349 lines
14 KiB
Python
349 lines
14 KiB
Python
|
import copy
|
||
|
|
||
|
import torch
|
||
|
from torch import nn
|
||
|
|
||
|
import torch.nn.functional as F
|
||
|
import torch.ao.nn.intrinsic as nni
|
||
|
import torch.ao.nn.intrinsic.quantized as nniq
|
||
|
import torch.ao.nn.intrinsic.quantized.dynamic as nniqd
|
||
|
import torch.ao.nn.intrinsic.qat as nniqat
|
||
|
import torch.ao.nn.quantized as nnq
|
||
|
import torch.ao.nn.quantized.reference as nnqr
|
||
|
import torch.ao.nn.quantized.dynamic as nnqd
|
||
|
import torch.ao.nn.qat as nnqat
|
||
|
import torch.ao.nn.qat.dynamic as nnqatd
|
||
|
|
||
|
from typing import Optional, Union, Dict, Set, Callable, Any
|
||
|
|
||
|
# Because `torch.ao.nn` uses lazy imports, we need to make
|
||
|
# sure we import the contents explicitly here.
|
||
|
import torch.ao.nn.sparse
|
||
|
import torch.ao.nn as ao_nn
|
||
|
from torch.ao.quantization.stubs import QuantStub, DeQuantStub
|
||
|
from torch.ao.quantization.fake_quantize import (
|
||
|
default_fixed_qparams_range_0to1_fake_quant,
|
||
|
default_fixed_qparams_range_neg1to1_fake_quant,
|
||
|
)
|
||
|
from torch.ao.quantization.utils import get_combined_dict
|
||
|
from torch.nn.utils.parametrize import type_before_parametrizations
|
||
|
|
||
|
__all__ = [
|
||
|
"DEFAULT_REFERENCE_STATIC_QUANT_MODULE_MAPPINGS",
|
||
|
"DEFAULT_STATIC_QUANT_MODULE_MAPPINGS",
|
||
|
"DEFAULT_QAT_MODULE_MAPPINGS",
|
||
|
"DEFAULT_DYNAMIC_QUANT_MODULE_MAPPINGS",
|
||
|
"DEFAULT_FLOAT_TO_QUANTIZED_OPERATOR_MAPPINGS",
|
||
|
"DEFAULT_MODULE_TO_ACT_POST_PROCESS",
|
||
|
"DEFAULT_STATIC_SPARSE_QUANT_MODULE_MAPPINGS",
|
||
|
"DEFAULT_DYNAMIC_SPARSE_QUANT_MODULE_MAPPINGS",
|
||
|
"no_observer_set",
|
||
|
"get_default_static_quant_module_mappings",
|
||
|
"get_default_static_quant_reference_module_mappings",
|
||
|
"get_embedding_static_quant_module_mappings",
|
||
|
"get_default_static_sparse_quant_module_mappings",
|
||
|
"get_static_quant_module_class",
|
||
|
"get_dynamic_quant_module_class",
|
||
|
"get_default_qat_module_mappings",
|
||
|
"get_embedding_qat_module_mappings",
|
||
|
"get_default_dynamic_quant_module_mappings",
|
||
|
"get_default_dynamic_sparse_quant_module_mappings",
|
||
|
"get_default_qconfig_propagation_list",
|
||
|
"get_default_compare_output_module_list",
|
||
|
"get_default_float_to_quantized_operator_mappings",
|
||
|
"get_quantized_operator",
|
||
|
]
|
||
|
|
