ai-content-maker/.venv/Lib/site-packages/torch/distributed/rpc/internal.py

282 lines
11 KiB
Python
Raw Permalink Normal View History

2024-05-03 04:18:51 +03:00
import collections
import copyreg
import io
import pickle
import sys
import threading
import traceback
from enum import Enum
import torch
import torch.distributed as dist
from torch._C._distributed_rpc import _get_current_rpc_agent
__all__ = ["RPCExecMode", "serialize", "deserialize", "PythonUDF", "RemoteException"]
# Thread local tensor tables to store tensors while pickling torch.Tensor
# objects
_thread_local_tensor_tables = threading.local()
_pickler = pickle.Pickler
_unpickler = pickle.Unpickler
class RPCExecMode(Enum):
SYNC = "sync"
ASYNC = "async"
ASYNC_JIT = "async_jit"
REMOTE = "remote"
class _InternalRPCPickler:
r"""
This class provides serialize() and deserialize() interfaces to serialize
data to be "binary string + tensor table" format
So for RPC python UDF function and args, non tensor data will be serialized
into regular binary string, tensor data will be put into thread local tensor
tables, this serialization format is consistent with builtin operator and args
using JIT pickler. This format will make tensor handling in C++ much easier,
e.g. attach tensor to distributed autograd graph in C++
"""
def __init__(self):
# Ignore type error because dispatch_table is defined in third-party package
self._dispatch_table = copyreg.dispatch_table.copy() # type: ignore[attr-defined]
self._dispatch_table[torch.Tensor] = self._tensor_reducer
# Used for registering customized picklers.
self._class_reducer_dict = {}
def _register_reducer(self, obj_class, reducer):
# For the same class, only register the reducer once.
if obj_class not in self._class_reducer_dict:
self._class_reducer_dict[obj_class] = reducer
@classmethod
def _tensor_receiver(cls, tensor_index):
global _thread_local_tensor_tables
return _thread_local_tensor_tables.recv_tables[tensor_index]
def _tensor_reducer(self, tensor):
global _thread_local_tensor_tables
_thread_local_tensor_tables.send_tables.append(tensor)
tensor_index = len(_thread_local_tensor_tables.send_tables) - 1
return (_InternalRPCPickler._tensor_receiver, (tensor_index,))
@classmethod
def _py_rref_receiver(cls, rref_fork_data):
return dist.rpc.PyRRef._deserialize(rref_fork_data)
def _py_rref_reducer(self, py_rref):
rref_fork_data = py_rref._serialize()
return (_InternalRPCPickler._py_rref_receiver, (rref_fork_data,))
def _rref_reducer(self, rref):
return self._py_rref_reducer(rref)
@classmethod
def _script_module_receiver(cls, script_module_serialized):
"""
Given a serialized representation of a ScriptModule created with torch.jit.save,
loads and returns the ScriptModule.
"""
f = io.BytesIO(script_module_serialized)
m = torch.jit.load(f)
return m
def _script_module_reducer(self, script_module):
"""
Serializes a ScriptModule.
"""
f = io.BytesIO()
torch.jit.save(script_module, f)
return (_InternalRPCPickler._script_module_receiver, (f.getvalue(),))
def serialize(self, obj):
r"""
Serialize non tensor data into binary string, tensor data into
tensor table
"""
f = io.BytesIO()
p = _pickler(f)
p.dispatch_table = self._dispatch_table
# rpc api could accept user picklers inheriting from _InternalRPCPickler to serialize rref,
# user picklers could have different initialization function from _InternalRPCPickler,
# but all the user picklers should call serialize() and use _rref_reducer to pickle rref
# in python. also, when _internal_rpc_pickler is imported to rpc/api.py, rpc.RRef is not
# compiled yet, it is not good place to access rpc.RRef inside _InternalRPCPickler constructor,
# so putting rref's dispatch table here
#
# The return value of a `rpc.remote(..)` call is type of `rpc.PyRRef`.
# The deserialized RRef object on an RPC receiver side is type of `rpc.PyRRef`.
# Ignore type error because dispatch_table is defined in third-party package
p.dispatch_table[dist.rpc.PyRRef] = self._py_rref_reducer # type: ignore[index]
