ai-content-maker/.venv/Lib/site-packages/torch/backends/_nnapi/serializer.py

2189 lines
79 KiB
Python
Raw Permalink Normal View History

2024-05-03 04:18:51 +03:00
import array
import enum
import functools
import logging
import operator
import struct
import sys
from typing import List, NamedTuple, Optional, Tuple
import torch
# TODO: Add type annotations
# TODO: Check tensor types for ops
LOG = logging.getLogger("nnapi_serialize")
class NNAPI_OperandCode:
FLOAT32 = 0
INT32 = 1
UINT32 = 2
TENSOR_FLOAT32 = 3
TENSOR_INT32 = 4
TENSOR_QUANT8_ASYMM = 5
BOOL = 6
TENSOR_QUANT16_SYMM = 7
TENSOR_FLOAT16 = 8
TENSOR_BOOL8 = 9
FLOAT16 = 10
TENSOR_QUANT8_SYMM_PER_CHANNEL = 11
TENSOR_QUANT16_ASYMM = 12
class NNAPI_OperationCode:
ADD = 0
AVERAGE_POOL_2D = 1
CONCATENATION = 2
CONV_2D = 3
DEPTHWISE_CONV_2D = 4
DEPTH_TO_SPACE = 5
DEQUANTIZE = 6
EMBEDDING_LOOKUP = 7
FLOOR = 8
FULLY_CONNECTED = 9
HASHTABLE_LOOKUP = 10
L2_NORMALIZATION = 11
L2_POOL_2D = 12
LOCAL_RESPONSE_NORMALIZATION = 13
LOGISTIC = 14
LSH_PROJECTION = 15
LSTM = 16
MAX_POOL_2D = 17
MUL = 18
RELU = 19
RELU1 = 20
RELU6 = 21
RESHAPE = 22
RESIZE_BILINEAR = 23
RNN = 24
SOFTMAX = 25
SPACE_TO_DEPTH = 26
SVDF = 27
TANH = 28
BATCH_TO_SPACE_ND = 29
DIV = 30
MEAN = 31
PAD = 32
SPACE_TO_BATCH_ND = 33
SQUEEZE = 34
STRIDED_SLICE = 35
SUB = 36
TRANSPOSE = 37
ABS = 38
ARGMAX = 39
ARGMIN = 40
AXIS_ALIGNED_BBOX_TRANSFORM = 41
BIDIRECTIONAL_SEQUENCE_LSTM = 42
BIDIRECTIONAL_SEQUENCE_RNN = 43
BOX_WITH_NMS_LIMIT = 44
CAST = 45
CHANNEL_SHUFFLE = 46
DETECTION_POSTPROCESSING = 47
EQUAL = 48
EXP = 49
EXPAND_DIMS = 50
GATHER = 51
GENERATE_PROPOSALS = 52
GREATER = 53
GREATER_EQUAL = 54
GROUPED_CONV_2D = 55
HEATMAP_MAX_KEYPOINT = 56
INSTANCE_NORMALIZATION = 57
LESS = 58
LESS_EQUAL = 59
LOG = 60
LOGICAL_AND = 61
LOGICAL_NOT = 62
LOGICAL_OR = 63
LOG_SOFTMAX = 64
MAXIMUM = 65
MINIMUM = 66
NEG = 67
NOT_EQUAL = 68
PAD_V2 = 69
POW = 70
PRELU = 71
QUANTIZE = 72
QUANTIZED_16BIT_LSTM = 73
RANDOM_MULTINOMIAL = 74
REDUCE_ALL = 75
REDUCE_ANY = 76
REDUCE_MAX = 77
REDUCE_MIN = 78
REDUCE_PROD = 79
REDUCE_SUM = 80
ROI_ALIGN = 81
ROI_POOLING = 82
RSQRT = 83
SELECT = 84
SIN = 85
SLICE = 86
SPLIT = 87
SQRT = 88
TILE = 89
TOPK_V2 = 90
TRANSPOSE_CONV_2D = 91
UNIDIRECTIONAL_SEQUENCE_LSTM = 92
UNIDIRECTIONAL_SEQUENCE_RNN = 93
RESIZE_NEAREST_NEIGHBOR = 94
class NNAPI_FuseCode:
FUSED_NONE = 0
FUSED_RELU = 1
FUSED_RELU1 = 2
FUSED_RELU6 = 3
class OperandValueSourceType:
IMMEDIATE = 0
NUMBERED_BUFFER = 2
NUMBERED_MEMORY = 3
# Scalar types that appear explicitly in models.
# These must be kept in sync with
# AT_FORALL_SCALAR_TYPES_WITH_COMPLEX_AND_QINTS.
# TODO: Expose these directly to Python to avoid maintaining this list.
class TorchScalarTypes(enum.Enum):
QUINT8 = 13
def approx_equal(lhs, rhs, tolerance=1e-6):
return abs(lhs - rhs) <= tolerance * min(lhs, rhs)
def tensor_size(op_type, dims):
ITEM_SIZES = {
NNAPI_OperandCode.TENSOR_FLOAT32: 4,
NNAPI_OperandCode.TENSOR_INT32: 4,
NNAPI_OperandCode.TENSOR_QUANT8_ASYMM: 1,
NNAPI_OperandCode.TENSOR_QUANT16_SYMM: 2,
NNAPI_OperandCode.TENSOR_QUANT16_ASYMM: 2,
}
size = ITEM_SIZES[op_type]
for d in dims:
size *= d
return size
def change_element(tup, index, value):
ls = list(tup)
ls[index] = value
return tuple(ls)
class ConvPoolArgs2d(NamedTuple):
"""Configuration arguments for a convolution."""
kernel_h: int
kernel_w: int
stride_h: int
stride_w: int
pad_t: int
pad_b: int
pad_l: int
pad_r: int
dilation_h: int
dilation_w: int
group: int
class DimOrder(enum.Enum):
PRESUMED_CONTIGUOUS = 0
CHANNELS_LAST = 1
SCALAR_OR_VECTOR = 2
UNKNOWN_CONSTANT = 999
class Operand(NamedTuple):
"""Represenation of an NNAPI operand."""
# NNAPI operand type. One of NNAPI_OperandCode.
# TODO: Make this an enum.
op_type: int
# This is always the PyTorch shape, which is NCHW for feature maps.
# The actual NNAPI operand might have a transposed shape.
# we use 0 for load time dynamic shapes & -1 for runtime dynamic shapes
shape: Tuple[int, ...]
# Specifies how the shape of the operand that we define in NNAPI
# relates to the shape we track above.
# - PRESUMED_CONTIGUOUS: physical NNAPI operand will exactly match
# the shape of the PyTorch tensor.
# - CHANNELS_LAST: The PyTorch tensor is expected to be NCHW, and
# the NNAPI operand will be represented explicitly as NHWC.
dim_order: DimOrder
# Quantization params
scale: float
zero_point: int
def use_nchw(self):
if self.dim_order is DimOrder.PRESUMED_CONTIGUOUS:
return True
if self.dim_order is DimOrder.CHANNELS_LAST:
return False
raise Exception("Unknown dim order")
def broadcast_shapes(shape1, shape2):
assert len(shape1) > 0
assert len(shape2) > 0
s1 = list(shape1)
s2 = list(shape2)
# TODO: Support non-equal-rank broadcast where semantics match.
# This can be tricky for NHWC tensors because dimension orders
# don't match between PT and NNAPI, even though semantics match.
if len(s1) > len(s2):
# s2 = [1] * (len(s1) - len(s2)) + s2
raise Exception("Non-equal-rank broadcast is not supported yet.")
if len(s2) > len(s1):
# s3 = [1] * (len(s2) - len(s1)) + s1
raise Exception("Non-equal-rank broadcast is not supported yet.")
ret = []
for d1, d2 in zip(s1, s2):
if d1 == 1:
ret.append(d2)
elif d2 == 1:
ret.append(d1)
elif d1 == d2:
ret.append(d1)
else:
raise Exception(f"Cannot broadcast shapes: {shape1} and {shape2}")
return tuple(ret)
def get_conv_pool_shape(image_shape, args, out_ch, transpose):
batch, in_c, in_h, in_w = image_shape
# TODO: Handle dilation
if args.dilation_h != 1 or args.dilation_w != 1:
raise Exception("Dilation not supported yet.")
if transpose:
out_h = (in_h - 1) * args.stride_h + args.kernel_h - args.pad_t - args.pad_b
out_w = (in_w - 1) * args.stride_w + args.kernel_w - args.pad_l - args.pad_l
else:
out_h = (in_h - args.kernel_h + args.pad_t + args.pad_b) // args.stride_h + 1
out_w = (in_w - args.kernel_w + args.pad_l + args.pad_r) // args.stride_w + 1
# Handle variable-sized tensors.
if in_h == 0:
out_h = 0
if in_w == 0:
out_w = 0
out_shape = (batch, out_ch, out_h, out_w)
return out_shape
def fix_shape(shape, dim_order):
# Return the actual shape that an operand should have in NNAPI,
# given a PyTorch shape and dimension order. This is where we
# convert from PyTorch's "always NCHW" shape to explicit NHWC.
if dim_order is DimOrder.PRESUMED_CONTIGUOUS:
return shape
if dim_order is DimOrder.CHANNELS_LAST:
return tuple([shape[0]] + list(shape[2:]) + [shape[1]])
if dim_order is DimOrder.SCALAR_OR_VECTOR:
assert len(shape) == 0 or len(shape) == 1
return shape
if dim_order is DimOrder.UNKNOWN_CONSTANT:
# XXX think this through
return shape
raise Exception(f"Bad dim_order: {dim_order!r}.")
