515 lines
21 KiB
Python
515 lines
21 KiB
Python
|
import inspect
|
||
|
from typing import Any, Callable, Dict, List, Optional, Set, TYPE_CHECKING
|
||
|
from collections import OrderedDict
|
||
|
import logging
|
||
|
|
||
|
import torch
|
||
|
from torch.fx._compatibility import compatibility
|
||
|
from torch.fx.graph_module import GraphModule
|
||
|
from torch.fx.node import Node
|
||
|
|
||
|
if TYPE_CHECKING:
|
||
|
import sympy # noqa: F401
|
||
|
|
||
|
__all__ = ["Partition", "split_module"]
|
||
|
_LOGGER = logging.getLogger(__name__)
|
||
|
|
||
|
@compatibility(is_backward_compatible=True)
|
||
|
class Partition:
|
||
|
def __init__(self, name: str):
|
||
|
self.name: str = name
|
||
|
self.submod_name = f"submod_{name}"
|
||
|
self.node_names: List[str] = []
|
||
|
self.inputs: Dict[str, None] = {}
|
||
|
self.outputs: Dict[str, None] = {}
|
||
|
self.dependencies: Dict[str, None] = {}
|
||
|
self.dependents: Dict[str, None] = {}
|
||
|
self.graph: torch.fx.graph.Graph = torch.fx.graph.Graph()
|
||
|
self.environment: Dict[Node, Node] = {}
|
||
|
self.targets: Dict[str, Any] = {}
|
||
|
|
||
|
def __repr__(self) -> str:
|
||
|
return (
|
||
|
f"name: {self.name},\n"
|
||
|
f" nodes: {self.node_names},\n"
|
||
|
f" inputs: {self.inputs},\n"
|
||
|
f" outputs: {self.outputs},\n"
|
||
|
f" partitions depended on: {self.dependencies},\n"
|
||
|
f" partition dependents: {self.dependents}"
|
||
|
)
|
||
|
|
||
|
|
||
|
# Creates subgraphs out of main graph
|
||
|
@compatibility(is_backward_compatible=True)
|
||
|
def split_module(
|
||
|
m: GraphModule,
|
||
|
root_m: torch.nn.Module,
|
||
|
split_callback: Callable[[Node], int],
|
||
|
qualname_map: Optional[Dict[str, str]] = None,
|
||
|
keep_original_order: Optional[bool] = False,
|
||
|
keep_original_node_name: Optional[bool] = False,
|
||
|
):
|
||
|
"""
|
||
|
Creates subgraphs out of main graph
|
||
|
|
||
|
Args:
|
||
|
m (GraphModule): Graph module to split
|
||
|
root_m (torch.nn.Module): root nn module. Not currently used. Included
|
||
|
because the root nn module is usually transformed via
|
||
|
torch.fx._symbolic_trace.symbolic_trace (see example below)
|
||
|
split_callback (Callable[[Node], int]): Callable function
|
||
|
that maps a given Node instance to a numeric partition identifier.
|
||
|
split_module will use this function as the policy for which operations
|
||
|
appear in which partitions in the output Module.
|
||
|
qualname_map: Optional[Dict[str, str]]: optional output parameter that returns a
|
||
|
mapping from new target names in the module after split to old target
|
||
|
names in the original module.
|
||
|
keep_original_order: Optional[bool]: keep the original order of the GraphModule
|
||
|
or use the Topological order of the new constructed GraphModule
|
||
|
|
||
|
|
||
|
Returns:
|
||
|
GraphModule: the module after split.