||
|
# Default map for swapping float module to reference quantized modules
|
||
|
DEFAULT_REFERENCE_STATIC_QUANT_MODULE_MAPPINGS : Dict[Callable, Any] = {
|
||
|
QuantStub: nnq.Quantize,
|
||
|
DeQuantStub: nnq.DeQuantize,
|
||
|
nn.Linear: nnqr.Linear,
|
||
|
nn.Conv1d: nnqr.Conv1d,
|
||
|
nn.Conv2d: nnqr.Conv2d,
|
||
|
nn.Conv3d: nnqr.Conv3d,
|
||
|
nn.ConvTranspose1d: nnqr.ConvTranspose1d,
|
||
|
nn.ConvTranspose2d: nnqr.ConvTranspose2d,
|
||
|
nn.ConvTranspose3d: nnqr.ConvTranspose3d,
|
||
|
nn.Embedding: nnqr.Embedding,
|
||
|
nn.EmbeddingBag: nnqr.EmbeddingBag,
|
||
|
nn.GRUCell: nnqr.GRUCell,
|
||
|
nn.LSTMCell: nnqr.LSTMCell,
|
||
|
nn.RNNCell: nnqr.RNNCell,
|
||
|
nn.LSTM: nnqr.LSTM,
|
||
|
}
|
||
|
|
||
|
# Default map for swapping float module to quantized ones
|
||
|
DEFAULT_STATIC_QUANT_MODULE_MAPPINGS : Dict[Callable, Any] = {
|
||
|
QuantStub: nnq.Quantize,
|
||
|
DeQuantStub: nnq.DeQuantize,
|
||
|
nn.BatchNorm2d: nnq.BatchNorm2d,
|
||
|
nn.BatchNorm3d: nnq.BatchNorm3d,
|
||
|
nn.Dropout: nnq.Dropout,
|
||
|
nn.Conv1d: nnq.Conv1d,
|
||
|
nn.Conv2d: nnq.Conv2d,
|
||
|
nn.Conv3d: nnq.Conv3d,
|
||
|
nn.ConvTranspose1d: nnq.ConvTranspose1d,
|
||
|
nn.ConvTranspose2d: nnq.ConvTranspose2d,
|
||
|
nn.ConvTranspose3d: nnq.ConvTranspose3d,
|
||
|
nn.ELU: nnq.ELU,
|
||
|
nn.Embedding: nnq.Embedding,
|
||
|
nn.EmbeddingBag: nnq.EmbeddingBag,
|
||
|
nn.GroupNorm: nnq.GroupNorm,
|
||
|
nn.Hardswish: nnq.Hardswish,
|
||
|
nn.InstanceNorm1d: nnq.InstanceNorm1d,
|
||
|
nn.InstanceNorm2d: nnq.InstanceNorm2d,
|
||
|
nn.InstanceNorm3d: nnq.InstanceNorm3d,
|
||
|
nn.LayerNorm: nnq.LayerNorm,
|
||
|
nn.LeakyReLU: nnq.LeakyReLU,
|
||
|
nn.modules.linear.NonDynamicallyQuantizableLinear: nnq.Linear,
|
||
|
nn.Linear: nnq.Linear,
|
||
|
nn.ReLU6: nnq.ReLU6,
|
||
|
nn.Dropout: nnq.Dropout,
|
||
|
nn.PReLU: nnq.PReLU,
|
||
|
# Wrapper Modules:
|
||
|
nnq.FloatFunctional: nnq.QFunctional,
|
||
|
# Intrinsic modules:
|
||
|
nni.BNReLU2d: nniq.BNReLU2d,
|
||
|
nni.BNReLU3d: nniq.BNReLU3d,
|
||
|
nni.ConvReLU1d: nniq.ConvReLU1d,
|
||
|
nni.ConvReLU2d: nniq.ConvReLU2d,
|
||
|
nni.ConvReLU3d: nniq.ConvReLU3d,
|
||
|
nni.ConvAdd2d: nniq.ConvAdd2d,
|
||
|
nni.ConvAddReLU2d: nniq.ConvAddReLU2d,
|
||
|
nni.LinearReLU: nniq.LinearReLU,
|
||
|
nni.LinearLeakyReLU: nniq.LinearLeakyReLU,
|
||
|
nni.LinearTanh: nniq.LinearTanh,
|
||
|
nniqat.ConvBn1d: nnq.Conv1d,
|
||
|
nniqat.ConvBn2d: nnq.Conv2d,
|
