ai-content-maker/.venv/Lib/site-packages/torch/_dynamo/variables/dicts.py

898 lines
30 KiB
Python
Raw Permalink Normal View History

2024-05-03 04:18:51 +03:00
# mypy: ignore-errors
import collections
import dataclasses
import functools
import inspect
import sys
from typing import Dict, List, Optional
from torch._subclasses.fake_tensor import is_fake
from .. import variables
from ..bytecode_transformation import (
create_call_function,
create_call_method,
create_instruction,
)
from ..eval_frame import skip_code
from ..exc import unimplemented
from ..guards import GuardBuilder, install_guard
from ..source import AttrSource, GetItemSource
from ..utils import dict_keys, dict_values, istype, specialize_symnode
from .base import MutableLocal, VariableTracker
from .constant import ConstantVariable
# [Adding a new supported class within the keys of ConstDictVarialble]
# - Add its tracker type to is_hashable
# - (perhaps) Define how it is compared in _HashableTracker._eq_impl
def is_hashable(x):
if isinstance(x, variables.TensorVariable):
# Tensors are hashable if they have an example_value (a fake tensor)
# Most VT's should have one.
# It'd be nice if at some point we could assert that they all have one
return x.as_proxy().node.meta.get("example_value") is not None
elif isinstance(x, variables.TupleVariable):
return all(is_hashable(e) for e in x.items)
else:
return isinstance(
x,
(
variables.BuiltinVariable,
variables.SymNodeVariable,
variables.ConstantVariable,
variables.EnumVariable,
variables.user_defined.UserDefinedClassVariable,
variables.UserFunctionVariable,
variables.SkipFunctionVariable,
variables.misc.NumpyVariable,
variables.NNModuleVariable,
variables.MethodWrapperVariable,
variables.TorchInGraphFunctionVariable,
variables.TypingVariable,
variables.FunctoolsPartialVariable,
),
)
class ConstDictVariable(VariableTracker):
class _HashableTracker:
"""
Auxiliary opaque internal class that wraps a VariableTracker and makes it hashable
This should not be seen or touched by anything outside of ConstDictVariable and its children
Note that it's also fine to put VTs into dictionaries and sets, but doing so does not take into account aliasing
"""
def __init__(self, vt):
# We specialize SymNodes
vt = specialize_symnode(vt)
# TODO Temorarily remove to figure out what keys are we breaking on
# and add proper support for them
if not is_hashable(vt):
unimplemented(f"Dict key of type {type(vt)}. Key: {vt}")
self.vt = vt
@property
def underlying_value(self):
if isinstance(self.vt, variables.TensorVariable):
x = self.vt.as_proxy().node.meta["example_value"]
elif isinstance(self.vt, variables.TupleVariable):
Hashable = ConstDictVariable._HashableTracker
x = tuple(Hashable(e).underlying_value for e in self.vt.items)
elif isinstance(self.vt, variables.NNModuleVariable):
return self.vt.module
elif isinstance(self.vt, variables.UserFunctionVariable):
return self.vt.get_function()
else:
x = self.vt.as_python_constant()
return x
def __hash__(self):
return hash(self.underlying_value)
@staticmethod
def _eq_impl(a, b):
# TODO: Put this in utils and share it between variables/builtin.py and here
if type(a) != type(b):
return False
elif isinstance(a, tuple):
Hashable = ConstDictVariable._HashableTracker
return len(a) == len(b) and all(
Hashable._eq_impl(u, v) for u, v in zip(a, b)
)
elif is_fake(a):
return a is b
else:
return a == b
def __eq__(self, other: "ConstDictVariable._HashableTracker") -> bool:
Hashable = ConstDictVariable._HashableTracker
assert isinstance(other, Hashable) or ConstantVariable.is_literal(
other
), type(other)
if isinstance(other, Hashable):
return Hashable._eq_impl(self.underlying_value, other.underlying_value)
# constant
return Hashable._eq_impl(self.underlying_value, other)
def __init__(
self, items: Dict[VariableTracker, VariableTracker], user_cls=dict, **kwargs
):
super().__init__(**kwargs)
Hashable = ConstDictVariable._HashableTracker
# Keys will just be HashableTrackers when cloning, in any other case they'll be VariableTrackers
assert all(
isinstance(x, (VariableTracker, Hashable))
and isinstance(v, VariableTracker)
for x, v in items.items()
)
def make_hashable(key):
return key if isinstance(key, Hashable) else Hashable(key)