|
||
|
|
||
|
Example:
|
||
|
|
||
|
This is a sample setup:
|
||
|
|
||
|
import torch
|
||
|
from torch.fx.symbolic_trace import symbolic_trace
|
||
|
from torch.fx.graph_module import GraphModule
|
||
|
from torch.fx.node import Node
|
||
|
from torch.fx.passes.split_module import split_module
|
||
|
|
||
|
class MyModule(torch.nn.Module):
|
||
|
def __init__(self):
|
||
|
super().__init__()
|
||
|
self.param = torch.nn.Parameter(torch.rand(3, 4))
|
||
|
self.linear = torch.nn.Linear(4, 5)
|
||
|
|
||
|
def forward(self, x, y):
|
||
|
z = self.linear(x + self.param).clamp(min=0.0, max=1.0)
|
||
|
w = self.linear(y).clamp(min=0.0, max=1.0)
|
||
|
return z + w
|
||
|
|
||
|
# symbolically trace model
|
||
|
my_module = MyModule()
|
||
|
my_module_traced = symbolic_trace(my_module)
|
||
|
|
||
|
# random mod partitioning
|
||
|
partition_counter = 0
|
||
|
NPARTITIONS = 3
|
||
|
|
||
|
def mod_partition(node: Node):
|
||
|
global partition_counter
|
||
|
partition = partition_counter % NPARTITIONS
|
||
|
partition_counter = (partition_counter + 1) % NPARTITIONS
|
||
|
return partition
|
||
|
|
||
|
# split module in module with submodules
|
||
|
module_with_submodules = split_module(
|
||
|
my_module_traced, my_module, mod_partition
|
||
|
)
|
||
|
|
||
|
Output looks like this. Original graph is broken into partitions
|
||
|
|
||
|
> print(module_with_submodules)
|
||
|
GraphModule(
|
||
|
(submod_0): GraphModule(
|
||
|
(linear): Linear(in_features=4, out_features=5, bias=True)
|
||
|
)
|
||
|
(submod_1): GraphModule(
|
||
|
(linear): Linear(in_features=4, out_features=5, bias=True)
|
||
|
)
|
||
|
(submod_2): GraphModule()
|
||
|
)
|
||
|
|
||
|
def forward(self, x, y):
|
||
|
param = self.param
|
||
|
submod_0 = self.submod_0(x, param, y); x = param = y = None
|
||
|
getitem = submod_0[0]
|
||
|
getitem_1 = submod_0[1]; submod_0 = None
|
||
|
submod_1 = self.submod_1(getitem, getitem_1); getitem = getitem_1 = None
|
||
|
getitem_2 = submod_1[0]
|
||
|
getitem_3 = submod_1[1]; submod_1 = None
|
||
|
submod_2 = self.submod_2(getitem_2, getitem_3); getitem_2 = getitem_3 = None
|
||
|
return submod_2
|
||
|
|
||
|
Output of split module is the same as output of input traced module.
|
||
|
This is an example within a test setting:
|
||
|
|
||
|
> orig_out = my_module_traced(x, y)
|
||
|
> submodules_out = module_with_submodules(x, y)
|
||
|
> self.assertEqual(orig_out, submodules_out)
|
||
|
True
|
||
|
"""
|
||
|
|
||
|
def construct_graph(
|
||
|
node: Node,
|
||
|
base_mod_env: Dict[str, Node],
|
||
|
base_mod_attrs: Dict[str, torch.fx.graph_module.GraphModule],
|
||
|
):
|
||
|
if node.op == "placeholder":
|
||
|
default_value = (
|
||
|
node.args[0] if len(node.args) > 0 else inspect.Signature.empty
|
||
|
)
|
||
|
if keep_original_node_name:
|
||
|
args = () if default_value is inspect.Signature.empty else (default_value,)
|
||
|
base_mod_env[node.name] = base_mod_graph.create_node('placeholder', node.name, args=args, type_expr=node.type)
|
||
|
else:
|
||
|
base_mod_env[node.name] = base_mod_graph.placeholder(
|
||
|
node.target, type_expr=node.type, default_value=default_value
|
||
|
)
|
||
|
base_mod_env[node.name].meta = node.meta.copy()
|
||
|
elif node.op == "get_attr":
|
||
|
base_mod_env[node.name] = base_mod_graph.get_attr(node.target)
|
||
|
base_mod_env[node.name].meta = node.meta.copy()
|
||
|
attr_val = m
|
||
|
for atom in node.target.split("."): # type: ignore[union-attr]
|
||
|
if not hasattr(attr_val, atom):
|
||
|
raise AttributeError(f"Node target {node.target} not found!")
|
||
|
attr_val = getattr(attr_val, atom)
|
||
|
base_mod_attrs[node.target] = attr_val # type: ignore[index]
|
||
|
return base_mod_env, base_mod_attrs
|
||
|
|
||
|
partitions: Dict[str, Partition] = {}
|
||
|
orig_nodes: Dict[str, Node] = {}
|
||
|
symbol_to_node: Dict["sympy.Symbol", Node] = {}
|
||
|
|
||
|
def record_cross_partition_use(
|
||
|
def_node: Node, use_node: Optional[Node]
|
||
|
): # noqa: B950
|
||
|
from torch.fx.experimental.symbolic_shapes import free_symbols
|
||
|
|
||
|
defined = getattr(def_node, "_fx_partition", None)
|
||
|
used = getattr(use_node, "_fx_partition", None)
|
||
|
if defined != used:
|
||
|
if defined is not None:
|
||
|
def_partition = partitions[defined]
|
||
|
def_partition.outputs.setdefault(def_node.name)
|
||
|
if used is not None:
|
||
|
def_partition.dependents.setdefault(used)
|
||
|
|
||
|
if used is not None:
|
||
|
use_partition = partitions[used]
|
||
|
use_partition.inputs.setdefault(def_node.name)
|
||
|
if (def_val := def_node.meta.get("example_value")) is not None:
|
||
|
for s in sorted(free_symbols(def_val), key=str):
|
||
|
use_partition.inputs.setdefault(symbol_to_node[s].name)
|
||
|
if defined is not None:
|
||
|
use_partition.dependencies.setdefault(defined)
|
||
|
|
||
|
def instantiate_node_partition_mapping(node):
|
||
|
partition_name = str(split_callback(node))
|
||
|
|
||
|
# add node to partitions
|
||
|
partition = partitions.get(partition_name)
|
||
|
if partition is None:
|
||
|
partitions[partition_name] = partition = Partition(partition_name)
|
||
|
|
||
|
partition.node_names.append(node.name)