||
|
nniqat.ConvBn3d: nnq.Conv3d,
|
||
|
nniqat.ConvBnReLU1d: nniq.ConvReLU1d,
|
||
|
nniqat.ConvBnReLU2d: nniq.ConvReLU2d,
|
||
|
nniqat.ConvBnReLU3d: nniq.ConvReLU3d,
|
||
|
nniqat.ConvReLU2d: nniq.ConvReLU2d,
|
||
|
nniqat.ConvReLU3d: nniq.ConvReLU3d,
|
||
|
nniqat.LinearReLU: nniq.LinearReLU,
|
||
|
nniqat.LinearBn1d: nnq.Linear,
|
||
|
# QAT modules:
|
||
|
nnqat.Linear: nnq.Linear,
|
||
|
nnqat.Conv2d: nnq.Conv2d,
|
||
|
nnqat.Conv3d: nnq.Conv3d,
|
||
|
}
|
||
|
|
||
|
# Default map for swapping float module to qat modules
|
||
|
DEFAULT_QAT_MODULE_MAPPINGS : Dict[Callable, Any] = {
|
||
|
nn.Conv2d: nnqat.Conv2d,
|
||
|
nn.Conv3d: nnqat.Conv3d,
|
||
|
nn.Linear: nnqat.Linear,
|
||
|
nn.modules.linear.NonDynamicallyQuantizableLinear: nnqat.Linear,
|
||
|
# Intrinsic modules:
|
||
|
nni.ConvBn1d: nniqat.ConvBn1d,
|
||
|
nni.ConvBn2d: nniqat.ConvBn2d,
|
||
|
nni.ConvBn3d: nniqat.ConvBn3d,
|
||
|
nni.ConvBnReLU1d: nniqat.ConvBnReLU1d,
|
||
|
nni.ConvBnReLU2d: nniqat.ConvBnReLU2d,
|
||
|
nni.ConvBnReLU3d: nniqat.ConvBnReLU3d,
|
||
|
nni.ConvReLU2d: nniqat.ConvReLU2d,
|
||
|
nni.ConvReLU3d: nniqat.ConvReLU3d,
|
||
|
nni.LinearReLU: nniqat.LinearReLU,
|
||
|
nni.LinearBn1d: nniqat.LinearBn1d,
|
||
|
}
|
||
|
|
||
|
# Default map for swapping dynamic modules
|
||
|
DEFAULT_DYNAMIC_QUANT_MODULE_MAPPINGS : Dict[Callable, Any] = {
|
||
|
nn.GRUCell: nnqd.GRUCell,
|
||
|
nn.Linear: nnqd.Linear,
|
||
|
nnqatd.Linear: nnqd.Linear,
|
||
|
nn.modules.linear.NonDynamicallyQuantizableLinear: nnqd.Linear,
|
||
|
nn.LSTM: nnqd.LSTM,
|
||
|
nn.GRU: nnqd.GRU,
|
||
|
nn.LSTMCell: nnqd.LSTMCell,
|
||
|
nn.RNNCell: nnqd.RNNCell,
|
||
|
nni.LinearReLU: nniqd.LinearReLU,
|
||
|
nn.EmbeddingBag: nnq.EmbeddingBag,
|
||
|
nn.Embedding: nnq.Embedding,
|
||
|
# Don't want to enable these by default because the numerical
|
||
|
# accuracy is poor compared to other dynamic ops
|
||
|
# nn.Conv1d: nnqd.Conv1d,
|
||
|
# nn.Conv2d: nnqd.Conv2d,
|
||
|
# nn.Conv3d: nnqd.Conv3d,
|
||
|
# nn.ConvTranspose1d: nnqd.ConvTranspose1d,
|
||
|
# nn.ConvTranspose2d: nnqd.ConvTranspose2d,
|
||
|
# nn.ConvTranspose3d: nnqd.ConvTranspose3d,
|
||
|
}
|
||
|
|
||
|
# Allowlist for propagating the qconfig
|
||
|
_INCLUDE_QCONFIG_PROPAGATE_LIST : Set[Callable] = {
|
||
|
nn.Sequential,
|
||
|
}
|
||
|
|
||
|
# Default mapping from floating point function or torch ops to quantized ops
|
||
|
# TODO: merge with default static mapping
|