self.items = {make_hashable(x): v for x, v in items.items()}
self.user_cls = user_cls
def as_proxy(self):
return {k.vt.as_proxy(): v.as_proxy() for k, v in self.items.items()}
def as_python_constant(self):
return {
k.vt.as_python_constant(): v.as_python_constant()
for k, v in self.items.items()
}
def keys_as_python_constant(self):
return {k.vt.as_python_constant(): v for k, v in self.items.items()}
def python_type(self):
return self.user_cls
def __contains__(self, vt):
assert isinstance(vt, VariableTracker)
Hashable = ConstDictVariable._HashableTracker
return is_hashable(vt) and Hashable(vt) in self.items
def reconstruct(self, codegen):
# instructions to load collections.OrderedDict if necessary
if self.user_cls is collections.OrderedDict:
codegen.extend_output(
[
codegen.create_load_python_module(collections, True),
codegen.create_load_attr("OrderedDict"),
]
)
# instructions to build the dict keys and values
for key, value in self.items.items():
codegen(key.vt)
codegen(value)
# BUILD_MAP and calling collections.OrderedDict if necessary
if self.user_cls is collections.OrderedDict:
codegen.extend_output(
[
create_instruction("BUILD_MAP", arg=len(self.items)),
*create_call_function(1, False),
]
)
# BUILD_MAP only if user_cls is dict
else:
codegen.append_output(create_instruction("BUILD_MAP", arg=len(self.items)))
def getitem_const(self, arg: VariableTracker):
key = ConstDictVariable._HashableTracker(arg)
if key not in self.items:
raise KeyError(arg.value)
return self.items[key]
def call_method(
self,
tx,
name,
args: "List[VariableTracker]",
kwargs: "Dict[str, VariableTracker]",
) -> "VariableTracker":
from . import (
BuiltinVariable,
ConstantVariable,
ListIteratorVariable,
ListVariable,
TupleVariable,
)
Hashable = ConstDictVariable._HashableTracker
arg_hashable = args and is_hashable(args[0])
if name == "__getitem__":
assert len(args) == 1
return self.getitem_const(args[0])
elif name == "items":
assert not (args or kwargs)
return TupleVariable(
[TupleVariable([k.vt, v]) for k, v in self.items.items()]
)
elif name == "keys":
assert not (args or kwargs)
return DictKeys(self)
elif name == "values":
assert not (args or kwargs)
return DictValues(self)
elif name == "copy":
assert not (args or kwargs)
return self.clone(items=self.items.copy(), mutable_local=MutableLocal())
elif name == "__len__":
assert not (args or kwargs)
return ConstantVariable.create(len(self.items))
elif name == "__setitem__" and arg_hashable and self.mutable_local:
assert not kwargs and len(args) == 2
tx.output.side_effects.mutation(self)
self.items[Hashable(args[0])] = args[1]
return ConstantVariable.create(None)
elif name in ("pop", "get") and len(args) in (1, 2) and args[0] not in self:
# missing item, return the default value
if len(args) == 1:
return ConstantVariable(None)
else:
return args[1]
elif name == "pop" and arg_hashable and self.mutable_local:
tx.output.side_effects.mutation(self)
return self.items.pop(Hashable(args[0]))
elif name == "clear":
tx.output.side_effects.mutation(self)
self.items.clear()
return ConstantVariable.create(None)
elif (
name == "update"
and len(args) == 1
and isinstance(
args[0],
(
ConstDictVariable,
ListVariable,
TupleVariable,
ListIteratorVariable,
),
)
and self.mutable_local
):
tx.output.side_effects.mutation(self)
if isinstance(args[0], ConstDictVariable):
dict_vt = args[0]
else:
dict_vt = BuiltinVariable.call_custom_dict(tx, dict, args[0])
self.items.update(dict_vt.items)
# Wrap strings
kwargs = {
Hashable(ConstantVariable.create(k)): v for k, v in kwargs.items()
}
self.items.update(kwargs)
return ConstantVariable.create(None)
elif name in ("get", "__getattr__") and args[0] in self:
return self.getitem_const(args[0])
elif name == "__contains__" and len(args) == 1:
return ConstantVariable.create(args[0] in self)
else:
return super().call_method(tx, name, args, kwargs)
def unpack_var_sequence(self, tx):
return [x.vt for x in self.items.keys()]
class DefaultDictVariable(ConstDictVariable):
def __init__(self, items, user_cls, default_factory=None, **kwargs):
super().__init__(items, user_cls, **kwargs)
assert user_cls is collections.defaultdict
self.default_factory = default_factory
def is_python_constant(self):