def reverse_map_dim(dim_order, d):
# Return the original PyTorch dimension position for a given dimension.
# d should be the dimension that NNAPI will see.
# reverse_map_dim(PRESUMED_CONTIGUOUS, x) == x
# reverse_map_dim(CHANNELS_LAST, 3) == 1
if dim_order in (DimOrder.PRESUMED_CONTIGUOUS, DimOrder.SCALAR_OR_VECTOR):
return d
assert dim_order is DimOrder.CHANNELS_LAST
return [0, 2, 3, 1][d]
def flex_name(op_id, dim):
# Return the local variable name for the computed flexible size
# for a given op and dimension.
return f"s_{op_id}_{dim}"
class _NnapiSerializer:
def __init__(self, config, use_int16_for_qint16=False):
self.operands = []
self.values = []
self.operations = []
self.value_data = []
self.operation_args = []
self.inputs = []
self.outputs = []
self.flexible_shape_computation_lines = []
self.modules = {}
self.constants = {}
self.tensor_sequences = {}
self.jitval_operand_map = {}
self.cached_immediates = {}
self.used_weights = []
self.weight_offset = 0
self.use_int16_for_qint16 = use_int16_for_qint16
if config is None:
config = {}
def get_next_operand_id(self):
return len(self.operands)
# Add a tensor operand corresponding to a JIT Value.
# Returns the NNAPI operand ID. Can be looked up later with
# get_tensor_operand_by_jitval.
def add_tensor_operand(self, jitval, oper):
assert isinstance(oper, Operand)
if jitval in self.jitval_operand_map:
raise Exception(f"Duplicate tensor: {jitval!r}")
operand_id = self.get_next_operand_id()
self.operands.append(oper)
self.jitval_operand_map[jitval] = operand_id
return operand_id
# Add a tensor operand that does not correspond to a JIT Value.
# Useful for cases where multiple NNAPI operands are required
# to implement one JIT IR node. Returns the NNAPI operand ID.
def add_anonymous_tensor_operand(self, oper):
assert isinstance(oper, Operand)
operand_id = self.get_next_operand_id()
self.operands.append(oper)
return operand_id
def torch_tensor_to_operand(self, tensor, dim_order):
dtype = str(tensor.dtype).replace("torch.", "")
scale = 0.0
zero_point = 0
if dtype == "float32":
op_type = NNAPI_OperandCode.TENSOR_FLOAT32
elif dtype == "int32":
op_type = NNAPI_OperandCode.TENSOR_INT32
elif dtype == "quint8":
op_type = NNAPI_OperandCode.TENSOR_QUANT8_ASYMM
scale = tensor.q_scale()
zero_point = tensor.q_zero_point()
elif dtype == "qint32":
op_type = NNAPI_OperandCode.TENSOR_INT32
scale = tensor.q_scale()
zero_point = tensor.q_zero_point()
assert zero_point == 0
elif dtype == "int16":
if self.use_int16_for_qint16:
nnapi_dtype = getattr(tensor, "nnapi_dtype", None)
op_codes = (
NNAPI_OperandCode.TENSOR_QUANT16_SYMM,
NNAPI_OperandCode.TENSOR_QUANT16_ASYMM,
)
if nnapi_dtype in op_codes:
op_type = nnapi_dtype
scale = tensor.nnapi_scale
zero_point = tensor.nnapi_zero_point
else:
raise Exception(
f"`nnapi_type` needs to be one of {op_codes} for `int16`"
)
else:
raise Exception(
"`int16` isn't supported. If you're trying to represent NNAPI"
" qint16 with Pytorch int16, set `use_int16_for_qint16 = True`"
)
else:
raise Exception(f"Can't handle input with dtype '{tensor.dtype}'")
return Operand(
shape=tuple(tensor.shape),
op_type=op_type,
dim_order=dim_order,
scale=scale,
zero_point=zero_point,
)
def add_tensor_operand_for_input(self, arg_idx, jitval, tensor):
dim_order = (
DimOrder.CHANNELS_LAST
if getattr(tensor, "nnapi_nhwc", False)
else DimOrder.PRESUMED_CONTIGUOUS
)
toper = self.torch_tensor_to_operand(tensor, dim_order)
operand_id = self.add_tensor_operand(jitval, toper)
self.inputs.append(operand_id)
for dim, size in enumerate(tensor.shape):
if size == 0:
self.compute_operand_shape(
operand_id, dim, f"args[{arg_idx}].shape[{dim}]"
)
return operand_id
def add_tensor_operand_for_weight(
self, tensor, dim_order=DimOrder.UNKNOWN_CONSTANT
):
toper = self.torch_tensor_to_operand(tensor, dim_order)
operand_id = len(self.operands)
self.operands.append(toper)
tsize = tensor_size(toper.op_type, toper.shape)
psize = ((tsize - 1) | 0x3) + 1
self.values.append((operand_id, OperandValueSourceType.NUMBERED_BUFFER))
buf_num = len(self.used_weights)
offset = 0
self.value_data.append(struct.pack("iii", buf_num, offset, tsize))
# For NHWC NNAPI op, lay out data in the same dim order by permuting torch tensor
if dim_order == DimOrder.CHANNELS_LAST:
tensor = tensor.permute(0, 2, 3, 1)
self.used_weights.append(tensor)
return operand_id
def add_immediate_operand(self, code, value, dims):
assert isinstance(dims, tuple)
cache_key = (code, value)
if cache_key not in self.cached_immediates:
operand_id = len(self.operands)
self.operands.append(Operand(code, dims, DimOrder.SCALAR_OR_VECTOR, 0.0, 0))
self.values.append((operand_id, OperandValueSourceType.IMMEDIATE))
self.value_data.append(value)
self.cached_immediates[cache_key] = operand_id
return self.cached_immediates[cache_key]
def add_immediate_int_scalar(self, value):
return self.add_immediate_operand(
NNAPI_OperandCode.INT32, struct.pack("i", value), ()
)
def add_immediate_float_scalar(self, value):
return self.add_immediate_operand(
NNAPI_OperandCode.FLOAT32, struct.pack("f", value), ()
)
def add_immediate_bool_scalar(self, value):
return self.add_immediate_operand(
NNAPI_OperandCode.BOOL, b"\x01" if value else b"\x00", ()
)
def add_immediate_int_vector(self, value):
return self.add_immediate_operand(
NNAPI_OperandCode.TENSOR_INT32,
array.array("i", value).tobytes(),
(len(value),),
)
def has_operand_for_jitval(self, jitval):
return jitval in self.jitval_operand_map
def get_tensor_operand_by_jitval(self, jitval):
operand_id = self.jitval_operand_map[jitval]
return (operand_id, self.operands[operand_id])
def get_tensor_operand_by_jitval_fixed_size(self, jitval):
op_id, oper = self.get_tensor_operand_by_jitval(jitval)
for s in oper.shape:
if s == 0:
# TODO: Improve this error message, possibly after converting
# many callsites to support flexible size.
raise Exception("Flexible size is not supported for this operand.")
if s < 0:
# runtime flex
LOG.warning("Operand %s has runtime flex shape", oper)
return op_id, oper
def get_tensor_operand_or_constant(
self, jitval, dim_order=DimOrder.PRESUMED_CONTIGUOUS
):
operand_id = self.jitval_operand_map.get(jitval)
if operand_id is None:
_, value = self.get_constant_value(jitval, "TensorType")
operand_id = self.add_tensor_operand_for_weight(value, dim_order)
return (operand_id, self.operands[operand_id])
def get_tensor_operand_for_weight(self, jitval):
_, value = self.get_constant_value(jitval, "TensorType")
operand_id = self.add_tensor_operand_for_weight(value)
return (operand_id, self.operands[operand_id])
def add_operation(self, opcode, inputs, outputs):
self.operations.append((opcode, len(inputs), len(outputs)))
self.operation_args.extend(inputs + outputs)
def add_tensor_sequence(self, jitval, values):
assert jitval not in self.tensor_sequences
self.tensor_sequences[jitval] = values
def add_constant_value(self, jitval, ctype, value):
assert jitval not in self.constants
self.constants[jitval] = (ctype, value)
def get_constant_value(self, jitval, typekind=None):
record = self.constants.get(jitval)
if record is None:
raise Exception(f"Could not find constant value for '{jitval!r}'.")
ctype, _ = record
if typekind is not None and ctype.kind() != typekind:
raise Exception(
f"Expected constant value of type {typekind}, but got {ctype.kind()} for value '{jitval!r}'"
)
return record
def operand_to_template_torchscript(self, op_id, oper, shape=None):
"""Return a TorchScript expression to build a template for a given operand."""
if shape is None:
shape = oper.shape
else:
assert len(shape) == len(oper.shape)
shape_parts = ["("]
for d, s in enumerate(shape):
if s > 0:
# Fixed shape dimension: just add the value.
shape_parts.append(str(s))
elif s == 0:
# Load time flexible shape dimension: it should have been computed in a variable.
shape_parts.append(flex_name(op_id, d))
elif s == -1:
# Runtime flexible shape
shape_parts.append("0")
else:
raise Exception("Unknown dim value, dimensions should be >= -1")
shape_parts.append(",")
shape_parts.append(")")
shape_code = "".join(shape_parts)
if oper.op_type == NNAPI_OperandCode.TENSOR_FLOAT32:
return f"torch.zeros({shape_code}, dtype=torch.float32)"
elif oper.op_type == NNAPI_OperandCode.TENSOR_INT32:
return f"torch.zeros({shape_code}, dtype=torch.int32)"
elif oper.op_type == NNAPI_OperandCode.TENSOR_QUANT8_ASYMM:
return (
f"torch.quantize_per_tensor("
f"torch.zeros(1), scale={oper.scale}, zero_point={oper.zero_point}, dtype=torch.quint8)"
f".expand({shape_code}).contiguous()"
)
elif oper.op_type in (
NNAPI_OperandCode.TENSOR_QUANT16_ASYMM,
NNAPI_OperandCode.TENSOR_QUANT16_SYMM,
):
if self.use_int16_for_qint16:
return f"torch.zeros({shape_code}, dtype=torch.int16)"
else:
raise Exception(
"`int16` isn't supported. If you're trying to represent NNAPI"
" qint16 with Pytorch int16, set `use_int16_for_qint16 = True`"
)
raise Exception(f"Unsupported output operand type: {oper.op_type}")
def forward_operand_shape(self, out_op_id, out_dim, in_op_id, in_dim):
self.compute_operand_shape(out_op_id, out_dim, flex_name(in_op_id, in_dim))
def compute_operand_shape(self, op_id, dim, expr):
self.flexible_shape_computation_lines.append(
f"{flex_name(op_id, dim)} = {expr}"
)
def transpose_to_nhwc(self, in_id, oper):
if oper.shape[2:] != (1, 1):
raise Exception("Automatic transpose only supported for H,W == 1,1")
out_oper = oper._replace(dim_order=DimOrder.CHANNELS_LAST)
inputs = [None] * 2
inputs[0] = in_id
inputs[1] = self.add_immediate_int_vector([0, 2, 3, 1])
outputs = [None] * 1
outputs[0] = self.add_anonymous_tensor_operand(out_oper)
self.add_operation(NNAPI_OperationCode.TRANSPOSE, inputs, outputs)