|
||
|
node._fx_partition = partition_name
|
||
|
|
||
|
# Global State Nodes are nodes which by their global state effects,
|
||
|
# "taint" all downstream nodes while they are active.
|
||
|
GLOBAL_STATE_NODES = [
|
||
|
torch.amp._enter_autocast,
|
||
|
torch.amp._exit_autocast,
|
||
|
torch._C._set_grad_enabled
|
||
|
]
|
||
|
|
||
|
# For grad regions:
|
||
|
# ------------------------
|
||
|
# 1. first region: we do nothing
|
||
|
# 2. subsequent regions: we insert the set_grad at the beginning
|
||
|
grad_regions: OrderedDict[Node, Set[int]] = OrderedDict()
|
||
|
|
||
|
# For autocast regions:
|
||
|
# ------------------------
|
||
|
# 1. first region: we will only insert the _exit at the end
|
||
|
# 2. intermediate regions: we will insert both the
|
||
|
# _enter at the beginning and _exit at the end
|
||
|
# 3. last region: we will only insert _enter at the beginning
|
||
|
# We will do so in the order in which the autocasts were instantiated.
|
||
|
autocast_regions: OrderedDict[Node, Set[int]] = OrderedDict()
|
||
|
autocast_exits: Dict[Node, Optional[Node]] = {}
|
||
|
|
||
|
active_grad = None
|
||
|
active_autocasts = set()
|
||
|
|
||
|
import sympy # noqa: F811
|
||
|
|
||
|
for node in m.graph.nodes:
|
||
|
if node.op in ["placeholder", "get_attr", "output"]:
|
||
|
if (
|
||
|
node.op == "placeholder" and
|
||
|
(val := node.meta.get("example_value")) is not None and
|
||
|
isinstance(val, torch.SymInt) and
|
||
|
isinstance(val.node.expr, sympy.Symbol)
|
||
|
):
|
||
|
symbol_to_node[val.node.expr] = node
|
||
|
continue
|
||
|
|
||
|
instantiate_node_partition_mapping(node)
|
||
|
|
||
|
if node.op == "call_function" and node.target in GLOBAL_STATE_NODES:
|
||
|
if node.target == torch._C._set_grad_enabled:
|
||
|
assert len(node.args) == 1
|
||
|
assert isinstance(node.args[0], bool)
|
||
|
active_grad = node
|
||
|
grad_regions[active_grad] = set({split_callback(node)})
|
||
|
elif node.target == torch.amp._enter_autocast:
|
||
|
# Should all be python constants
|
||
|
assert all(not isinstance(arg, Node) for arg in node.args)
|
||
|
active_autocasts.add(node)
|
||
|
autocast_regions[node] = set({split_callback(node)})
|
||
|
autocast_exits[node] = None
|
||
|
elif node.target == torch.amp._exit_autocast:
|
||
|
assert len(node.args) == 1
|
||
|
autocast_regions[node.args[0]].add(split_callback(node))
|
||
|
active_autocasts.remove(node.args[0])
|
||
|
autocast_exits[node.args[0]] = node
|
||
|
|
||
|
if active_grad is not None:
|
||
|
grad_regions[active_grad].add(split_callback(node))
|
||
|
|
||
|
for a in active_autocasts:
|
||
|
autocast_regions[a].add(split_callback(node))
|
||
|
|
||
|
assert all(v is not None for v in autocast_exits.values()), "autocast must exit"
|
||
|
|
||
|
autocast_regions = {k: sorted(v) for k, v in autocast_regions.items()}
|
||
|
grad_regions = {k: sorted(v) for k, v in grad_regions.items()}
|
||
|
|
||
|
if _LOGGER.isEnabledFor(logging.DEBUG):
|
||
|
_LOGGER.debug("autocast_regions: %s", autocast_regions)
|
||
|
_LOGGER.debug("grad_regions: %s", grad_regions)
|
||
|
|
||
|
assert_monotonically_increasing = bool(autocast_regions) or bool(grad_regions)
|
||
|
|
||
|
# split nodes into partitions
|
||
|
highest_partition = -1
|
||
|
for node in m.graph.nodes:
|
||
|
orig_nodes[node.name] = node
|
||
|
|
||
|
# TODO currently placeholders/parameters aren't put into random partitions,
|
||
|
# rather they're added to the graphs where they are used down below
|
||
|
if node.op in ["placeholder", "get_attr"]:
|
||
|
continue
|
||
|
if node.op == "output":
|
||
|
torch.fx.graph.map_arg(
|
||
|
node.args[0], lambda n: record_cross_partition_use(n, None)
|
||
|
)
|
||
|
continue
|
||
|
|
||
|
if assert_monotonically_increasing:
|
||
|
pid = split_callback(node)
|
||
|
assert highest_partition <= pid, \
|
||
|
("autocast or set_grad_enabled require monotonically increasing partitions:"
|
||
|
f"highest: {highest_partition}, this node's: {pid}")