# Return false for unsupported defaults. This ensures that a bad handler
# path is not taken in BuiltinVariable for getitem.
if self.default_factory not in [list, tuple, dict] and not self.items:
return False
return super().is_python_constant()
@staticmethod
def is_supported_arg(arg):
if isinstance(arg, variables.BuiltinVariable):
return arg.fn in [list, tuple, dict]
else:
return isinstance(arg, variables.functions.BaseUserFunctionVariable)
def call_method(
self,
tx,
name,
args: "List[VariableTracker]",
kwargs: "Dict[str, VariableTracker]",
) -> "VariableTracker":
if name == "__getitem__":
assert len(args) == 1
if args[0] in self:
return self.getitem_const(args[0])
else:
if self.default_factory is None:
raise KeyError(f"{args[0]}")
else:
default_var = self.default_factory.call_function(tx, [], {})
super().call_method(
tx, "__setitem__", (args[0], default_var), kwargs
)
return default_var
else:
return super().call_method(tx, name, args, kwargs)
class SetVariable(ConstDictVariable):
"""We model a sets as dictonary with None values"""
def __init__(
self,
items: List[VariableTracker],
**kwargs,
):
items = dict.fromkeys(items, SetVariable._default_value())
super().__init__(items, **kwargs)
@property
def set_items(self):
return set(self.items.keys())
@staticmethod
def _default_value():
# Variable to fill in he keys of the dictinary
return ConstantVariable.create(None)
def as_proxy(self):
return {k.vt.as_proxy() for k in self.set_items}
def python_type(self):
return set
def as_python_constant(self):
return {k.vt.as_python_constant() for k in self.set_items}
def reconstruct(self, codegen):
codegen.foreach([x.vt for x in self.set_items])
codegen.append_output(create_instruction("BUILD_SET", arg=len(self.set_items)))
def call_method(
self,
tx,
name,
args: List[VariableTracker],
kwargs: Dict[str, VariableTracker],
) -> "VariableTracker":
# We foward the calls to the dictionary model
if name == "add":
assert not kwargs
assert len(args) == 1
name = "__setitem__"
args = (args[0], SetVariable._default_value())
elif name == "pop":
assert not kwargs
assert not args
# Choose an item at random and pop it via the Dict.pop method
result = self.set_items.pop().vt
super().call_method(tx, name, (result,), kwargs)
return result
return super().call_method(tx, name, args, kwargs)
def getitem_const(self, arg: VariableTracker):
raise RuntimeError("Illegal to getitem on a set")
class DictView(VariableTracker):
"""
Models _PyDictViewObject
This is an "abstract" class. Subclasses will override kv and the items method
"""
kv: Optional[str] = None
def __init__(self, dv_dict: ConstDictVariable, **kwargs):
super().__init__(**kwargs)
assert self.kv in ("keys", "values")
assert isinstance(dv_dict, ConstDictVariable)
self.dv_dict = dv_dict
@property
def view_items(self):
return getattr(self.dv_dict.items, self.kv)()
@property
def view_items_vt(self):
# Returns an iterable of the unpacked items
# Implement in the subclasses
raise NotImplementedError()
def unpack_var_sequence(self, tx):
def unwrap(x):
return x.vt if self.kv == "keys" else x
return [unwrap(x) for x in self.view_items]
def reconstruct(self, codegen):
codegen(self.dv_dict)
codegen.extend_output(
[
create_instruction("LOAD_METHOD", argval=self.kv),
*create_call_method(0),
]
)
def call_method(
self,
tx,
name,
args: List["VariableTracker"],
kwargs: Dict[str, "VariableTracker"],
) -> "VariableTracker":
if name == "__len__":
return self.dv_dict.call_method(tx, name, args, kwargs)
return super().call_method(tx, name, args, kwargs)
class DictKeys(DictView):
kv = "keys"
@property
def set_items(self):
return set(self.view_items)
@property
def view_items_vt(self):
# Returns an iterable of the unpacked items
return [x.vt for x in self.view_items]
def python_type(self):
return dict_keys
def call_method(
self,
tx,
name,
args: List["VariableTracker"],
kwargs: Dict[str, "VariableTracker"],
) -> "VariableTracker":
if name == "__contains__":
return self.dv_dict.call_method(tx, name, args, kwargs)
return super().call_method(tx, name, args, kwargs)
class DictValues(DictView):