return outputs[0], out_oper
# Transpose inputs as necessary to allow broadcasting.
def transpose_for_broadcast(self, in0_id, in0_oper, in1_id, in1_oper):
if in0_oper.dim_order == in1_oper.dim_order:
return in0_id, in0_oper, in1_id, in1_oper
# Assume NHWC is preferred if there is a mismatch.
orders = (in0_oper.dim_order, in1_oper.dim_order)
if orders == (DimOrder.PRESUMED_CONTIGUOUS, DimOrder.CHANNELS_LAST):
return self.transpose_to_nhwc(in0_id, in0_oper) + (in1_id, in1_oper)
if orders == (DimOrder.CHANNELS_LAST, DimOrder.PRESUMED_CONTIGUOUS):
return (in0_id, in0_oper) + self.transpose_to_nhwc(in1_id, in1_oper)
raise Exception(
f"Automatic transpose not supported for dim_orders: {in0_oper.dim_order!r}, {in1_oper.dim_order!r}"
)
def get_size_arg(self, jitval):
ctype, value = self.get_constant_value(jitval)
if ctype.kind() == "ListType":
assert ctype.getElementType().kind() == "IntType"
return value
raise Exception(f"Can't handle size arg of type '{ctype!r}' for '{jitval!r}'")
def get_conv_pool_args_2d_from_pack(self, kernel_size, packed_config):
pc = [i.item() for i in packed_config]
assert pc[0] == 2
strides = [pc[1], pc[2]]
paddings = [pc[3], pc[4]]
dilations = [pc[5], pc[6]]
output_padding = [pc[7], pc[8]]
group_num = pc[9]
assert len(pc) == 11
assert output_padding == [0, 0]
return self.get_conv_pool_args_2d_common(
kernel_size, strides, paddings, dilations, group_num
)
def get_conv_pool_args_2d_from_jit(
self, kernel_size, stride, padding, dilation=None, group=None
):
strides = self.get_size_arg(stride)
paddings = self.get_size_arg(padding)
if dilation is None:
dilations = [1, 1]
else:
dilations = self.get_size_arg(dilation)
if group is not None:
_, group_num = self.get_constant_value(group, "IntType")
else:
group_num = None
return self.get_conv_pool_args_2d_common(
kernel_size, strides, paddings, dilations, group_num
)
def get_conv_pool_args_2d_common(
self, kernel_size, strides, paddings, dilations, group_num
):
kernels = list(kernel_size)
assert len(kernels) == 2
assert len(strides) == 2
assert len(paddings) == 2
assert len(dilations) == 2
# NNAPI uses 4 values for padding.
ph, pw = paddings
real_paddings = [ph, ph, pw, pw]
return ConvPoolArgs2d(
*(kernels + strides + real_paddings + dilations + [group_num])
)
def serialize_model(self, model, inputs, return_shapes=None):
self.add_immediate_bool_scalar(False)
self.add_immediate_bool_scalar(True)
inp_dim_orders = []
out_dim_orders = []
self_jitval = next(model.graph.inputs())
self.add_constant_value(self_jitval, self_jitval.type(), model)
for arg_idx, (input_value, input_tensor) in enumerate(
zip(list(model.graph.inputs())[1:], inputs)
):
op_id = self.add_tensor_operand_for_input(
arg_idx, input_value, input_tensor
)
inp_dim_orders.append(self.operands[op_id].dim_order.value)
for idx, node in enumerate(model.graph.nodes()):
LOG.debug("Processing node #%d: %r", idx, node)
self.add_node(node)
retn = model.graph.return_node()
assert retn.inputsSize() == 1
assert retn.outputsSize() == 0
retn_input = retn.inputsAt(0)
template_return_lines = ["return ["]
if retn_input.type().kind() == "TensorType":
return_values = [retn_input]
retval_count = -1
elif retn_input.type().kind() == "TupleType":
return_values = self.tensor_sequences[retn_input]
retval_count = len(return_values)
else:
raise Exception(f"Unsupported return type: {retn_input.type()}")
if return_shapes is not None:
assert len(return_shapes) == len(return_values)
for i, v in enumerate(return_values):
op_id = self.jitval_operand_map[v]
self.outputs.append(op_id)
out_dim_orders.append(self.operands[op_id].dim_order.value)
shape = return_shapes[i] if return_shapes else None
template_return_lines.append(
self.operand_to_template_torchscript(op_id, self.operands[op_id], shape)
+ ","
)
template_return_lines.append("]")
model = []
version = 1
header = struct.pack(
"iiiiii",
version,
len(self.operands),
len(self.values),
len(self.operations),
len(self.inputs),
len(self.outputs),
)
model.append(header)
serialized_values, serialized_value_data = self.serialize_values()
model.extend(
struct.pack("iifi", t, len(d), s, z) for (t, d, _m, s, z) in self.operands
)
model.extend(serialized_values)
model.extend(struct.pack("iii", *x) for x in self.operations)
# Compact the model so we can get its length so far.
model = [b"".join(model)]
model_offset = len(model[0])
# Model offset is the index into the model (in 32-bit words, not bytes)
# of the next dimension we're about to serialize. If it's 0,
# generate code to mutate it before passing to NNAPI.
assert model_offset % 4 == 0
model_offset = int(model_offset / 4)
for op_id, (_, dims, dim_order, _, _) in enumerate(self.operands):
shape = fix_shape(dims, dim_order)
for d, s in enumerate(shape):
if s == 0:
pt_d = reverse_map_dim(dim_order, d)
self.flexible_shape_computation_lines.append(
f"ser_model[{model_offset}] = {flex_name(op_id, pt_d)}"
)
model_offset += 1
# convert runtime flex shape from -1 to 0
shape = tuple(d if d != -1 else 0 for d in shape)
model.append(self.serialize_ints(shape))
model.extend(serialized_value_data)
model.append(self.serialize_ints(self.operation_args))
model.append(self.serialize_ints(self.inputs))
model.append(self.serialize_ints(self.outputs))
self.flexible_shape_computation_lines.extend(template_return_lines)
return (
array.array("i", b"".join(model)),
self.used_weights,
inp_dim_orders,
out_dim_orders,
self.flexible_shape_computation_lines,
retval_count,
)
def serialize_values(self):
serialized_values = []
serialized_value_data = []
assert len(self.values) == len(self.value_data)
for (op_index, source_type), data in zip(self.values, self.value_data):
source_length = len(data)
# Pad with 0 bytes out to a multiple of 4 for alignment.
physical_length = ((source_length - 1) | 0x3) + 1
padded_data = data + (b"\0" * (physical_length - source_length))
serialized_values.append(
struct.pack("iii", op_index, source_type, source_length)
)
serialized_value_data.append(padded_data)
return serialized_values, serialized_value_data
@staticmethod
def serialize_ints(ints):
return array.array("i", ints).tobytes()
ADDER_MAP = {
"prim::GetAttr": lambda self, node: self.add_getattr(node),
"prim::Constant": lambda self, node: self.add_constant_node(node),
"prim::ListConstruct": lambda self, node: self.add_list_construct(node),
"prim::TupleConstruct": lambda self, node: self.add_tuple_construct(node),
"aten::unsqueeze": lambda self, node: self.add_unsqueeze(node),
"aten::to": lambda self, node: self.add_to(node),
"aten::detach": lambda self, node: self._identity(node),
"aten::reshape": lambda self, node: self.add_reshape(node),
"aten::flatten": lambda self, node: self.add_flatten(node),
"aten::slice": lambda self, node: self.add_slice(node),
"aten::size": lambda self, node: self.add_size(node),
"aten::cat": lambda self, node: self.add_cat(node),
"aten::mean": lambda self, node: self.add_mean(node),
"aten::quantize_per_tensor": lambda self, node: self.add_quantize(node),
"aten::dequantize": lambda self, node: self.add_dequantize(node),
"aten::add": lambda self, node: self.add_add_sub_op(
node, NNAPI_OperationCode.ADD, NNAPI_FuseCode.FUSED_NONE
),
"aten::sub": lambda self, node: self.add_add_sub_op(
node, NNAPI_OperationCode.SUB, NNAPI_FuseCode.FUSED_NONE
),
"aten::mul": lambda self, node: self.add_pointwise_simple_binary_broadcast_op(
node, NNAPI_OperationCode.MUL, NNAPI_FuseCode.FUSED_NONE
),
"aten::div": lambda self, node: self.add_pointwise_simple_binary_broadcast_op(
node, NNAPI_OperationCode.DIV, NNAPI_FuseCode.FUSED_NONE
),
"aten::relu": lambda self, node: self.add_pointwise_simple_unary_op(
node, NNAPI_OperationCode.RELU
),
"aten::sigmoid": lambda self, node: self.add_pointwise_simple_unary_op(
node, NNAPI_OperationCode.LOGISTIC
),
"aten::softmax": lambda self, node: self.add_softmax(node),
"aten::hardtanh": lambda self, node: self.add_hardtanh(node),
"aten::avg_pool2d": lambda self, node: self.add_avg_pool2d(node),
"aten::max_pool2d": lambda self, node: self.add_pool2d_node(
node, NNAPI_OperationCode.MAX_POOL_2D
),
"aten::adaptive_avg_pool2d": lambda self, node: self.add_adaptive_avg_pool2d(
node
),
"aten::upsample_nearest2d": lambda self, node: self.add_upsample_nearest2d(
node
),
"aten::prelu": lambda self, node: self.add_prelu_op(node),
"aten::addmm": lambda self, node: self.add_addmm(node),
"aten::linear": lambda self, node: self.add_linear(node),
"aten::_convolution": lambda self, node: self.add_conv_underscore(node),
"aten::conv2d": lambda self, node: self.add_conv2d(node),
"aten::log_softmax": lambda self, node: self.add_log_softmax(node),
"quantized::linear": lambda self, node: self.add_qlinear(node),
"quantized::conv2d": lambda self, node: self.add_qconv2d(
node, NNAPI_FuseCode.FUSED_NONE
),
"quantized::conv2d_relu": lambda self, node: self.add_qconv2d(
node, NNAPI_FuseCode.FUSED_RELU
),
"quantized::conv_transpose2d": lambda self, node: self.add_qconv2d(
node, NNAPI_FuseCode.FUSED_NONE, transpose=True
),
"quantized::add": lambda self, node: self.add_qadd(
node, NNAPI_OperationCode.ADD, NNAPI_FuseCode.FUSED_NONE
),
"quantized::add_relu": lambda self, node: self.add_qadd(
node, NNAPI_OperationCode.ADD, NNAPI_FuseCode.FUSED_RELU
),
"quantized::mul": lambda self, node: self.add_qadd(
node, NNAPI_OperationCode.MUL, NNAPI_FuseCode.FUSED_NONE
),
}
def add_node(self, node):
adder = self.ADDER_MAP.get(node.kind())
if not adder:
raise Exception(f"Unsupported node kind ({node.kind()!r}) in node {node!r}")
adder(self, node)
def _identity(self, node):
in_id, in_oper = self.get_tensor_operand_by_jitval(node.inputsAt(0))
jitval = node.outputsAt(0)
self.jitval_operand_map[jitval] = in_id
def add_getattr(self, node):
assert node.inputsSize() == 1
assert node.outputsSize() == 1
obj_ctype, obj = self.get_constant_value(node.inputsAt(0))
assert str(obj_ctype).startswith("__torch__.")
