ai-content-maker/.venv/Lib/site-packages/torch/distributions/independent.py

126 lines
4.5 KiB
Python
Raw Permalink Normal View History

2024-05-03 04:18:51 +03:00
from typing import Dict
import torch
from torch.distributions import constraints
from torch.distributions.distribution import Distribution
from torch.distributions.utils import _sum_rightmost
__all__ = ["Independent"]
class Independent(Distribution):
r"""
Reinterprets some of the batch dims of a distribution as event dims.
This is mainly useful for changing the shape of the result of
:meth:`log_prob`. For example to create a diagonal Normal distribution with
the same shape as a Multivariate Normal distribution (so they are
interchangeable), you can::
>>> from torch.distributions.multivariate_normal import MultivariateNormal
>>> from torch.distributions.normal import Normal
>>> loc = torch.zeros(3)
>>> scale = torch.ones(3)
>>> mvn = MultivariateNormal(loc, scale_tril=torch.diag(scale))
>>> [mvn.batch_shape, mvn.event_shape]
[torch.Size([]), torch.Size([3])]
>>> normal = Normal(loc, scale)
>>> [normal.batch_shape, normal.event_shape]
[torch.Size([3]), torch.Size([])]
>>> diagn = Independent(normal, 1)
>>> [diagn.batch_shape, diagn.event_shape]
[torch.Size([]), torch.Size([3])]
Args:
base_distribution (torch.distributions.distribution.Distribution): a
base distribution
reinterpreted_batch_ndims (int): the number of batch dims to
reinterpret as event dims
"""
arg_constraints: Dict[str, constraints.Constraint] = {}
def __init__(
self, base_distribution, reinterpreted_batch_ndims, validate_args=None
):
if reinterpreted_batch_ndims > len(base_distribution.batch_shape):
raise ValueError(
"Expected reinterpreted_batch_ndims <= len(base_distribution.batch_shape), "
f"actual {reinterpreted_batch_ndims} vs {len(base_distribution.batch_shape)}"
)
shape = base_distribution.batch_shape + base_distribution.event_shape
event_dim = reinterpreted_batch_ndims + len(base_distribution.event_shape)
batch_shape = shape[: len(shape) - event_dim]
event_shape = shape[len(shape) - event_dim :]
self.base_dist = base_distribution
self.reinterpreted_batch_ndims = reinterpreted_batch_ndims
super().__init__(batch_shape, event_shape, validate_args=validate_args)
def expand(self, batch_shape, _instance=None):
new = self._get_checked_instance(Independent, _instance)
batch_shape = torch.Size(batch_shape)
new.base_dist = self.base_dist.expand(
batch_shape + self.event_shape[: self.reinterpreted_batch_ndims]
)
new.reinterpreted_batch_ndims = self.reinterpreted_batch_ndims
super(Independent, new).__init__(
batch_shape, self.event_shape, validate_args=False
)
new._validate_args = self._validate_args
return new
@property
def has_rsample(self):
return self.base_dist.has_rsample
@property
def has_enumerate_support(self):
if self.reinterpreted_batch_ndims > 0:
return False
return self.base_dist.has_enumerate_support
@constraints.dependent_property
def support(self):
result = self.base_dist.support
if self.reinterpreted_batch_ndims:
result = constraints.independent(result, self.reinterpreted_batch_ndims)
return result
@property
def mean(self):
return self.base_dist.mean
@property
def mode(self):
return self.base_dist.mode
@property
def variance(self):
return self.base_dist.variance
def sample(self, sample_shape=torch.Size()):
return self.base_dist.sample(sample_shape)
def rsample(self, sample_shape=torch.Size()):
return self.base_dist.rsample(sample_shape)
def log_prob(self, value):
log_prob = self.base_dist.log_prob(value)
return _sum_rightmost(log_prob, self.reinterpreted_batch_ndims)
def entropy(self):
entropy = self.base_dist.entropy()
return _sum_rightmost(entropy, self.reinterpreted_batch_ndims)
def enumerate_support(self, expand=True):
if self.reinterpreted_batch_ndims > 0:
raise NotImplementedError(
"Enumeration over cartesian product is not implemented"
)
return self.base_dist.enumerate_support(expand=expand)
def __repr__(self):
return (
self.__class__.__name__
+ f"({self.base_dist}, {self.reinterpreted_batch_ndims})"
)