# DictValues is an iterable but cannot be compared.
kv = "values"
@property
def view_items_vt(self):
return list(self.view_items)
def python_type(self):
return dict_values
def _is_matching_transformers_cls(cls) -> bool:
mod = sys.modules.get("transformers.file_utils")
return mod is not None and issubclass(cls, mod.ModelOutput)
def _is_matching_diffusers_cls(cls) -> bool:
mod = sys.modules.get("diffusers.utils")
return mod is not None and issubclass(cls, mod.BaseOutput)
def _call_hasattr_customobj(self, tx, name: str) -> "VariableTracker":
"""Shared method between DataClassVariable and CustomizedDictVariable where items are attrs"""
if name in self.items or hasattr(self.user_cls, name):
return ConstantVariable(True)
elif istype(self.mutable_local, MutableLocal) and self.source is None:
# Something created locally can't have any extra fields on it
return ConstantVariable(False)
elif self.mutable_local is None and self.source:
# Maybe add a guard
try:
example = tx.output.root_tx.get_example_value(self.source)
install_guard(
AttrSource(self.source, name).make_guard(GuardBuilder.HASATTR)
)
return ConstantVariable(hasattr(example, name))
except KeyError:
pass
unimplemented(
f"hasattr({self.__class__.__name__}, {name}) {self.mutable_local} {self.source}"
)
class DataClassVariable(ConstDictVariable):
"""
This is a bit of a hack to deal with
transformers.file_utils.ModelOutput() from huggingface.
ModelOutput causes trouble because it a a mix of a dataclass and a
OrderedDict and it calls super() methods implemented in C.
"""
# ModelOutput() excludes None, though generic datclasses don't
include_none = False
@staticmethod
@functools.lru_cache(None)
def _patch_once():
try:
from transformers.file_utils import ModelOutput
for obj in ModelOutput.__dict__.values():
if callable(obj):
skip_code(obj.__code__)
except ImportError:
pass
try:
from diffusers.utils import BaseOutput
for obj in BaseOutput.__dict__.values():
if callable(obj):
skip_code(obj.__code__)
except ImportError:
pass
@staticmethod
def is_matching_cls(cls):
return _is_matching_transformers_cls(cls) or _is_matching_diffusers_cls(cls)
@classmethod
def is_matching_object(cls, obj):
return cls.is_matching_cls(type(obj))
@classmethod
def create(cls, user_cls, args, kwargs, options):
DataClassVariable._patch_once()
skip_code(user_cls.__init__.__code__)
keys = [f.name for f in dataclasses.fields(user_cls)]
bound = inspect.signature(user_cls).bind(*args, **kwargs)
bound.apply_defaults()
assert set(bound.arguments.keys()) == set(keys)
items = {}
for key in keys:
val = bound.arguments[key]
key = ConstantVariable.create(key)
if isinstance(val, VariableTracker):
items[key] = val
else:
if cls.include_none:
assert variables.ConstantVariable.is_literal(val)
items[key] = variables.ConstantVariable.create(val)
else:
assert val is None, f"unexpected {val}"
if len(items) == 1 and not isinstance(items[keys[0]], variables.TensorVariable):
unimplemented("DataClassVariable iterator constructor")
# TODO(jansel): implement unpacking logic in ModelOutput.__post_init__
return cls(items, user_cls, **options)
@classmethod
def wrap(cls, builder, obj):
user_cls = type(obj)
keys = [f.name for f in dataclasses.fields(user_cls)]
excluded = []
items = {}
for key in keys:
# __init__ function of a dataclass might not have yet defined the key
if hasattr(obj, key):