name = node.s("name")
value = getattr(obj, name)
output = node.outputsAt(0)
ctype = output.type()
self.add_constant_value(output, ctype, value)
def add_constant_node(self, node):
assert node.inputsSize() == 0
assert node.outputsSize() == 1
output = node.outputsAt(0)
ctype = output.type()
value = output.toIValue()
self.add_constant_value(output, ctype, value)
def add_list_construct(self, node):
assert node.outputsSize() == 1
output = node.outputsAt(0)
ctype = output.type()
const_vals: Optional[List] = []
tensors: Optional[List] = []
for inp in node.inputs():
if const_vals is not None and inp in self.constants:
_, val = self.get_constant_value(inp)
const_vals.append(val)
else:
const_vals = None
if tensors is not None and inp.type().kind() == "TensorType":
tensors.append(inp)
else:
tensors = None
if const_vals is not None:
# NOTE: Now that TorchScript supports list constants,
# this code path might not be used anymore.
self.add_constant_value(output, ctype, const_vals)
if tensors is not None:
self.add_tensor_sequence(output, tensors)
if const_vals is None and tensors is None:
raise Exception(
f"Unable to handle ListConstruct node. Neither all constants nor all tensors. {node!r}"
)
def add_tuple_construct(self, node):
assert node.outputsSize() == 1
output = node.outputsAt(0)
values = list(node.inputs())
self.add_tensor_sequence(output, values)
def add_unsqueeze(self, node):
assert node.inputsSize() == 2
assert node.outputsSize() == 1
in_id, in_oper = self.get_tensor_operand_by_jitval_fixed_size(node.inputsAt(0))
_, dim = self.get_constant_value(node.inputsAt(1), "IntType")
assert in_oper.dim_order == DimOrder.PRESUMED_CONTIGUOUS
real_dim = dim if dim >= 0 else dim + len(in_oper.shape) + 1
out_shape_list = list(in_oper.shape)
out_shape_list.insert(real_dim, 1)
out_shape = tuple(out_shape_list)
out_oper = in_oper._replace(shape=out_shape)
inputs = [None] * 2
inputs[0] = in_id
inputs[1] = self.add_immediate_int_scalar(dim)
outputs = [None] * 1
outputs[0] = self.add_tensor_operand(node.outputsAt(0), out_oper)
self.add_operation(NNAPI_OperationCode.EXPAND_DIMS, inputs, outputs)
def add_to(self, node):
# Handle to("cpu") / to("gpu") case
self._identity(node)
def add_reshape(self, node):
assert node.inputsSize() == 2
assert node.outputsSize() == 1
in_id, in_oper = self.get_tensor_operand_by_jitval_fixed_size(node.inputsAt(0))
shape_ctype, shape = self.get_constant_value(node.inputsAt(1))
assert shape_ctype.kind() == "ListType"
assert shape_ctype.getElementType().kind() == "IntType"
is_trivial_reshape = len(shape) == 2 and shape[1] == -1
if in_oper.dim_order != DimOrder.PRESUMED_CONTIGUOUS and not is_trivial_reshape:
raise Exception(
"Currently, reshape is only supported on NHWC tensors if the target size is [X, -1]."
)
# Bit of a hack here. Use a real tensor to infer the output shape.
out_shape = torch.zeros(1).expand(in_oper.shape).reshape(shape).shape
out_oper = in_oper._replace(
shape=out_shape, dim_order=DimOrder.PRESUMED_CONTIGUOUS
)
inputs = [None] * 2
inputs[0] = in_id
inputs[1] = self.add_immediate_int_vector(shape)
outputs = [None] * 1
outputs[0] = self.add_tensor_operand(node.outputsAt(0), out_oper)
self.add_operation(NNAPI_OperationCode.RESHAPE, inputs, outputs)
def add_flatten(self, node):
assert node.inputsSize() == 3
assert node.outputsSize() == 1
in_id, in_oper = self.get_tensor_operand_by_jitval(node.inputsAt(0))
start_ctype, start_dim = self.get_constant_value(node.inputsAt(1), "IntType")
end_ctype, end_dim = self.get_constant_value(node.inputsAt(2), "IntType")
# channels last with channels == 1 or (height & width both 1)
is_trivial_flatten = len(in_oper.shape) == 4 and (
in_oper.shape[1] == 1 or (in_oper.shape[2] == 1 and in_oper.shape[3] == 1)
)
if in_oper.dim_order != DimOrder.PRESUMED_CONTIGUOUS and not is_trivial_flatten:
raise Exception(
"Currently, flatten is not supported on NHWC tensors unless C=1 or H=W=1"
)
if start_dim < 0:
start_dim += len(in_oper.shape)
if end_dim < 0:
end_dim += len(in_oper.shape)
out_shape = (
in_oper.shape[:start_dim]
+ (functools.reduce(operator.mul, in_oper.shape[start_dim : end_dim + 1]),)
+ in_oper.shape[end_dim + 1 :]
)
if any(dim == 0 for dim in in_oper.shape[start_dim : end_dim + 1]):
raise Exception("Flattening flexible dims is not supported yet")
non_flattened_dims = in_oper.shape[:start_dim] + in_oper.shape[end_dim + 1 :]
if non_flattened_dims.count(0) > 1:
raise Exception("Only 1 dim can be flexible")
out_oper = in_oper._replace(
shape=out_shape, dim_order=DimOrder.PRESUMED_CONTIGUOUS
)
out_id = self.add_tensor_operand(node.outputsAt(0), out_oper)
for idx, dim in enumerate(out_shape):
if dim == 0:
self.forward_operand_shape(out_id, idx, in_id, in_oper.shape.index(0))
inputs_1 = tuple(dim if dim != 0 else -1 for dim in out_shape)
inputs = [None] * 2
inputs[0] = in_id
inputs[1] = self.add_immediate_int_vector(inputs_1)
outputs = [None] * 1
outputs[0] = out_id
self.add_operation(NNAPI_OperationCode.RESHAPE, inputs, outputs)
def add_slice(self, node):
assert node.inputsSize() == 5
assert node.outputsSize() == 1
in_id, in_oper = self.get_tensor_operand_by_jitval(node.inputsAt(0))
_, dim_value = self.get_constant_value(node.inputsAt(1))
_, start_value = self.get_constant_value(node.inputsAt(2))
_, stop_value = self.get_constant_value(node.inputsAt(3))
_, step_value = self.get_constant_value(node.inputsAt(4))
if start_value is None:
start_value = 0
if stop_value is None:
stop_value = sys.maxsize
if start_value < 0:
start_value += in_oper.shape[dim_value]
elif start_value == sys.maxsize:
start_value = 0
if start_value == 0 and stop_value == sys.maxsize:
self._identity(node)
return
if in_oper.shape[dim_value] == 0:
raise Exception("Unable to slice with flexible shape")
if stop_value < 0:
stop_value += in_oper.shape[dim_value]
elif stop_value == sys.maxsize:
stop_value = in_oper.shape[dim_value]
if start_value >= stop_value:
raise Exception("Slice start value should be less than stop value")
out_len = (stop_value - start_value) // step_value
out_shape = tuple(
out_len if i == dim_value else dim for i, dim in enumerate(in_oper.shape)
)
out_id = self.add_tensor_operand(
node.outputsAt(0), in_oper._replace(shape=out_shape)
)
# flex inputs
end_mask = 0
for idx, dim in enumerate(out_shape):
if dim == 0:
self.forward_operand_shape(out_id, idx, in_id, idx)
end_mask |= 1 << idx
inputs = [None] * 7
inputs[0] = in_id
inputs[1] = self.add_immediate_int_vector(
[start_value if i == dim_value else 0 for i in range(len(in_oper.shape))]
)
inputs[2] = self.add_immediate_int_vector(
[
stop_value if i == dim_value else dim
for i, dim in enumerate(in_oper.shape)
]
)
inputs[3] = self.add_immediate_int_vector(
[step_value if i == dim_value else 1 for i in range(len(in_oper.shape))]
)
inputs[4] = self.add_immediate_int_scalar(0) # begin mask
inputs[5] = self.add_immediate_int_scalar(end_mask)
inputs[6] = self.add_immediate_int_scalar(0) # shrink axis mas
outputs = [None] * 1
outputs[0] = out_id
self.add_operation(NNAPI_OperationCode.STRIDED_SLICE, inputs, outputs)
def add_size(self, node):
assert node.inputsSize() == 2
assert node.outputsSize() == 1
_, in_oper = self.get_tensor_operand_by_jitval_fixed_size(node.inputsAt(0))
_, value = self.constants[node.inputsAt(1)]
res = in_oper.shape[value]
output = node.outputsAt(0)
self.add_constant_value(output, output.type(), res)
def add_cat(self, node):
assert node.inputsSize() == 2
assert node.outputsSize() == 1
tensors = self.tensor_sequences[node.inputsAt(0)]
_, dim = self.get_constant_value(node.inputsAt(1), "IntType")
assert len(tensors) > 0
in_ids = []
out_oper = None
out_dim_size = 0
for inp in tensors:
in_id, in_oper = self.get_tensor_operand_by_jitval(inp)
if out_oper is None:
out_shape = change_element(in_oper.shape, dim, -1)
out_oper = in_oper._replace(shape=out_shape)
assert in_oper.op_type == out_oper.op_type
assert in_oper.dim_order == out_oper.dim_order
assert change_element(in_oper.shape, dim, -1) == change_element(
out_oper.shape, dim, -1
)
