111 lines
3.9 KiB
Python
111 lines
3.9 KiB
Python
|
from typing import Any, Dict, List, NamedTuple, Optional
|
||
|
|
||
|
import torch
|
||
|
from torch.fx._compatibility import compatibility
|
||
|
from torch.fx.graph import Graph
|
||
|
from torch.fx.graph_module import GraphModule
|
||
|
from torch.fx.node import (
|
||
|
map_arg,
|
||
|
Node,
|
||
|
Target,
|
||
|
)
|
||
|
from torch.fx.passes.shape_prop import ShapeProp
|
||
|
|
||
|
__all__ = ['replace_target_nodes_with', 'size_bytes', 'get_size_of_all_nodes', 'get_tensor_meta',
|
||
|
'get_size_of_node']
|
||
|
|
||
|
@compatibility(is_backward_compatible=False)
|
||
|
def replace_target_nodes_with(
|
||
|
fx_module: GraphModule,
|
||
|
old_op: str,
|
||
|
old_target: Target,
|
||
|
new_op: str,
|
||
|
new_target: Target,
|
||
|
):
|
||
|
"""Modifies all nodes in fx_module.graph.nodes which match the specified op code and target,
|
||
|
and updates them to match the new op code and target"""
|
||
|
new_graph = Graph()
|
||
|
val_map: Dict[Node, Node] = {}
|
||
|
for node in fx_module.graph.nodes:
|
||
|
if node.op == old_op and node.target == old_target:
|
||
|
args = map_arg(node.args, lambda n: val_map[n])
|
||
|
kwargs = map_arg(node.kwargs, lambda n: val_map[n])
|
||
|
assert isinstance(args, tuple)
|
||
|
assert isinstance(kwargs, dict)
|
||
|
val_map[node] = new_graph.create_node(
|
||
|
new_op, new_target, args, kwargs, node.name
|
||
|
)
|
||
|
else:
|
||
|
val_map[node] = new_graph.node_copy(node, lambda n: val_map[n])
|
||
|
fx_module.graph = new_graph
|
||
|
|
||
|
|
||
|
@compatibility(is_backward_compatible=False)
|
||
|
class size_bytes(NamedTuple):
|
||
|
output_size: int
|
||
|
total_size: int
|
||
|
|
||
|
|
||
|
@compatibility(is_backward_compatible=False)
|
||
|
def get_size_of_all_nodes(
|
||
|
fx_module: GraphModule, args: Optional[List[torch.Tensor]] = None
|
||
|
) -> None:
|
||
|
"""Given a fx graph module, update each node with its total size (weights + bias + output)
|
||
|
and its output_size(output). For a non-module node, the total size is the output size.
|
||
|
return total size"""
|
||
|
if args is not None:
|
||
|
# Mark shape and dtype for each node (node.shape and node.dtype)
|
||
|
ShapeProp(fx_module).propagate(*args)
|
||
|
# Calculate the total size of the whole fx graph
|
||
|
total_size_of_graph = 0.0
|
||
|
for node in fx_module.graph.nodes:
|
||
|
if node.op == "output":
|
||
|
break
|
||
|
node.size_bytes = get_size_of_node(fx_module, node)
|
||
|
return
|
||
|
|
||
|
|
||
|
@compatibility(is_backward_compatible=False)
|
||
|
def get_tensor_meta(node: Node) -> Any:
|
||
|
tensor_meta = node.meta.get("tensor_meta")
|
||
|
|
||
|
if not tensor_meta:
|
||
|
raise RuntimeError(
|
||
|
f"Node {node} has no tensor metadata associated with it! "
|
||
|
f"Check that shape propagation has run."
|
||
|
)
|
||
|
|
||
|
return tensor_meta
|
||
|
|
||
|
|
||
|
@compatibility(is_backward_compatible=False)
|
||
|
def get_size_of_node(fx_module: GraphModule, node: Node) -> size_bytes:
|
||
|
"""Given a node with node.dtype and node.shape, return its total size and its output size.
|
||
|
total_size = weights + bias + output_size
|
||
|
"""
|
||
|
# Total num of elements
|
||
|
total_num_of_elems = 0
|
||
|
# For a module, conside all parameters
|
||
|
if node.op == "call_module":
|
||
|
submodule_dict = dict(fx_module.named_modules())
|
||
|
submodule = submodule_dict[node.target]
|
||
|
parameters = submodule.named_parameters()
|
||
|
# Parameters are named tuples
|
||
|
for name, p in parameters:
|
||
|
total_num_of_elems += p.numel()
|
||
|
# Don't forget the output size
|
||
|
# node.shape is the shape of this node's output
|
||
|
tensor_meta = get_tensor_meta(node)
|
||
|
output_elem = tensor_meta.shape.numel()
|
||
|
total_num_of_elems += output_elem
|
||
|
# Assume for now if it's quantized then it's qint8 or quint8
|
||
|
if tensor_meta.is_quantized:
|
||
|
size_per_elem_bytes = torch._empty_affine_quantized(
|
||
|
[], dtype=tensor_meta.dtype
|
||
|
).element_size()
|
||
|
else:
|
||
|
size_per_elem_bytes = torch.tensor([], dtype=tensor_meta.dtype).element_size()
|
||
|
total_size = size_per_elem_bytes * total_num_of_elems
|
||
|
output_size = size_per_elem_bytes * output_elem
|
||
|
return size_bytes(output_size, total_size)
|