# An RRef created locally by RRef Python constructor is type of `rpc.RRef`.
# Ignore type error because dispatch_table is defined in third-party package
p.dispatch_table[dist.rpc.RRef] = self._rref_reducer # type: ignore[index]
# Add dispatch pickling for ScriptModule or its subclass.
if isinstance(obj, torch.jit.ScriptModule):
# Ignore type error because dispatch_table is defined in third-party package
p.dispatch_table[obj.__class__] = self._script_module_reducer # type: ignore[index]
# Install customized picklers.
for class_name in self._class_reducer_dict.keys():
p.dispatch_table[class_name] = self._class_reducer_dict[class_name] # type: ignore[index]
# save _thread_local_tensor_tables.send_tables if it is in nested call
global _thread_local_tensor_tables
if hasattr(_thread_local_tensor_tables, "send_tables"):
old_send_tables = _thread_local_tensor_tables.send_tables
else:
old_send_tables = None
_thread_local_tensor_tables.send_tables = []
p.dump(obj)
# restore _thread_local_tensor_tables.send_tables if return
# from nested call, otherwise clean up the table
tensors = _thread_local_tensor_tables.send_tables
if old_send_tables is not None:
_thread_local_tensor_tables.send_tables = old_send_tables
else:
del _thread_local_tensor_tables.send_tables
return (f.getvalue(), tensors)
def deserialize(self, binary_data, tensor_table):
r"""
Deserialize binary string + tensor table to original obj
"""
# save _thread_local_tensor_tables.recv_tables if it is in nested call
global _thread_local_tensor_tables
if hasattr(_thread_local_tensor_tables, "recv_tables"):
old_recv_tables = _thread_local_tensor_tables.recv_tables
else:
old_recv_tables = None
_thread_local_tensor_tables.recv_tables = tensor_table
try:
unpickler = _unpickler(io.BytesIO(binary_data))
ret = unpickler.load()
except AttributeError as e:
# Occurs when function is not found on module/class during
# unpickling.
except_str = (
str(e)
+ """ Default RPC pickler does not serialize
function code. Ensure that UDFs are defined on both caller and
callee modules."""
)
ret = AttributeError(except_str)
# Ensure the stack trace gets preserved
ret.__cause__ = e
# restore _thread_local_tensor_tables.recv_tables if return
# from nested call, otherwise clean up the table
if old_recv_tables is not None:
_thread_local_tensor_tables.recv_tables = old_recv_tables
else:
del _thread_local_tensor_tables.recv_tables
return ret
# Create _internal_rpc_pickler only once to initialize _dispatch_table only once
_internal_rpc_pickler = _InternalRPCPickler()
def serialize(obj):
return _internal_rpc_pickler.serialize(obj)
def deserialize(binary_data, tensor_table):
return _internal_rpc_pickler.deserialize(binary_data, tensor_table)
def _run_function(python_udf):
r"""
This function is exclusively called from C++.
See ``torch/csrc/distributed/rpc/python_rpc_handler.cpp``.
Runs a Python UDF and returns its return value.
Wraps any exception in ``RemoteException`` if the function raises.
"""
try:
if isinstance(python_udf, AttributeError):
raise python_udf
result = python_udf.func(*python_udf.args, **python_udf.kwargs)
except Exception as e:
# except str = exception info + traceback string
except_str = (
f"On {_get_current_rpc_agent().get_worker_info()}:\n"
f"{repr(e)}\n{traceback.format_exc()}"
)
print(except_str, file=sys.stderr)
result = RemoteException(except_str, type(e))
return result
def _handle_exception(result):
if isinstance(result, RemoteException):
exception_msg = result.msg.encode("utf-8").decode("unicode_escape")
# We wrap exception re-creation here in case some exception classes
# cannot be constructed directly from a string.
exc = None
try:
exc = result.exception_type(exception_msg)
except BaseException as e:
raise RuntimeError( # noqa: B904
f"Failed to create original exception type. Error msg was {str(e)}"
f" Original exception on remote side was {exception_msg}"
) from e
if exc is not None:
raise exc
def _build_rpc_profiling_key(
exec_type, func_name, current_worker_name, dst_worker_name
):
"""
Builds the key that RPC calls are profiled with using the autograd profiler.
This will be the name of the corresponding Event recorded in the profiler.
Args:
exec_type (RPCExecMode): Type of RPC/RRef call
func_name (str): Name of function being profiled.
current_worker_name (str): Name of current worker.
dst_worker_name (str): Name of the destination worker.
Returns:
String representing profiling key
"""
profile_key = f"rpc_{exec_type.value}#{func_name}({current_worker_name} -> {dst_worker_name})"
return profile_key
def _start_record_function(exec_type, func_name, current_worker_name, dest_worker_name):
"""
This function should be called from RPC/RRef functions to create a
RecordFunction object for profiling. This function also runs the before
callbacks that start the profiling, though the user is responsible for
running the appropriate callbacks when the function to be profiled finishes.
Args:
exec_type (RPCExecMode): Type of RPC/RRef call
func_name (str): Name of function being profiled.
current_worker_name (str): Name of current worker.
dest_worker_name (str): Name of the destination worker.
Returns:
An instance of `torch.autograd._RecordFunction`.
"""
assert torch.autograd._profiler_enabled(), "Autograd profiler should be enabled."
profile_key = f"rpc_{exec_type.value}#{str(func_name)}({current_worker_name} -> {dest_worker_name})"
rf = torch.autograd._RecordFunction() # type: ignore[attr-defined]
torch.autograd._run_before_callbacks(rf, profile_key) # type: ignore[attr-defined]
return rf
PythonUDF = collections.namedtuple("PythonUDF", ["func", "args", "kwargs"])
RemoteException = collections.namedtuple("RemoteException", ["msg", "exception_type"])