# TODO: Possibly check scale and zero point.
in_ids.append(in_id)
# TODO: Possibly support variable-sized inputs.
out_dim_size += in_oper.shape[dim]
assert out_oper is not None
out_oper = out_oper._replace(
shape=change_element(out_oper.shape, dim, out_dim_size)
)
if in_oper.dim_order == DimOrder.CHANNELS_LAST: # type: ignore[possibly-undefined]
assert len(out_oper.shape) == 4
nnapi_dim = [0, 3, 1, 2][dim]
else:
nnapi_dim = dim
out_id = self.add_tensor_operand(node.outputsAt(0), out_oper)
for idx, d in enumerate(out_oper.shape):
if d == 0:
if idx == dim:
shape = " + ".join(flex_name(ip_id, dim) for ip_id in in_ids)
self.compute_operand_shape(out_id, idx, shape)
else:
self.forward_operand_shape(out_id, idx, in_ids[0], idx)
inputs = in_ids + [self.add_immediate_int_scalar(nnapi_dim)]
outputs = [None] * 1
outputs[0] = out_id
self.add_operation(NNAPI_OperationCode.CONCATENATION, inputs, outputs)
def add_mean(self, node):
assert node.inputsSize() == 4
assert node.outputsSize() == 1
in_id, in_oper = self.get_tensor_operand_by_jitval_fixed_size(node.inputsAt(0))
dim_ctype, dim = self.get_constant_value(node.inputsAt(1))
assert dim_ctype.kind() == "ListType"
assert dim_ctype.getElementType().kind() == "IntType"
_, keep_dim = self.get_constant_value(node.inputsAt(2), "BoolType")
# Expect None for dtype
self.get_constant_value(node.inputsAt(3), "NoneType")
if in_oper.dim_order == DimOrder.CHANNELS_LAST:
assert len(in_oper.shape) == 4
nnapi_dim = [[0, 3, 1, 2][d] for d in dim]
else:
nnapi_dim = dim
collapsed_dims = set()
for d in dim:
if d < 0:
d += len(in_oper.shape)
collapsed_dims.add(d)
if in_oper.dim_order == DimOrder.CHANNELS_LAST and not keep_dim:
assert collapsed_dims.issuperset({2, 3})
out_dim_order = DimOrder.PRESUMED_CONTIGUOUS
else:
out_dim_order = in_oper.dim_order
out_shape = []
for i, s in enumerate(in_oper.shape):
if i not in collapsed_dims:
out_shape.append(s)
elif keep_dim:
out_shape.append(1)
out_oper = in_oper._replace(shape=out_shape, dim_order=out_dim_order)
inputs = [None] * 3
inputs[0] = in_id
inputs[1] = self.add_immediate_int_vector(nnapi_dim)
inputs[2] = self.add_immediate_int_scalar(keep_dim)
outputs = [None] * 1
outputs[0] = self.add_tensor_operand(node.outputsAt(0), out_oper)
self.add_operation(NNAPI_OperationCode.MEAN, inputs, outputs)
def add_quantize(self, node):
assert node.inputsSize() == 4
assert node.outputsSize() == 1
in_id, in_oper = self.get_tensor_operand_by_jitval_fixed_size(node.inputsAt(0))
if in_oper.dim_order != DimOrder.CHANNELS_LAST:
raise Exception(
"Most hardware backends prefer NHWC quantized tensors. "
"Try setting `t.nnapi_nhwc = True` on your tensor inputs. "
)
_, scale = self.get_constant_value(node.inputsAt(1), "FloatType")
_, zero_point = self.get_constant_value(node.inputsAt(2), "IntType")
_, scalar_type = self.get_constant_value(node.inputsAt(3), "IntType")
if scalar_type != TorchScalarTypes.QUINT8.value:
raise Exception(
"PyTorch NNAPI export only supports quantized tensors "
"with the quint8 dtype."
)
op_type = NNAPI_OperandCode.TENSOR_QUANT8_ASYMM
out_oper = in_oper._replace(
op_type=op_type,
scale=scale,
zero_point=zero_point,
)
inputs = [None] * 1
inputs[0] = in_id
outputs = [None] * 1
outputs[0] = self.add_tensor_operand(node.outputsAt(0), out_oper)
self.add_operation(NNAPI_OperationCode.QUANTIZE, inputs, outputs)
def add_dequantize(self, node):
assert node.inputsSize() == 1
assert node.outputsSize() == 1
in_id, in_oper = self.get_tensor_operand_by_jitval_fixed_size(node.inputsAt(0))
out_oper = in_oper._replace(
op_type=NNAPI_OperandCode.TENSOR_FLOAT32,
scale=0.0,
zero_point=0,
)
inputs = [None] * 1
inputs[0] = in_id
outputs = [None] * 1
outputs[0] = self.add_tensor_operand(node.outputsAt(0), out_oper)
self.add_operation(NNAPI_OperationCode.DEQUANTIZE, inputs, outputs)
def add_pointwise_simple_unary_op(self, node, opcode):
assert node.inputsSize() == 1
assert node.outputsSize() == 1
in_id, in_oper = self.get_tensor_operand_by_jitval(node.inputsAt(0))
out_oper = in_oper
if opcode == NNAPI_OperationCode.LOGISTIC:
# NNAPI docs: For ANEURALNETWORKS_TENSOR_QUANT8_ASYMM, the scale
# must be 1.f / 256 and the zeroPoint must be 0.
# https://fburl.com/h52stoog
if in_oper.op_type == NNAPI_OperandCode.TENSOR_QUANT8_ASYMM:
out_oper = in_oper._replace(zero_point=0, scale=1.0 / 256)
out_id = self.add_tensor_operand(node.outputsAt(0), out_oper)
for idx, dim in enumerate(in_oper.shape):
if dim == 0:
self.forward_operand_shape(out_id, idx, in_id, idx)
inputs = [None] * 1
inputs[0] = in_id
outputs = [None] * 1
outputs[0] = out_id
self.add_operation(opcode, inputs, outputs)
def _do_add_binary(self, node, opcode, fuse_code, *, qparams=None): # noqa: D401
"""Helper for pointwise binary broadcast ops with superfluous extra args."""
assert node.outputsSize() == 1
assert node.inputsAt(0).type().kind() == "TensorType"
assert node.inputsAt(1).type().kind() == "TensorType"
if self.has_operand_for_jitval(node.inputsAt(0)):
in0_id, in0_oper = self.get_tensor_operand_by_jitval(node.inputsAt(0))
in1_id, in1_oper = self.get_tensor_operand_or_constant(
node.inputsAt(1), in0_oper.dim_order
)
elif self.has_operand_for_jitval(node.inputsAt(1)):
in1_id, in1_oper = self.get_tensor_operand_by_jitval(node.inputsAt(1))
in0_id, in0_oper = self.get_tensor_operand_or_constant(
node.inputsAt(0), in1_oper.dim_order
)
else:
raise Exception(f"Can't do a NNAPI binary op: {opcode} on two constants")
assert in0_oper.op_type == in1_oper.op_type
in0_id, in0_oper, in1_id, in1_oper = self.transpose_for_broadcast(
in0_id, in0_oper, in1_id, in1_oper
)
# NOTE: PyTorch and NNAPI have the same broadcast semantics.
out_shape = broadcast_shapes(in0_oper.shape, in1_oper.shape)
out_oper = in0_oper._replace(shape=out_shape)
if qparams is not None:
scale, zp = qparams
out_oper = out_oper._replace(scale=scale, zero_point=zp)
out_id = self.add_tensor_operand(node.outputsAt(0), out_oper)
for idx, (d0, d1) in enumerate(zip(in0_oper.shape, in1_oper.shape)):
if d0 == 1 and d1 == 0:
self.forward_operand_shape(out_id, idx, in1_id, idx)
elif d0 == 0 and d1 == 1:
self.forward_operand_shape(out_id, idx, in0_id, idx)
elif d0 == 0 and d1 == 0:
self.flexible_shape_computation_lines.append(
f"assert {flex_name(in0_id, idx)} == {flex_name(in1_id, idx)}"
)
self.forward_operand_shape(out_id, idx, in0_id, idx)
inputs = [None] * 3
inputs[0] = in0_id
inputs[1] = in1_id
inputs[2] = self.add_immediate_int_scalar(fuse_code)
outputs = [None] * 1
outputs[0] = out_id
self.add_operation(opcode, inputs, outputs)
def add_pointwise_simple_binary_broadcast_op(self, node, opcode, fuse_code):
assert node.inputsSize() == 2
self._do_add_binary(node, opcode, fuse_code)
def add_add_sub_op(self, node, opcode, fuse_code):
assert node.inputsSize() == 3
_, alpha = self.get_constant_value(node.inputsAt(2), "IntType")
if alpha != 1:
raise Exception("NNAPI does not support add/sub with alpha.")