||
|
DEFAULT_FLOAT_TO_QUANTIZED_OPERATOR_MAPPINGS : Dict[Union[Callable, str], Callable] = {
|
||
|
F.elu: torch.ops.quantized.elu,
|
||
|
F.hardswish: torch.ops.quantized.hardswish,
|
||
|
F.instance_norm: torch.ops.quantized.instance_norm,
|
||
|
F.layer_norm: torch.ops.quantized.layer_norm,
|
||
|
F.leaky_relu: torch.ops.quantized.leaky_relu,
|
||
|
F.dropout: torch.ops.quantized.dropout,
|
||
|
}
|
||
|
|
||
|
# mapping from module to output activation post process class
|
||
|
DEFAULT_MODULE_TO_ACT_POST_PROCESS : Dict[Callable, Callable] = {
|
||
|
nn.Hardsigmoid: default_fixed_qparams_range_0to1_fake_quant,
|
||
|
nn.Sigmoid: default_fixed_qparams_range_0to1_fake_quant,
|
||
|
nn.Softmax: default_fixed_qparams_range_0to1_fake_quant,
|
||
|
nn.Tanh: default_fixed_qparams_range_neg1to1_fake_quant,
|
||
|
}
|
||
|
|
||
|
# Default map for swapping float module to static sparse quantized ones
|
||
|
DEFAULT_STATIC_SPARSE_QUANT_MODULE_MAPPINGS : Dict[Callable, Any] = {
|
||
|
nn.Linear: ao_nn.sparse.quantized.Linear
|
||
|
}
|
||
|
|
||
|
# Default map for swapping float module to dynamic sparse quantized ones
|
||
|
DEFAULT_DYNAMIC_SPARSE_QUANT_MODULE_MAPPINGS : Dict[Callable, Any] = {
|
||
|
nn.Linear: ao_nn.sparse.quantized.dynamic.Linear
|
||
|
}
|
||
|
|
||
|
def no_observer_set() -> Set[Any]:
|
||
|
r"""These modules cannot have observers inserted by default."""
|
||
|
no_observers = {
|
||
|
nn.quantizable.LSTM,
|
||
|
nn.quantizable.MultiheadAttention
|
||
|
}
|
||
|
return no_observers
|
||
|
|
||
|
def get_default_static_quant_module_mappings() -> Dict[Callable, Any]:
|
||
|
''' Get module mapping for post training static quantization
|
||
|
'''
|
||
|
return copy.deepcopy(DEFAULT_STATIC_QUANT_MODULE_MAPPINGS)
|
||
|
|
||
|
def get_default_static_quant_reference_module_mappings() -> Dict[Callable, Any]:
|
||
|
''' Get reference module mapping for post training static quantization
|
||
|
'''
|
||
|
return copy.deepcopy(DEFAULT_REFERENCE_STATIC_QUANT_MODULE_MAPPINGS)
|
||
|
|
||
|
def get_embedding_static_quant_module_mappings() -> Dict[Callable, Any]:
|
||
|
''' Get module mapping, including mapping for embedding QAT
|
||
|
'''
|
||
|
mapping = copy.deepcopy(DEFAULT_STATIC_QUANT_MODULE_MAPPINGS)
|
||
|
mapping[nnqat.EmbeddingBag] = nnq.EmbeddingBag
|
||
|
mapping[nnqat.Embedding] = nnq.Embedding
|
||
|
return mapping
|
||
|
|
||
|
