231 lines
8.9 KiB
Python
231 lines
8.9 KiB
Python
|
# mypy: ignore-errors
|
||
|
|
||
|
import weakref
|
||
|
from typing import Dict, List
|
||
|
|
||
|
import torch
|
||
|
|
||
|
from ..decorators import mark_static_address
|
||
|
|
||
|
from ..guards import GuardBuilder, install_guard
|
||
|
from ..source import AttrSource, ConstDictKeySource, GetItemSource, GlobalWeakRefSource
|
||
|
from ..utils import GLOBAL_KEY_PREFIX
|
||
|
|
||
|
from .base import VariableTracker
|
||
|
from .constant import ConstantVariable
|
||
|
from .dicts import ConstDictVariable
|
||
|
from .lists import ListVariable
|
||
|
from .misc import GetAttrVariable
|
||
|
from .user_defined import UserDefinedObjectVariable
|
||
|
|
||
|
|
||
|
class ArgMappingException(Exception):
|
||
|
pass
|
||
|
|
||
|
|
||
|
class GuardInstallException(Exception):
|
||
|
pass
|
||
|
|
||
|
|
||
|
class OptimizerVariable(UserDefinedObjectVariable):
|
||
|
def __init__(
|
||
|
self,
|
||
|
value,
|
||
|
grad_to_source=None,
|
||
|
static_tensor_names=None,
|
||
|
tensor_to_source=None,
|
||
|
**kwargs,
|
||
|
):
|
||
|
super().__init__(value, **kwargs)
|
||
|
|
||
|
for group in self.value.param_groups:
|
||
|
if "capturable" in group:
|
||
|
group["capturable"] = True
|
||
|
|
||
|
for p in group["params"]:
|
||
|
mark_static_address(p, guard=False)
|
||
|
|
||
|
self.grad_to_source = grad_to_source or {}
|
||
|
self.tensor_to_source = tensor_to_source or {}
|
||
|
self.static_tensor_names = static_tensor_names or set()
|
||
|
|
||
|
def call_method(
|
||
|
self,
|
||
|
tx,
|
||
|
name,
|
||
|
args: "List[VariableTracker]",
|
||
|
kwargs: "Dict[str, VariableTracker]",
|
||
|
) -> "VariableTracker":
|
||
|
"""This is an optimization to avoid tracing the very slow initialization of the optimizer"""
|
||
|
if name == "_init_group":
|
||
|
try:
|
||
|
py_args, py_kwargs = self.get_python_args(*args, **kwargs)
|
||
|
ret_val = self.value._init_group(*py_args, **py_kwargs)
|
||
|
self.map_sources_and_install_guards(tx)
|
||
|
self.update_list_args(tx, args, kwargs, py_args, py_kwargs)
|
||
|
# stash a weak_ptr to optimizer to invalidate code
|
||
|
# if the optimizer object dies
|
||
|
mangled_name = f"__optimizer_{id(self.value)}"
|
||
|
tx.store_global_weakref_by_id(mangled_name, self.value)
|
||
|
self.create_finalizer(tx)
|
||
|
|
||
|
# This is currently safe only because the only actual `ret_val`s returned
|
||
|
# by the `_init_group` of existing optimizers are properties that are invariant
|
||
|
# to the input tensors (e.g. dtype, layout). Changing these would trigger a
|
||
|
# recompilation and hence never result in the wrong specialization of `ret_val`.
|
||
|
return ConstantVariable.create(ret_val)
|
||
|
except (ArgMappingException, GuardInstallException) as _:
|
||
|
# trace normally if we can't map args or install guards correctly
|
||
|
pass
|
||
|
|
||
|
return super().call_method(tx, name, args, kwargs)
|
||
|
|
||
|
def var_getattr(self, tx, name):
|
||
|
if name == "_init_group":
|
||
|
return GetAttrVariable(self, name)
|
||
|
|
||
|
return super().var_getattr(tx, name)
|
||
|
|
||
|
def get_python_args(self, *args, **kwargs):
|
||
|
"""Get python values equivalent to the variable tracker args"""
|
||
|
|
||
|
def map_arg(arg):
|
||
|
if isinstance(arg, ConstantVariable):
|
||
|
return arg.as_python_constant()
|
||
|
elif isinstance(arg, ListVariable) and not arg.items:
|
||
|
return []
|
||
|
elif (
|
||
|
isinstance(arg, ConstDictVariable)
|
||
|
and isinstance(arg.source, GetItemSource)
|
||
|
and isinstance(arg.source.base, AttrSource)
|
||
|
and arg.source.base.member == "param_groups"
|
||
|
):
|
||
|
return self.value.param_groups[arg.source.index]
|
||
|
|
||
|
raise ArgMappingException()
|
||
|
|
||
|
new_args = [map_arg(arg) for arg in args]
|
||
|
new_kwargs = {k: map_arg(v) for k, v in kwargs.items()}
|
||
|
|
||
|
return new_args, new_kwargs
|
||
|
|
||
|
def map_sources_and_install_guards(self, tx):
|
||
|
self.grad_to_source = {}
|
||
|
self.tensor_to_source = {}
|
||
|
|
||
|
from .builder import VariableBuilder
|
||
|
|
||
|
param_groups_vt = VariableBuilder(tx, AttrSource(self.source, "param_groups"))(
|
||
|
self.value.param_groups
|
||
|
).recursive_realize()
|