self._do_add_binary(node, opcode, fuse_code)
def add_qadd(self, node, opcode, fuse_code):
assert node.inputsSize() == 4
_, scale = self.get_constant_value(node.inputsAt(2), "FloatType")
_, zero_point = self.get_constant_value(node.inputsAt(3), "IntType")
self._do_add_binary(node, opcode, fuse_code, qparams=(scale, zero_point))
def add_softmax(self, node):
assert node.inputsSize() == 3
in_id, in_oper = self.get_tensor_operand_by_jitval(node.inputsAt(0))
_, softmax_dim = self.get_constant_value(node.inputsAt(1), "IntType")
out_id = self.add_tensor_operand(node.outputsAt(0), in_oper)
for dim, size in enumerate(in_oper.shape):
if size == 0:
self.forward_operand_shape(out_id, dim, in_id, dim)
inputs = [None] * 3
inputs[0] = in_id
inputs[1] = self.add_immediate_float_scalar(
1.0
) # positive scaling factor of exponent, beta
inputs[2] = self.add_immediate_int_scalar(softmax_dim)
outputs = [None] * 1
outputs[0] = out_id
self.add_operation(NNAPI_OperationCode.SOFTMAX, inputs, outputs)
def add_hardtanh(self, node):
assert node.inputsSize() == 3
assert node.outputsSize() == 1
in_id, in_oper = self.get_tensor_operand_by_jitval_fixed_size(node.inputsAt(0))
_, min_val = self.get_constant_value(node.inputsAt(1), "FloatType")
_, max_val = self.get_constant_value(node.inputsAt(2), "FloatType")
op_map = {
(-1, 1): NNAPI_OperationCode.RELU1,
(0, 6): NNAPI_OperationCode.RELU6, # noqa: E201
}
opcode = op_map.get((min_val, max_val))
if opcode is None:
raise Exception("NNAPI only supports hardtanh with args (-1, 1) or (0, 6).")
inputs = [None] * 1
inputs[0] = in_id
outputs = [None] * 1
outputs[0] = self.add_tensor_operand(node.outputsAt(0), in_oper)
self.add_operation(opcode, inputs, outputs)
def add_prelu_op(self, node):
assert node.inputsSize() == 2
assert node.outputsSize() == 1
assert node.inputsAt(0).type().kind() == "TensorType"
assert node.inputsAt(1).type().kind() == "TensorType"
in_id, in_oper = self.get_tensor_operand_by_jitval(node.inputsAt(0))
w_id, w_oper = self.get_tensor_operand_for_weight(node.inputsAt(1))
assert len(w_oper.shape) == 1
assert w_oper.shape[0] > 0
if w_oper.shape[0] > 1:
if in_oper.use_nchw():
# TODO: Support this by adding trailing 1 dims.
raise Exception(
"Per-channel PReLU only supports channels_last right now."
)
out_id = self.add_tensor_operand(node.outputsAt(0), in_oper)
for dim, size in enumerate(in_oper.shape):
if size > 0:
pass
elif dim <= 1:
raise Exception("PReLU requires fixed size for dim 0 and dim 1.")
else:
self.forward_operand_shape(out_id, dim, in_id, dim)
inputs = [None] * 2
inputs[0] = in_id
inputs[1] = w_id
outputs = [None] * 1
outputs[0] = out_id
self.add_operation(NNAPI_OperationCode.PRELU, inputs, outputs)
def add_pool2d_node(self, node, opcode):
assert node.inputsSize() == 6
assert node.outputsSize() == 1
image, kernel, stride, padding, dilation, ceil_mode = node.inputs()
stride = stride or kernel
# TODO: Validate ceil_mode semantics.
args = self.get_conv_pool_args_2d_from_jit(
self.get_size_arg(kernel), stride, padding, dilation
)
if args.dilation_h != 1 or args.dilation_w != 1:
raise Exception("NNAPI does not support dilated pooling.")
image_id, image_oper = self.get_tensor_operand_by_jitval_fixed_size(image)
assert len(image_oper.shape) == 4
out_shape = get_conv_pool_shape(
image_oper.shape, args, image_oper.shape[1], False
)
use_nchw = image_oper.use_nchw()
inputs = [None] * 11
inputs[0] = image_id
inputs[1] = self.add_immediate_int_scalar(args.pad_l)
inputs[2] = self.add_immediate_int_scalar(args.pad_r)
inputs[3] = self.add_immediate_int_scalar(args.pad_t)
inputs[4] = self.add_immediate_int_scalar(args.pad_b)
inputs[5] = self.add_immediate_int_scalar(args.stride_w)
inputs[6] = self.add_immediate_int_scalar(args.stride_h)
inputs[7] = self.add_immediate_int_scalar(args.kernel_w)
inputs[8] = self.add_immediate_int_scalar(args.kernel_h)
inputs[9] = self.add_immediate_int_scalar(NNAPI_FuseCode.FUSED_NONE)
inputs[10] = self.add_immediate_bool_scalar(use_nchw)
outputs = [None] * 1
outputs[0] = self.add_tensor_operand(
node.outputsAt(0), image_oper._replace(shape=out_shape)
)
self.add_operation(opcode, inputs, outputs)
def add_avg_pool2d(self, node):
assert node.inputsSize() == 7
assert node.outputsSize() == 1
(
image,
kernel,
stride,
padding,
ceil_mode,
count_include_pad,
divisor_override,
) = node.inputs()
_, count_include_pad_value = self.get_constant_value(count_include_pad)
_, divisor_override_value = self.get_constant_value(divisor_override)
if not count_include_pad_value or divisor_override_value:
raise Exception(
"NNAPI doesn't support count_include_pad=False or divisor_override"
)
args = self.get_conv_pool_args_2d_from_jit(
self.get_size_arg(kernel), stride, padding
)
image_id, image_oper = self.get_tensor_operand_by_jitval(image)
assert len(image_oper.shape) == 4
out_shape = get_conv_pool_shape(
image_oper.shape, args, image_oper.shape[1], False
)
use_nchw = image_oper.use_nchw()
inputs = [None] * 11
inputs[0] = image_id
inputs[1] = self.add_immediate_int_scalar(args.pad_l)
inputs[2] = self.add_immediate_int_scalar(args.pad_r)
inputs[3] = self.add_immediate_int_scalar(args.pad_t)
inputs[4] = self.add_immediate_int_scalar(args.pad_b)
inputs[5] = self.add_immediate_int_scalar(args.stride_w)
inputs[6] = self.add_immediate_int_scalar(args.stride_h)
inputs[7] = self.add_immediate_int_scalar(args.kernel_w)
inputs[8] = self.add_immediate_int_scalar(args.kernel_h)
inputs[9] = self.add_immediate_int_scalar(NNAPI_FuseCode.FUSED_NONE)
inputs[10] = self.add_immediate_bool_scalar(use_nchw)
outputs = [None] * 1
out_id = self.add_tensor_operand(
node.outputsAt(0), image_oper._replace(shape=out_shape)
)
self._handle_conv_pool_flexible_input(out_id, image, args, False)
outputs[0] = out_id
self.add_operation(NNAPI_OperationCode.AVERAGE_POOL_2D, inputs, outputs)
def add_adaptive_avg_pool2d(self, node):
assert node.inputsSize() == 2
assert node.outputsSize() == 1
image_id, image_oper = self.get_tensor_operand_by_jitval_fixed_size(
node.inputsAt(0)
)
assert len(image_oper.shape) == 4
size_ctype, size_arg = self.get_constant_value(node.inputsAt(1))
assert size_ctype.kind() == "ListType"
assert size_ctype.getElementType().kind() == "IntType"
if size_arg != [1, 1]:
raise Exception(
"NNAPI only supports adaptive_avg_pool2d with output size (1, 1)."