val = getattr(obj, key)
var = builder.__class__(
tx=builder.tx, source=AttrSource(builder.source, key)
)(val)
if val is not None or cls.include_none:
key = ConstantVariable.create(key)
items[key] = var
else:
excluded.append(var)
return cls(items, user_cls)
def __init__(self, items, user_cls, **options):
super().__init__(items, user_cls, **options)
assert self.is_matching_cls(user_cls)
def as_proxy(self):
raise NotImplementedError()
def reconstruct(self, codegen):
codegen.extend_output([codegen._create_load_const(self.user_cls)])
# All the keys are just wrapped strings
d = self.keys_as_python_constant()
codegen.foreach(d.values())
keys = tuple(d.keys())
codegen.extend_output(codegen.create_call_function_kw(len(keys), keys, True))
def call_method(
self,
tx,
name,
args: "List[VariableTracker]",
kwargs: "Dict[str, VariableTracker]",
) -> "VariableTracker":
if name == "__getitem__":
assert not kwargs and len(args) == 1
val = args[0]
if val.python_type() == str:
return self.getitem_const(val)
else:
return self.call_method(tx, "to_tuple", [], {}).call_method(
tx, "__getitem__", args, kwargs
)
elif name == "to_tuple":
assert not (args or kwargs)
return variables.TupleVariable(list(self.items.values()))
elif name == "__setattr__":
name = "__setitem__"
return super().call_method(tx, name, args, kwargs)
def var_getattr(self, tx, name: str) -> "VariableTracker":
name_vt = ConstantVariable.create(name)
if name_vt in self:
return self.call_method(tx, "__getitem__", [name_vt], {})
elif not self.include_none:
defaults = {f.name: f.default for f in dataclasses.fields(self.user_cls)}
if name in defaults:
assert variables.ConstantVariable.is_literal(defaults[name])
return variables.ConstantVariable.create(defaults[name])
super().var_getattr(tx, name)
call_hasattr = _call_hasattr_customobj
class CustomizedDictVariable(ConstDictVariable):
@staticmethod
def is_matching_cls(cls):
# True if using default OrderedDict.__init__ and did not implement __post_init__
if (
issubclass(cls, collections.OrderedDict)
and cls.__init__ is collections.OrderedDict.__init__
and not hasattr(cls, "__post_init__")
):
return True
# hack for HF usecase:
# assume dataclass annotation for ModelOutput subclass
# assume self.create is AA to ModelOutput.__post_init__
return _is_matching_transformers_cls(cls) or _is_matching_diffusers_cls(cls)
@classmethod
def is_matching_object(cls, obj):
return cls.is_matching_cls(type(obj))
# called from user_defined.py
# when is_matching_cls(cls) is true
@classmethod
def create(cls, user_cls, args, kwargs, options):
# avoid tracing when returning ModelOutput from forward func
for attr_name in ("__init__", "__post_init__", "__setattr__", "__setitem__"):
if hasattr(user_cls, attr_name):
fn = getattr(user_cls, attr_name)
assert callable(fn), f"expect callable attr {attr_name}"
if hasattr(fn, "__code__"):
skip_code(fn.__code__)
if dataclasses.is_dataclass(user_cls):
# @dataclass CustomDict(a=1, b=2)
bound = inspect.signature(user_cls).bind(*args, **kwargs)
bound.apply_defaults()
def make_var(x):
if isinstance(x, VariableTracker):
return x
elif ConstantVariable.is_literal(x):
return ConstantVariable.create(x)
else:
unimplemented(
"expect VariableTracker or ConstantVariable.is_literal"
)
items = {
ConstantVariable.create(k): make_var(v)
for k, v in bound.arguments.items()
}
elif not args:
