ai-content-maker/.venv/Lib/site-packages/torch/distributions/gamma.py

109 lines
3.5 KiB
Python
Raw Permalink Normal View History

2024-05-03 04:18:51 +03:00
from numbers import Number
import torch
from torch.distributions import constraints
from torch.distributions.exp_family import ExponentialFamily
from torch.distributions.utils import broadcast_all
__all__ = ["Gamma"]
def _standard_gamma(concentration):
return torch._standard_gamma(concentration)
class Gamma(ExponentialFamily):
r"""
Creates a Gamma distribution parameterized by shape :attr:`concentration` and :attr:`rate`.
Example::
>>> # xdoctest: +IGNORE_WANT("non-deterministic")
>>> m = Gamma(torch.tensor([1.0]), torch.tensor([1.0]))
>>> m.sample() # Gamma distributed with concentration=1 and rate=1
tensor([ 0.1046])
Args:
concentration (float or Tensor): shape parameter of the distribution
(often referred to as alpha)
rate (float or Tensor): rate = 1 / scale of the distribution
(often referred to as beta)
"""
arg_constraints = {
"concentration": constraints.positive,
"rate": constraints.positive,
}
support = constraints.nonnegative
has_rsample = True
_mean_carrier_measure = 0
@property
def mean(self):
return self.concentration / self.rate
@property
def mode(self):
return ((self.concentration - 1) / self.rate).clamp(min=0)
@property
def variance(self):
return self.concentration / self.rate.pow(2)
def __init__(self, concentration, rate, validate_args=None):
self.concentration, self.rate = broadcast_all(concentration, rate)
if isinstance(concentration, Number) and isinstance(rate, Number):
batch_shape = torch.Size()
else:
batch_shape = self.concentration.size()
super().__init__(batch_shape, validate_args=validate_args)
def expand(self, batch_shape, _instance=None):
new = self._get_checked_instance(Gamma, _instance)
batch_shape = torch.Size(batch_shape)
new.concentration = self.concentration.expand(batch_shape)
new.rate = self.rate.expand(batch_shape)
super(Gamma, new).__init__(batch_shape, validate_args=False)
new._validate_args = self._validate_args
return new
def rsample(self, sample_shape=torch.Size()):
shape = self._extended_shape(sample_shape)
value = _standard_gamma(self.concentration.expand(shape)) / self.rate.expand(
shape
)
value.detach().clamp_(
min=torch.finfo(value.dtype).tiny
) # do not record in autograd graph
return value
def log_prob(self, value):
value = torch.as_tensor(value, dtype=self.rate.dtype, device=self.rate.device)
if self._validate_args:
self._validate_sample(value)
return (
torch.xlogy(self.concentration, self.rate)
+ torch.xlogy(self.concentration - 1, value)
- self.rate * value
- torch.lgamma(self.concentration)
)
def entropy(self):
return (
self.concentration
- torch.log(self.rate)
+ torch.lgamma(self.concentration)
+ (1.0 - self.concentration) * torch.digamma(self.concentration)
)
@property
def _natural_params(self):
return (self.concentration - 1, -self.rate)
def _log_normalizer(self, x, y):
return torch.lgamma(x + 1) + (x + 1) * torch.log(-y.reciprocal())
def cdf(self, value):
if self._validate_args:
self._validate_sample(value)
return torch.special.gammainc(self.concentration, self.rate * value)