)
out_shape = image_oper.shape[0:2] + tuple(size_arg)
use_nchw = image_oper.use_nchw()
inputs = [None] * 11
inputs[0] = image_id
inputs[1] = self.add_immediate_int_scalar(0)
inputs[2] = self.add_immediate_int_scalar(0)
inputs[3] = self.add_immediate_int_scalar(0)
inputs[4] = self.add_immediate_int_scalar(0)
inputs[5] = self.add_immediate_int_scalar(1)
inputs[6] = self.add_immediate_int_scalar(1)
inputs[7] = self.add_immediate_int_scalar(image_oper.shape[3])
inputs[8] = self.add_immediate_int_scalar(image_oper.shape[2])
inputs[9] = self.add_immediate_int_scalar(NNAPI_FuseCode.FUSED_NONE)
inputs[10] = self.add_immediate_bool_scalar(use_nchw)
outputs = [None] * 1
outputs[0] = self.add_tensor_operand(
node.outputsAt(0), image_oper._replace(shape=out_shape)
)
self.add_operation(NNAPI_OperationCode.AVERAGE_POOL_2D, inputs, outputs)
def add_upsample_nearest2d(self, node):
assert node.inputsSize() == 3 or node.inputsSize() == 4
assert node.outputsSize() == 1
if node.inputsSize() == 3:
image, size_jit, scale_jit = node.inputs()
else:
image, size_jit, scale_h_jit, scale_w_jit = node.inputs()
size_ctype, size_arg = self.get_constant_value(size_jit)
if node.inputsSize() == 3:
scale_ctype, scale_arg = self.get_constant_value(scale_jit) # type: ignore[possibly-undefined]
else:
scale_h_ctype, scale_h_arg = self.get_constant_value(scale_h_jit) # type: ignore[possibly-undefined]
scale_w_ctype, scale_w_arg = self.get_constant_value(scale_w_jit) # type: ignore[possibly-undefined]
# The only way for the 4-argument overload of upsample_nearest2d to
# have been added to the graph without error is if the scale_h and
# scale_w arguments are None
assert scale_h_ctype.kind() == "NoneType"
assert scale_w_ctype.kind() == "NoneType"
scale_ctype = scale_h_ctype
scale_arg = scale_h_arg
image_id, image_oper = self.get_tensor_operand_by_jitval(image)
assert len(image_oper.shape) == 4
if size_ctype.kind() != "NoneType" and scale_ctype.kind() != "NoneType":
raise Exception("Size and scale cannot both be non-None.")
elif size_ctype.kind() != "NoneType":
assert size_ctype.kind() == "ListType"
assert size_ctype.getElementType().kind() == "IntType"
assert scale_ctype.kind() == "NoneType"
assert scale_arg is None
assert isinstance(size_arg, list)
assert size_arg
assert all(isinstance(val, int) for val in size_arg)
if len(size_arg) == 1:
size_arg = size_arg * 2
assert len(size_arg) == 2
out_h = size_arg[0]
out_w = size_arg[1]
arg_h = self.add_immediate_int_scalar(out_h)
arg_w = self.add_immediate_int_scalar(out_w)
elif scale_ctype.kind() != "NoneType":
assert scale_ctype.kind() == "ListType"
assert scale_ctype.getElementType().kind() == "FloatType"
assert size_ctype.kind() == "NoneType"
assert size_arg is None
assert isinstance(scale_arg, list)
assert scale_arg
assert all(isinstance(val, float) for val in scale_arg)
if len(scale_arg) == 1:
scale_arg = scale_arg * 2
assert len(scale_arg) == 2
out_h = int(scale_arg[0] * image_oper.shape[2])
out_w = int(scale_arg[1] * image_oper.shape[3])
arg_h = self.add_immediate_float_scalar(scale_arg[0])
arg_w = self.add_immediate_float_scalar(scale_arg[1])
else:
raise Exception("Size and scale cannot both be None.")
out_shape = (image_oper.shape[0], image_oper.shape[1], out_h, out_w)
use_nchw = image_oper.use_nchw()
out_id = self.add_tensor_operand(
node.outputsAt(0), image_oper._replace(shape=out_shape)
)
if image_oper.shape[0] == 0 or image_oper.shape[1] == 0:
raise Exception("Flexible batch or channels not supported")
# Handle variable input size
for dim in (2, 3): # h, w indices
if image_oper.shape[dim] == 0:
if size_ctype.kind() != "NoneType":
self.compute_operand_shape(out_id, dim, size_arg[dim - 2])
elif scale_ctype.kind() != "NoneType":
self.compute_operand_shape(
out_id,
dim,
f"int({scale_arg[dim - 2]} * {flex_name(image_id, dim)})",
)
else:
raise Exception("Size and scale cannot both be None.")
inputs = [None] * 4
inputs[0] = image_id
inputs[1] = arg_w
inputs[2] = arg_h
inputs[3] = self.add_immediate_bool_scalar(use_nchw)
outputs = [None] * 1
outputs[0] = out_id
self.add_operation(NNAPI_OperationCode.RESIZE_NEAREST_NEIGHBOR, inputs, outputs)
def add_addmm(self, node):
assert node.inputsSize() == 5
assert node.outputsSize() == 1
jit_bias, jit_input, jit_weight, jit_beta, jit_alpha = node.inputs()
for jitval in (jit_beta, jit_alpha):
scale_ctype, scale_value = self.get_constant_value(jitval)
assert scale_ctype.kind() in ("IntType", "FloatType")
if scale_value != 1:
raise Exception(
"NNAPI Fully-Connected does not support alpha and beta."
)
self.add_addmm_or_linear(node, True, jit_input, jit_weight, jit_bias)
def add_linear(self, node):
assert node.inputsSize() == 3
assert node.outputsSize() == 1
jit_input, jit_weight, jit_bias = node.inputs()
self.add_addmm_or_linear(node, False, jit_input, jit_weight, jit_bias)
def add_addmm_or_linear(
self, node, transpose_weight, jit_input, jit_weight, jit_bias
):
input_id, input_oper = self.get_tensor_operand_by_jitval(jit_input)
bias_id, bias_oper = self.get_tensor_operand_for_weight(jit_bias)
assert len(input_oper.shape) == 2
assert len(bias_oper.shape) == 1
# TODO: Transform at load time to share weights with CPU model.
_, weight_tensor = self.get_constant_value(jit_weight, "TensorType")
assert len(weight_tensor.shape) == 2
if transpose_weight:
nnapi_weight_tensor = weight_tensor.t().contiguous()
else:
nnapi_weight_tensor = weight_tensor.contiguous()
weight_id = self.add_tensor_operand_for_weight(nnapi_weight_tensor)
weight_oper = self.operands[weight_id]
out_shape = (input_oper.shape[0], weight_oper.shape[0])
out_id = self.add_tensor_operand(
node.outputsAt(0), input_oper._replace(shape=out_shape)
)
if input_oper.shape[0] == 0:
self.forward_operand_shape(out_id, 0, input_id, 0)
inputs = [None] * 4
inputs[0] = input_id
inputs[1] = weight_id
inputs[2] = bias_id
inputs[3] = self.add_immediate_int_scalar(NNAPI_FuseCode.FUSED_NONE)
outputs = [None] * 1
outputs[0] = out_id
self.add_operation(NNAPI_OperationCode.FULLY_CONNECTED, inputs, outputs)
def add_qlinear(self, node):
assert node.inputsSize() == 4
assert node.outputsSize() == 1
(
jit_input,
jit_packed_weight,
jit_scale,
jit_zero_point,
) = node.inputs()
input_id, input_oper = self.get_tensor_operand_by_jitval_fixed_size(jit_input)
# TODO: Support automatic reshape
assert len(input_oper.shape) == 2
_, out_scale = self.get_constant_value(jit_scale, "FloatType")
_, out_zero_point = self.get_constant_value(jit_zero_point, "IntType")
weight_ctype, packed_weight = self.get_constant_value(jit_packed_weight)
assert weight_ctype.name() == "LinearPackedParamsBase"
raw_weight, raw_bias = packed_weight.__getstate__()[0]
assert raw_bias is not None
assert len(raw_weight.shape) == 2
assert len(raw_bias.shape) == 1
assert raw_bias.shape[0] == raw_weight.shape[0]
assert raw_weight.shape[1] == input_oper.shape[1]
assert raw_weight.qscheme() == torch.per_tensor_affine
if raw_weight.dtype == torch.quint8:
unsigned_weight = raw_weight
else:
assert raw_weight.dtype == torch.qint8
unsigned_weight = torch._make_per_tensor_quantized_tensor(
(raw_weight.int_repr().int() + 128).to(torch.uint8),
scale=raw_weight.q_scale(),
zero_point=raw_weight.q_zero_point() + 128,
)
weight_scale = unsigned_weight.q_scale()
bias_scale = input_oper.scale * weight_scale
int_bias = torch.quantize_per_tensor(raw_bias, bias_scale, 0, torch.qint32)
bias_id = self.add_tensor_operand_for_weight(int_bias)
multiplier = input_oper.scale * weight_scale / out_scale
assert multiplier > 0
if multiplier >= 1:
raise Exception(
"Quantized convolution multiplier is greater than 1. "
"This is supported by NNAPI, but not by most hardware backends. "
"Try training a model without quantization-aware training. "
)