def get_default_static_sparse_quant_module_mappings() -> Dict[Callable, Any]:
|
||
|
''' Get module mapping for post training static sparse quantization
|
||
|
'''
|
||
|
return copy.deepcopy(DEFAULT_STATIC_SPARSE_QUANT_MODULE_MAPPINGS)
|
||
|
|
||
|
def get_static_quant_module_class(
|
||
|
float_module_class: Callable,
|
||
|
additional_static_quant_mapping: Optional[Dict[Callable, Any]] = None,
|
||
|
is_reference: bool = False) -> Any:
|
||
|
r"""n Get the statically quantized module class corresponding to
|
||
|
the floating point module class
|
||
|
"""
|
||
|
if additional_static_quant_mapping is None:
|
||
|
additional_static_quant_mapping = {}
|
||
|
all_mappings = get_combined_dict(
|
||
|
DEFAULT_REFERENCE_STATIC_QUANT_MODULE_MAPPINGS if is_reference
|
||
|
else DEFAULT_STATIC_QUANT_MODULE_MAPPINGS, additional_static_quant_mapping)
|
||
|
static_quant_module_class = all_mappings.get(float_module_class, None)
|
||
|
assert static_quant_module_class is not None, \
|
||
|
f"Floating point module class {str(float_module_class)}" + \
|
||
|
" does not have a corresponding quantized module class"
|
||
|
return copy.deepcopy(static_quant_module_class)
|
||
|
|
||
|
def get_dynamic_quant_module_class(
|
||
|
float_module_class: Callable,
|
||
|
additional_dynamic_quant_mapping: Optional[Dict[Callable, Any]] = None) -> Any:
|
||
|
r"""n Get the dynamically quantized module class corresponding to
|
||
|
the floating point module class
|
||
|
"""
|
||
|
if additional_dynamic_quant_mapping is None:
|
||
|
additional_dynamic_quant_mapping = {}
|
||
|
all_mappings = get_combined_dict(DEFAULT_DYNAMIC_QUANT_MODULE_MAPPINGS, additional_dynamic_quant_mapping)
|
||
|
dynamic_quant_module_class = all_mappings.get(float_module_class, None)
|
||
|
assert dynamic_quant_module_class is not None, \
|
||
|
f"Floating point module class {str(float_module_class)}" + \
|
||
|
" does not have a corresponding quantized module class"
|
||
|
return copy.deepcopy(dynamic_quant_module_class)
|
||
|
|
||
|
def get_default_qat_module_mappings() -> Dict[Callable, Any]:
|
||
|
''' Get default module mapping for quantization aware training
|
||
|
'''
|
||
|
return copy.deepcopy(DEFAULT_QAT_MODULE_MAPPINGS)
|
||
|
|
||
|
def get_embedding_qat_module_mappings() -> Dict[Callable, Any]:
|
||
|
''' Get module mapping for quantization aware training
|
||
|
This is includes default values in addition to
|
||
|
enabling qat for embeddings.
