ai-content-maker/.venv/Lib/site-packages/torch/_dynamo/variables/constant.py

214 lines
8.0 KiB
Python
Raw Permalink Normal View History

2024-05-03 04:18:51 +03:00
# mypy: ignore-errors
import operator
from typing import Dict, List
import torch
from torch._dynamo.source import GetItemSource
from .. import variables
from ..exc import unimplemented, UserError, UserErrorType
from ..guards import GuardBuilder, install_guard
from ..utils import common_constant_types, istype, np
from .base import typestr, VariableTracker
_type_to_assert_reason = {
# NB - We CAN have ConstantVariable.create(set) because of how sets interact with guards.
# A locally created set should always become a SetVariable, as the items in the set will already either be sourced
# from somewhere else, or unsourced. An input set would imply sources derived from set contents. For example, an
# input list's contents will have a source like some_list[0], some_list[1][1], etc. For a set, arbitrary access is
# not possible. This is a solvable problem, but one we have not taken on yet. As such, input sets are not allowed to
# become SetVariables. The solution here is to create a ConstantSetVariable that is more like a ConstantVariable.
# As this does not exist, we cannot add sets to this invariant.
list: "List types must use ListVariable.",
dict: "Dict types must use ConstDictVariable.",
torch.Tensor: "Tensor types must use TensorVariable.",
torch.SymInt: "SymInts must use SymNodeVariable. "
"If the underlying value is static, we will create a ConstantVariable and specialize.",
torch.SymFloat: "SymInts must use SymNodeVariable",
}
class ConstantVariable(VariableTracker):
@staticmethod
def create(value, **kwargs) -> VariableTracker:
source = kwargs.get("source", None)
is_literal = ConstantVariable.is_literal(value)
if not is_literal:
for disallowed_type, reason in _type_to_assert_reason.items():
assert not isinstance(value, disallowed_type), reason
# Routing for list and tuple literals.
if is_literal and isinstance(value, (list, tuple)):
items = []
for i, x in enumerate(value):
item_source = GetItemSource(source, i) if source else None
if item_source:
install_guard(item_source.make_guard(GuardBuilder.CONSTANT_MATCH))
items.append(
ConstantVariable.create(
x,
source=item_source,
)
)
return variables.BaseListVariable.cls_for(type(value))(items, **kwargs)
return ConstantVariable(value, **kwargs)
def __init__(self, value, **kwargs):
super().__init__(**kwargs)
if not ConstantVariable.is_literal(value):
for disallowed_type, reason in _type_to_assert_reason.items():
assert not isinstance(value, disallowed_type), reason
assert not isinstance(
value, (list, tuple)
), "ConstantVariable(list) is banned - please create a ListVariable(items)"
if np is not None and isinstance(value, np.number):
self.value = value.item()
else:
self.value = value
def as_proxy(self):
return self.value
def __str__(self):
return f"ConstantVariable({type(self.value).__name__}: {repr(self.value)})"
def python_type(self):
return type(self.value)
def as_python_constant(self):
return self.value
@property
def items(self):
"""
Need this when adding a BaseListVariable and a ConstantVariable together.
Happens in detectron2.
"""
return self.unpack_var_sequence(tx=None)
def getitem_const(self, arg: VariableTracker):
return ConstantVariable.create(
self.value[arg.as_python_constant()],
)
@staticmethod
def is_literal(obj):
if type(obj) in common_constant_types:
return True
# The structure within is_literal get routed to variables.BaseListVariable
if type(obj) in (list, tuple, set, frozenset, torch.Size):
return all(ConstantVariable.is_literal(x) for x in obj)
return False
def unpack_var_sequence(self, tx):
try:
return [ConstantVariable.create(x) for x in self.as_python_constant()]
except TypeError as e:
raise NotImplementedError from e
def const_getattr(self, tx, name):
if isinstance(self.value, type):
raise UserError(
UserErrorType.ANTI_PATTERN,
"Can't access members of type(obj) for a generated custom object. "
"Please use __class__ instead",
case_name="type_reflection_method",
)
member = getattr(self.value, name)
if callable(member):
raise NotImplementedError()
return member
def call_method(
self,
tx,
name,
args: "List[VariableTracker]",
kwargs: "Dict[str, VariableTracker]",
) -> "VariableTracker":
from .tensor import SymNodeVariable
if name == "format" and istype(self.value, str):
return variables.BuiltinVariable(str.format).call_function(
tx, [self, *args], kwargs
)
if any(isinstance(x, SymNodeVariable) for x in args):
# Promote to SymNodeVariable for operations involving dynamic shapes.
return variables.SymNodeVariable(self.as_proxy(), self.value).call_method(
tx, name, args, kwargs
)
try:
const_args = [a.as_python_constant() for a in args]
const_kwargs = {k: v.as_python_constant() for k, v in kwargs.items()}
except NotImplementedError:
return super().call_method(tx, name, args, kwargs)
def has_arith_binop(num_ty):
return (
isinstance(self.value, num_ty)
and hasattr(operator, name)
and len(args) == 1
and args[0].is_python_constant()
)
if isinstance(self.value, str) and name in str.__dict__.keys():
method = getattr(self.value, name)
return ConstantVariable.create(method(*const_args, **const_kwargs))
elif has_arith_binop(int) or has_arith_binop(float):
op = getattr(operator, name)
add_target = const_args[0]
if isinstance(add_target, (torch.SymInt, torch.SymFloat)):
from .tensor import SymNodeVariable
# Addition between a non sym and sym makes a sym
# sym_num = tx.output.register_attr_or_module(
# add_target, f"sym_shape_{add_target}", source=None
# )
proxy = tx.output.create_proxy(
"call_function", op, (self.value, add_target), {}
)
return SymNodeVariable.create(tx, proxy, add_target)
return ConstantVariable.create(op(self.value, add_target))
elif name == "__len__" and not (args or kwargs):
return ConstantVariable.create(len(self.value))
elif name == "__contains__" and len(args) == 1 and args[0].is_python_constant():
assert not kwargs
search = args[0].as_python_constant()
result = search in self.value
return ConstantVariable.create(result)
unimplemented(f"const method call {typestr(self.value)}.{name}")
def call_hasattr(self, tx, name: str) -> "VariableTracker":
result = hasattr(self.value, name)
return variables.ConstantVariable.create(result)
class EnumVariable(VariableTracker):
def __init__(self, value, **kwargs):
super().__init__(**kwargs)
self.value = value
def as_proxy(self):
return self.value
def __str__(self):
return f"EnumVariable({type(self.value)})"
def python_type(self):
return type(self.value)
def as_python_constant(self):
return self.value
def const_getattr(self, tx, name):
member = getattr(self.value, name)
if callable(member):
raise NotImplementedError()
return member