# TODO: Transform at load time to share weights with CPU model.
nnapi_weight_tensor = unsigned_weight.contiguous()
weight_id = self.add_tensor_operand_for_weight(nnapi_weight_tensor)
weight_oper = self.operands[weight_id]
out_shape = (input_oper.shape[0], weight_oper.shape[0])
out_oper = input_oper._replace(
shape=out_shape,
scale=out_scale,
zero_point=out_zero_point,
)
inputs = [None] * 4
inputs[0] = input_id
inputs[1] = weight_id
inputs[2] = bias_id
inputs[3] = self.add_immediate_int_scalar(NNAPI_FuseCode.FUSED_NONE)
outputs = [None] * 1
outputs[0] = self.add_tensor_operand(node.outputsAt(0), out_oper)
self.add_operation(NNAPI_OperationCode.FULLY_CONNECTED, inputs, outputs)
def get_optional_bias(self, jit_bias, weight_tensor, transpose=False):
ctype, value = self.get_constant_value(jit_bias)
if ctype.kind() == "NoneType":
bias_idx = 1 if transpose else 0
nnapi_bias_tensor = torch.zeros(
weight_tensor.size()[bias_idx], dtype=weight_tensor.dtype
)
bias_id = self.add_tensor_operand_for_weight(nnapi_bias_tensor)
bias_oper = self.operands[bias_id]
return bias_id, bias_oper
else:
return self.get_tensor_operand_for_weight(jit_bias)
def add_conv2d(self, node):
assert node.inputsSize() == 7
assert node.outputsSize() == 1
(
jit_image,
jit_weight,
jit_bias,
jit_stride,
jit_pad,
jit_dilation,
jit_groups,
) = node.inputs()
_, weight_tensor = self.get_constant_value(jit_weight, "TensorType")
bias_id, bias_oper = self.get_optional_bias(jit_bias, weight_tensor)
args = self.get_conv_pool_args_2d_from_jit(
weight_tensor.shape[2:4], jit_stride, jit_pad, jit_dilation, jit_groups
)
return self.add_conv2d_common(
node.outputsAt(0),
0.0,
0,
jit_image,
weight_tensor,
bias_id,
args,
False, # transpose
NNAPI_FuseCode.FUSED_NONE,
)
def add_conv_underscore(self, node):
assert node.inputsSize() == 13
assert node.outputsSize() == 1
(
jit_image,
jit_weight,
jit_bias,
jit_stride,
jit_pad,
jit_dilation,
jit_transpose,
_,
jit_groups,
_,
_,
_,
_,
) = node.inputs()
_, weight_tensor = self.get_constant_value(jit_weight, "TensorType")
_, transpose = self.get_constant_value(jit_transpose)
bias_id, bias_oper = self.get_optional_bias(jit_bias, weight_tensor, transpose)
args = self.get_conv_pool_args_2d_from_jit(
weight_tensor.shape[2:4], jit_stride, jit_pad, jit_dilation, jit_groups
)
return self.add_conv2d_common(
node.outputsAt(0),
0.0,
0,
jit_image,
weight_tensor,
bias_id,
args,
transpose,
NNAPI_FuseCode.FUSED_NONE,
)
def add_log_softmax(self, node):
assert node.inputsSize() == 3
assert node.outputsSize() == 1
(jit_input, jit_dim, jit_half_to_float) = node.inputs()
input_id, input_oper = self.get_tensor_operand_by_jitval_fixed_size(jit_input)
_, dim = self.get_constant_value(jit_dim, "IntType")
out_shape = input_oper.shape
inputs = [None] * 3
inputs[0] = input_id
# specifying 1 as the scaling factor for the exponent, beta
inputs[1] = self.add_immediate_float_scalar(1)
inputs[2] = self.add_immediate_int_scalar(dim)
outputs = [None] * 1
outputs[0] = self.add_tensor_operand(
node.outputsAt(0), input_oper._replace(shape=out_shape)
)
self.add_operation(NNAPI_OperationCode.LOG_SOFTMAX, inputs, outputs)
def add_qconv2d(self, node, fuse_code, transpose=False):
assert node.inputsSize() == 4
assert node.outputsSize() == 1
(
jit_image,
jit_packed_weight,
jit_scale,
jit_zero_point,
) = node.inputs()
_, out_scale = self.get_constant_value(jit_scale, "FloatType")
_, out_zero_point = self.get_constant_value(jit_zero_point, "IntType")
weight_ctype, packed_weight = self.get_constant_value(jit_packed_weight)
assert weight_ctype.name() == "Conv2dPackedParamsBase"
(
pack_version,
tensors,
opt_tensors,
) = packed_weight.__getstate__()[0]
assert pack_version == "2"
packed_config, raw_weight = tensors
(raw_bias,) = opt_tensors
assert raw_bias is not None
args = self.get_conv_pool_args_2d_from_pack(
raw_weight.shape[2:4], packed_config
)
assert raw_weight.qscheme() == torch.per_tensor_affine
if raw_weight.dtype == torch.quint8:
unsigned_weight = raw_weight
else:
assert raw_weight.dtype == torch.qint8
unsigned_weight = torch._make_per_tensor_quantized_tensor(
(raw_weight.int_repr().int() + 128).to(torch.uint8),
scale=raw_weight.q_scale(),
zero_point=raw_weight.q_zero_point() + 128,
)
weight_scale = unsigned_weight.q_scale()
_, image_oper = self.get_tensor_operand_by_jitval(jit_image)
bias_scale = image_oper.scale * weight_scale
int_bias = torch.quantize_per_tensor(raw_bias, bias_scale, 0, torch.qint32)
bias_id = self.add_tensor_operand_for_weight(int_bias)
multiplier = image_oper.scale * weight_scale / out_scale
assert multiplier > 0
if multiplier >= 1:
raise Exception(
"Quantized convolution multiplier is greater than 1. "
"This is supported by NNAPI, but not by most hardware backends. "
"Try training a model without quantization-aware training. "
)
return self.add_conv2d_common(
node.outputsAt(0),
out_scale,
out_zero_point,
jit_image,
unsigned_weight,
bias_id,
args,
transpose,
fuse_code,
)
def add_conv2d_common(
self,
jit_out,
out_scale,
out_zero_point,
jit_image,
weight_tensor,
bias_id,
args,
transpose,
fuse_code,
):
image_id, image_oper = self.get_tensor_operand_by_jitval(jit_image)
in_c = image_oper.shape[1]
if args.group == 1:
# Full convolution
depthwise = False
if transpose:
weight_permutation = (1, 2, 3, 0)
else:
weight_permutation = (0, 2, 3, 1)
elif args.group == in_c:
# Depthwise convolution
depthwise = True
weight_permutation = (1, 2, 3, 0)
else:
raise Exception("Group convolution not supported yet.")
# TODO: Transform at load time to share weights with CPU model.
nnapi_weight_tensor = weight_tensor.permute(*weight_permutation).contiguous()
weight_id = self.add_tensor_operand_for_weight(nnapi_weight_tensor)
weight_oper = self.operands[weight_id]
bias_oper = self.operands[bias_id]
if image_oper.op_type == NNAPI_OperandCode.TENSOR_FLOAT32:
assert weight_oper.op_type == NNAPI_OperandCode.TENSOR_FLOAT32
assert bias_oper.op_type == NNAPI_OperandCode.TENSOR_FLOAT32
elif image_oper.op_type == NNAPI_OperandCode.TENSOR_QUANT8_ASYMM:
assert weight_oper.op_type == NNAPI_OperandCode.TENSOR_QUANT8_ASYMM
assert bias_oper.op_type == NNAPI_OperandCode.TENSOR_INT32
assert approx_equal(image_oper.scale * weight_oper.scale, bias_oper.scale)
assert bias_oper.zero_point == 0
else:
raise Exception(f"Unsupported input type for conv2d: {image_oper.op_type}")
assert len(image_oper.shape) == 4
assert len(weight_oper.shape) == 4
assert len(bias_oper.shape) == 1
if depthwise:
# Depthwise convolution
one, kern_h, kern_w, out_c = weight_oper.shape
assert one == 1
assert out_c % in_c == 0
channel_multiplier = out_c // in_c
assert channel_multiplier == 1 # Don't support multiplier
assert out_c == in_c
else:
# Full convolution
out_c, kern_h, kern_w, kern_d = weight_oper.shape
assert kern_d == in_c
assert out_c == bias_oper.shape[0]
use_nchw = image_oper.use_nchw()
if depthwise:
num_args = 12
opcode = NNAPI_OperationCode.DEPTHWISE_CONV_2D
else:
num_args = 11
if transpose:
opcode = NNAPI_OperationCode.TRANSPOSE_CONV_2D
else:
opcode = NNAPI_OperationCode.CONV_2D
inputs = [None] * num_args
inputs[0] = image_id
inputs[1] = weight_id
inputs[2] = bias_id
inputs[3] = self.add_immediate_int_scalar(args.pad_l)
inputs[4] = self.add_immediate_int_scalar(args.pad_r)
inputs[5] = self.add_immediate_int_scalar(args.pad_t)
inputs[6] = self.add_immediate_int_scalar(args.pad_b)
inputs[7] = self.add_immediate_int_scalar(args.stride_w)
inputs[8] = self.add_immediate_int_scalar(args.stride_h)
if depthwise:
inputs[9] = self.add_immediate_int_scalar(1)
inputs[10] = self.add_immediate_int_scalar(fuse_code)
inputs[11] = self.add_immediate_bool_scalar(use_nchw)
else:
inputs[9] = self.add_immediate_int_scalar(fuse_code)
inputs[10] = self.add_immediate_bool_scalar(use_nchw)
outputs = [None] * 1
out_shape = get_conv_pool_shape(image_oper.shape, args, out_c, transpose)
out_oper = image_oper._replace(
shape=out_shape,
scale=out_scale,
zero_point=out_zero_point,
)
out_id = self.add_tensor_operand(jit_out, out_oper)
self._handle_conv_pool_flexible_input(out_id, jit_image, args, transpose)
outputs[0] = out_id
self.add_operation(opcode, inputs, outputs)
def _handle_conv_pool_flexible_input(self, out_id, jit_image, args, transpose):
image_id, image_oper = self.get_tensor_operand_by_jitval(jit_image)
batch, in_ch, in_h, in_w = image_oper.shape
if batch == 0:
self.forward_operand_shape(out_id, 0, image_id, 0)
if in_ch == 0:
raise Exception("Input channels can't be flexible")
# H & W
if transpose:
if in_h == 0:
self.compute_operand_shape(
out_id,
2,
f"({flex_name(image_id, 2)} - 1) * {args.stride_h} + {args.kernel_h} - {args.pad_t} - {args.pad_b}",
)
if in_w == 0:
self.compute_operand_shape(
out_id,
3,
f"({flex_name(image_id, 3)} - 1) * {args.stride_w} + {args.kernel_w} - {args.pad_l} - {args.pad_r}",
)
else:
if in_h == 0:
self.compute_operand_shape(
out_id,
2,
f"({flex_name(image_id, 2)} - {args.kernel_h} + {args.pad_t} + {args.pad_b}) // {args.stride_h} + 1",
)
if in_w == 0:
self.compute_operand_shape(
out_id,
3,
f"({flex_name(image_id, 3)} - {args.kernel_w} + {args.pad_l} + {args.pad_r}) // {args.stride_w} + 1",
)
def serialize_model(
module, inputs, *, config=None, return_shapes=None, use_int16_for_qint16=False
):
"""Convert to NNAPI and serialize torchscript module.
Parameters:
module: Torchscript module to convert
inputs: Tensors used to specify input details for NNAPI
config (optional): Optional config to attach to module
return_shapes (optional): Specify shape of outputs if
your module uses runtime flexible shapes to set output
buffer size for NNAPI
use_int16_for_qint16 (optional): Use Pytorch int16 to represent NNAPI qint16 values
"""
return _NnapiSerializer(config, use_int16_for_qint16).serialize_model(
module, inputs, return_shapes
)