# CustomDict(a=1, b=2) in the general (non-dataclass) case.
items = {ConstantVariable.create(k): v for k, v in kwargs.items()}
elif len(args) == 1 and isinstance(args[0], ConstDictVariable) and not kwargs:
# CustomDict({'a': 1, 'b': 2})
items = args[0].items
else:
unimplemented("custom dict init with args/kwargs unimplemented")
return cls(items, user_cls, **options)
# called from builder.py
@classmethod
def wrap(cls, builder, obj):
raise NotImplementedError()
def __init__(self, items, user_cls, **options):
super().__init__(items, user_cls, **options)
assert self.is_matching_cls(user_cls)
def as_proxy(self):
raise NotImplementedError()
# 'RETURN_VALUE triggered compile'
# called from torch/_dynamo/codegen.py
def reconstruct(self, codegen):
codegen.extend_output([codegen._create_load_const(self.user_cls)])
# All the keys are just wrapped strings
d = self.keys_as_python_constant()
codegen.foreach(d.values())
keys = tuple(d.keys())
codegen.extend_output(codegen.create_call_function_kw(len(keys), keys, True))
def call_method(
self,
tx,
name,
args: "List[VariableTracker]",
kwargs: "Dict[str, VariableTracker]",
) -> "VariableTracker":
fn = getattr(self.user_cls, name)
source = None if self.source is None else AttrSource(self.source, name)
if hasattr(fn, "__objclass__") and fn.__objclass__ in (
dict,
collections.OrderedDict,
):
# for python dict method without overridden
return super().call_method(tx, name, args, kwargs)
elif name in ("__getitem__", "to_tuple", "__setitem__", "__setattr__"):
# for user overridden method
return tx.inline_user_function_return(
variables.UserFunctionVariable(fn, source=source),
[self] + list(args),
kwargs,
)
unimplemented("custom dict: call_method unimplemented name=%s", name)
def var_getattr(self, tx, name: str) -> "VariableTracker":
name_vt = ConstantVariable.create(name)
if name_vt in self:
return self.call_method(tx, "__getitem__", [name_vt], {})
super().var_getattr(tx, name)
call_hasattr = _call_hasattr_customobj
@functools.lru_cache(None)
def _install_PretrainedConfig_patch():
import transformers
# We need to monkeypatch transformers here, sadly.
# TODO(voz): Upstream to transformers lib
def _dynamo_overriden_transformers_eq(self, other):
if not hasattr(other, "__dict__"):
return False
return self.__dict__ == other.__dict__
transformers.configuration_utils.PretrainedConfig.__eq__ = (
_dynamo_overriden_transformers_eq
)
class HFPretrainedConfigVariable(VariableTracker):
"""
Hack for HuggingFace PretrainedConfig
"""
@staticmethod
def is_matching_cls(cls):
mod = sys.modules.get("transformers.configuration_utils")
is_match = mod is not None and issubclass(cls, mod.PretrainedConfig)
# Lazily install monkeypatch the first time we see it in dynamo
if is_match:
_install_PretrainedConfig_patch()
return is_match
@classmethod
def is_matching_object(cls, obj):
return cls.is_matching_cls(type(obj))
def __init__(self, obj, **kwargs):
super().__init__(**kwargs)
self.obj = obj
assert self.is_matching_cls(type(obj))
def var_getattr(self, tx, name: str) -> "VariableTracker":
from . import ConstantVariable
return ConstantVariable.create(getattr(self.obj, name))
def call_hasattr(self, tx, name: str) -> "VariableTracker":
return variables.ConstantVariable.create(hasattr(self.obj, name))
class PythonSysModulesVariable(VariableTracker):
"""Special case for sys.modules.
Without this we will guard on the exact set of modules imported in the
lifetime of the python program.
"""
def python_type(self):
return dict
def reconstruct(self, codegen):
codegen.extend_output(
[
codegen.create_load_python_module(sys, True),
codegen.create_load_attr("modules"),
]
)
def call_method(
self, tx, name, args: List[VariableTracker], kwargs: Dict[str, VariableTracker]
):
from .builder import VariableBuilder
if name == "__getitem__":
return self.call_getitem(tx, *args, **kwargs)
elif name == "get":
return self.call_get(tx, *args, **kwargs)
elif name == "__contains__":
return self.call_contains(tx, *args, **kwargs)
# Fallback to dict implementation
real_dict = VariableBuilder(tx, self.source)(sys.modules)
return real_dict.call_method(tx, name, args, kwargs)
def _contains_helper(self, tx, key: VariableTracker):
k = key.as_python_constant()
has_key = k in sys.modules
install_guard(
self.make_guard(
functools.partial(GuardBuilder.DICT_CONTAINS, key=k, invert=not has_key)
)
)
return k, has_key
def call_contains(self, tx, key: VariableTracker):
k, has_key = self._contains_helper(tx, key)
return ConstantVariable.create(value=has_key)
def call_get(
self, tx, key: VariableTracker, default: Optional[VariableTracker] = None
):
from .builder import VariableBuilder
k, has_key = self._contains_helper(tx, key)
if has_key:
return VariableBuilder(
tx,
GetItemSource(self.source, k),
)(sys.modules[k])
if default is not None:
return default
return ConstantVariable.create(value=None)
def call_getitem(self, tx, key: VariableTracker):
from .builder import VariableBuilder
k, has_key = self._contains_helper(tx, key)
return VariableBuilder(
tx,
GetItemSource(self.source, k),
)(sys.modules[k])