||
|
if type(left) is not type(right):
|
||
|
return ConstantVariable.create(op.__name__ != "is_")
|
||
|
|
||
|
if isinstance(left, BuiltinVariable) and isinstance(right, BuiltinVariable):
|
||
|
return ConstantVariable.create(op(left.fn, right.fn))
|
||
|
|
||
|
_unimplemented()
|
||
|
|
||
|
def call_and_(self, tx, a, b):
|
||
|
# Rely on constant_handler
|
||
|
if isinstance(a, ConstantVariable) and isinstance(b, ConstantVariable):
|
||
|
return None
|
||
|
if isinstance(a, (SymNodeVariable, ConstantVariable)) and isinstance(
|
||
|
b, (SymNodeVariable, ConstantVariable)
|
||
|
):
|
||
|
return SymNodeVariable.create(
|
||
|
tx,
|
||
|
tx.output.create_proxy(
|
||
|
"call_function", operator.and_, *proxy_args_kwargs([a, b], {})
|
||
|
),
|
||
|
sym_num=None,
|
||
|
)
|
||
|
if hasattr(a, "set_items") and hasattr(b, "set_items"):
|
||
|
return SetVariable(list(a.set_items & b.set_items))
|
||
|
# None no-ops this handler and lets the driving function proceed
|
||
|
|
||
|
def call_or_(self, tx, a, b):
|
||
|
# Rely on constant_handler
|
||
|
if isinstance(a, ConstantVariable) and isinstance(b, ConstantVariable):
|
||
|
return None
|
||
|
if isinstance(a, (SymNodeVariable, ConstantVariable)) and isinstance(
|
||
|
b, (SymNodeVariable, ConstantVariable)
|
||
|
):
|
||
|
return SymNodeVariable.create(
|
||
|
tx,
|
||
|
tx.output.create_proxy(
|
||
|
"call_function", operator.or_, *proxy_args_kwargs([a, b], {})
|
||
|
),
|
||
|
sym_num=None,
|
||
|
)
|
||
|
if hasattr(a, "set_items") and hasattr(b, "set_items"):
|
||
|
return SetVariable(list(a.set_items | b.set_items))
|
||
|
# None no-ops this handler and lets the driving function proceed
|
||
|
return None
|
||
|
|
||
|
def call_not_(self, tx, a):
|
||
|
if isinstance(a, SymNodeVariable):
|
||
|
return SymNodeVariable.create(
|
||
|
tx,
|
||
|
tx.output.create_proxy(
|
||
|
"call_function", operator.not_, *proxy_args_kwargs([a], {})
|
||
|
),
|
||
|
sym_num=None,
|
||
|
)
|
||
|
|
||
|
# Unwrap the underlying ConstDictVariable
|
||
|
if isinstance(a, DictView):
|
||
|
a = a.dv_dict
|
||
|
if isinstance(a, (ListVariable, ConstDictVariable)):
|
||
|
return ConstantVariable.create(len(a.items) == 0)
|
||
|
|
||
|
return None
|
||
|
|
||
|
call_eq = _comparison
|
||
|
call_gt = _comparison
|
||
|
call_lt = _comparison
|
||
|
call_ge = _comparison
|
||
|
call_le = _comparison
|
||
|
call_ne = _comparison
|
||
|
call_is_ = _comparison
|
||
|
call_is_not = _comparison
|
||
|
|
||
|
call_all = _polyfill_call_impl("all")
|
||
|
call_any = _polyfill_call_impl("any")
|
||
|
|
||
|
|
||
|
@contextlib.contextmanager
|
||
|
def dynamo_disable_grad(tx):
|
||
|
from . import GradModeVariable
|
||
|
|
||
|
org_value = torch.is_grad_enabled()
|
||
|
gmv = GradModeVariable.create(tx, False)
|
||
|
try:
|
||
|
gmv.enter(tx)
|
||
|
yield
|
||
|
finally:
|
||
|
gmv.exit(tx)
|