|
||
|
'''
|
||
|
mapping = copy.deepcopy(DEFAULT_QAT_MODULE_MAPPINGS)
|
||
|
mapping[nn.EmbeddingBag] = nnqat.EmbeddingBag
|
||
|
mapping[nn.Embedding] = nnqat.Embedding
|
||
|
return mapping
|
||
|
|
||
|
def get_default_dynamic_quant_module_mappings() -> Dict[Callable, Any]:
|
||
|
''' Get module mapping for post training dynamic quantization
|
||
|
'''
|
||
|
return DEFAULT_DYNAMIC_QUANT_MODULE_MAPPINGS
|
||
|
|
||
|
def get_default_dynamic_sparse_quant_module_mappings() -> Dict[Callable, Any]:
|
||
|
''' Get module mapping for post training dynamic sparse quantization
|
||
|
'''
|
||
|
return DEFAULT_DYNAMIC_SPARSE_QUANT_MODULE_MAPPINGS
|
||
|
|
||
|
def get_default_qconfig_propagation_list() -> Set[Callable]:
|
||
|
''' Get the default list of module types that we'll attach qconfig
|
||
|
attribute to in prepare
|
||
|
'''
|
||
|
QCONFIG_PROPAGATE_MODULE_CLASS_LIST = (
|
||
|
set(DEFAULT_STATIC_QUANT_MODULE_MAPPINGS.keys()) |
|
||
|
set(DEFAULT_QAT_MODULE_MAPPINGS.keys()) |
|
||
|
set(DEFAULT_DYNAMIC_QUANT_MODULE_MAPPINGS.keys()) |
|
||
|
_INCLUDE_QCONFIG_PROPAGATE_LIST
|
||
|
)
|
||
|
return copy.deepcopy(QCONFIG_PROPAGATE_MODULE_CLASS_LIST)
|
||
|
|
||
|
def get_default_compare_output_module_list() -> Set[Callable]:
|
||
|
''' Get list of module class types that we will record output
|
||
|
in numeric suite
|
||
|
'''
|
||
|
NUMERIC_SUITE_COMPARE_MODEL_OUTPUT_MODULE_LIST = (
|
||
|
set(DEFAULT_STATIC_QUANT_MODULE_MAPPINGS.values())
|
||
|
| set(DEFAULT_QAT_MODULE_MAPPINGS.values())
|
||
|
| set(DEFAULT_DYNAMIC_QUANT_MODULE_MAPPINGS.values())
|
||
|
| set(DEFAULT_STATIC_QUANT_MODULE_MAPPINGS.keys())
|
||
|
| set(DEFAULT_QAT_MODULE_MAPPINGS.keys())
|
||
|
| set(DEFAULT_DYNAMIC_QUANT_MODULE_MAPPINGS.keys())
|
||
|
| _INCLUDE_QCONFIG_PROPAGATE_LIST
|
||
|
)
|
||
|
return copy.deepcopy(NUMERIC_SUITE_COMPARE_MODEL_OUTPUT_MODULE_LIST)
|
||
|
|
||
|
def get_default_float_to_quantized_operator_mappings(
|
||
|
) -> Dict[Union[Callable, str], Callable]:
|
||
|
return copy.deepcopy(DEFAULT_FLOAT_TO_QUANTIZED_OPERATOR_MAPPINGS)
|
||
|
|
||
|
# TODO: merge with get_static_quant_module_class
|
||
|
def get_quantized_operator(float_op: Union[Callable, str]) -> Callable:
|
||
|
''' Get the quantized operator corresponding to the float operator
|
||
|
'''
|
||
|
quantized_op = DEFAULT_FLOAT_TO_QUANTIZED_OPERATOR_MAPPINGS.get(float_op, None)
|
||
|
assert quantized_op is not None, \
|
||
|
f'Operator {str(float_op)} does not have corresponding quantized op'
|
||
|
return quantized_op
|
||
|
|
||
|
def _get_special_act_post_process(module: torch.nn.Module) -> Optional[Callable]:
|
||
|
r""" Get the special activation post process for `module`, this has
|
||
|
higher priority than the activation post process in `qconfig`
|
||
|
e.g.
|
||
|
input: torch.nn.Sigmoid
|
||
|
output: default_affine_fixed_qparam_fake_quant
|
||
|
"""
|
||
|
return DEFAULT_MODULE_TO_ACT_POST_PROCESS.get(type_before_parametrizations(module), None)
|
||
|
|
||
|
def _has_special_act_post_process(module: torch.nn.Module) -> bool:
|
||
|
return module.training and type(module) in DEFAULT_MODULE_TO_ACT_POST_PROCESS
|