||
|
|
||
|
for g_ind, (group, group_vt) in enumerate(
|
||
|
zip(self.value.param_groups, param_groups_vt.items)
|
||
|
):
|
||
|
group_source = group_vt.source
|
||
|
params_vt = group_vt.getitem_const(ConstantVariable.create("params"))
|
||
|
for p_ind, (p, p_vt) in enumerate(
|
||
|
zip(group["params"], params_vt.unpack_var_sequence(tx))
|
||
|
):
|
||
|
param_source = p_vt.source
|
||
|
self.tensor_to_source[p] = param_source
|
||
|
grad_source = AttrSource(
|
||
|
param_source,
|
||
|
"grad",
|
||
|
)
|
||
|
if p.grad is not None:
|
||
|
self.grad_to_source[p.grad] = grad_source
|
||
|
else:
|
||
|
install_guard(grad_source.make_guard(GuardBuilder.CONSTANT_MATCH))
|
||
|
|
||
|
# state guards take a long time to generate
|
||
|
# so we manually generate them here
|
||
|
state_source = AttrSource(self.source, "state")
|
||
|
install_guard(state_source.make_guard(GuardBuilder.DICT_KEYS))
|
||
|
for idx, (p, value) in enumerate(self.value.state.items()):
|
||
|
tx.store_global_weakref_by_id(GLOBAL_KEY_PREFIX, p)
|
||
|
p_state_source = GetItemSource(
|
||
|
state_source, ConstDictKeySource(state_source, idx)
|
||
|
)
|
||
|
install_guard(p_state_source.make_guard(GuardBuilder.DICT_KEYS))
|
||
|
for k, v in value.items():
|
||
|
if (
|
||
|
isinstance(v, torch.Tensor)
|
||
|
and v not in self.grad_to_source
|
||
|
and v not in self.tensor_to_source
|
||
|
):
|
||
|
self.tensor_to_source[v] = GetItemSource(p_state_source, k)
|
||
|
elif v is None or isinstance(v, (bool, int, float, str)):
|
||
|
install_guard(
|
||
|
GetItemSource(p_state_source, k).make_guard(
|
||
|
GuardBuilder.CONSTANT_MATCH
|
||
|
)
|
||
|
)
|
||
|
else:
|
||
|
raise GuardInstallException()
|
||
|
|
||
|
def wrap_tensor(self, tx, tensor_value):
|
||
|
"""Wrap state tensor in a TensorVariable"""
|
||
|
from .builder import VariableBuilder
|
||
|
|
||
|
# If we have a source for a tensor already use it,
|
||
|
# if we have not seen a tensor before, stash and use a
|
||
|
# global weak ref source, since it must be an optimizer tensor
|
||
|
# that we have missed
|
||
|
|
||
|
if tensor_value in self.tensor_to_source:
|
||
|
# mark these tensors as static for cudagraphs
|
||
|
mark_static_address(tensor_value, guard=False)
|
||
|
builder = VariableBuilder(tx, self.tensor_to_source[tensor_value])
|
||
|
self.static_tensor_names.add(tx.output.module_key_name(builder.name))
|
||
|
elif tensor_value in self.grad_to_source:
|
||
|
builder = VariableBuilder(tx, self.grad_to_source[tensor_value])
|
||
|
else:
|
||
|
# mark these tensors as static for cudagraphs
|
||
|
mark_static_address(tensor_value, guard=False)
|
||
|
|
||
|
global_name = tx.store_global_weakref_by_id(GLOBAL_KEY_PREFIX, tensor_value)
|
||
|
builder = VariableBuilder(tx, GlobalWeakRefSource(global_name))
|
||
|
self.static_tensor_names.add(tx.output.module_key_name(builder.name))
|
||
|
|
||
|
result = builder(tensor_value)
|
||
|
return result
|
||
|
|
||
|
def update_list_args(self, tx, args, kwargs, py_args, py_kwargs):
|
||
|
"""Update the args and kwargs to the traced optimizer call"""
|
||
|
for arg, py_arg in zip(args, py_args):
|
||
|
if isinstance(arg, ListVariable):
|
||
|
assert isinstance(
|
||
|
py_arg, list
|
||
|
), "py_arg should be a list in optimizer variable"
|
||
|
for i, val in enumerate(py_arg):
|
||
|
tx.output.side_effects.mutation(arg)
|
||
|
if isinstance(val, torch.Tensor):
|
||
|
arg.items.append(self.wrap_tensor(tx, val))
|
||
|
else:
|
||
|
from .builder import SourcelessBuilder, VariableBuilder
|
||
|
|
||
|
if arg.source:
|
||
|
arg.items.append(
|
||
|
VariableBuilder(tx, GetItemSource(arg.source, i))(val)
|
||
|
)
|
||
|
else:
|
||
|
arg.items.append(SourcelessBuilder()(tx, val))
|
||
|
|
||
|
def create_finalizer(self, tx):
|
||
|
names_to_delete = self.static_tensor_names
|
||
|
value = self.value
|
||
|
tc = tx.output.tracing_context
|
||
|
|
||
|
def init_finalizer(gm):
|
||
|
def clear_static_tensor_refs():
|
||
|
for name in names_to_delete:
|
||
|
gm._buffers.pop(name, None)
|
||
|
gm._parameters.pop(name, None)
|
||
|
if tc.params_flat:
|
||
|
tc.params_flat.clear()
|
||
|
|
||
|
weakref.finalize(value, clear_static_tensor_refs)
|
||
|
|
||
|
tx.output.add_graph_finalizer(init_finalizer)
|