|
||
|
highest_partition = pid
|
||
|
|
||
|
# do not capture cross-partition dependencies for global state nodes as they will be
|
||
|
# self-contained - their setup and unwind will be isolated to each partition submodule.
|
||
|
if node.target not in GLOBAL_STATE_NODES:
|
||
|
torch.fx.graph.map_arg(
|
||
|
node.args, lambda def_node: record_cross_partition_use(def_node, node)
|
||
|
)
|
||
|
torch.fx.graph.map_arg(
|
||
|
node.kwargs, lambda def_node: record_cross_partition_use(def_node, node)
|
||
|
) # noqa: B950
|
||
|
|
||
|
original_partition_order = list(partitions.keys())
|
||
|
# find partitions with no dependencies
|
||
|
root_partitions: List[str] = []
|
||
|
for partition_name, partition in partitions.items():
|
||
|
if not len(partition.dependencies):
|
||
|
root_partitions.append(partition_name)
|
||
|
|
||
|
# check partitions for circular dependencies and create topological partition ordering
|
||
|
sorted_partitions: List[str] = []
|
||
|
while root_partitions:
|
||
|
root_partition = root_partitions.pop()
|
||
|
sorted_partitions.append(root_partition)
|
||
|
for dependent in partitions[root_partition].dependents:
|
||
|
partitions[dependent].dependencies.pop(root_partition)
|
||
|
if not partitions[dependent].dependencies:
|
||
|
root_partitions.append(dependent)
|
||
|
if len(sorted_partitions) != len(partitions):
|
||
|
raise RuntimeError("cycle exists between partitions!")
|
||
|
|
||
|
# Enter prelude
|
||
|
for regions_mapping in [autocast_regions, grad_regions]:
|
||
|
for node, regions in regions_mapping.items():
|
||
|
assert len(regions) > 0
|
||
|
partitions[str(regions[0])].environment[node] = node
|
||
|
for r in regions[1:]:
|
||
|
partition = partitions[str(r)]
|
||
|
new_node = partition.graph.create_node(
|
||
|
op=node.op,
|
||
|
target=node.target,
|
||
|
args=tuple(arg for arg in node.args),
|
||
|
kwargs={},
|
||
|
type_expr=node.type,
|
||
|
)
|
||
|
new_node.meta = node.meta.copy() # is it really a good idea to copy this?
|
||
|
partition.environment[node] = new_node
|
||
|
|
||
|
# add placeholders to partition inputs
|
||
|
for partition_name in sorted_partitions:
|
||
|
partition = partitions[partition_name]
|
||
|
for inp in partition.inputs:
|
||
|
placeholder = partition.graph.placeholder(
|
||
|
inp,
|
||
|
type_expr=orig_nodes[inp].type,
|
||
|
)
|
||
|
placeholder.meta = orig_nodes[inp].meta.copy()
|
||
|
partition.environment[orig_nodes[inp]] = placeholder
|
||
|
|
||
|
# Transform nodes and collect targets for partition's submodule
|
||
|
for node in m.graph.nodes:
|
||
|
if hasattr(node, "_fx_partition"):
|
||
|
partition = partitions[node._fx_partition]
|
||
|
|
||
|
# swap out old graph nodes in kw/args with references to new nodes in this submodule
|
||
|
environment = partition.environment
|
||
|
gathered_args = torch.fx.graph.map_arg(node.args, lambda n: environment[n])
|
||
|
gathered_kwargs = torch.fx.graph.map_arg(
|
||
|
node.kwargs, lambda n: environment[n]
|
||
|
)
|
||
|
|
||
|
if node.op not in ["call_module", "get_attr"]:
|
||
|
target = node.target
|
||
|
else:
|
||
|
target_atoms = node.target.split(".")
|
||
|
target_attr = m
|
||
|
for atom in target_atoms:
|
||
|
if not hasattr(target_attr, atom):
|
||
|
raise AttributeError(f"Operator target {node.target} not found!")
|
||
|
target_attr = getattr(target_attr, atom)
|
||
|
# target = target_atoms[-1]
|
||
|
target = "_".join(target_atoms)
|
||
|
partition.targets[target] = target_attr
|
||
|
# Fill in the passed-in mapping from new qualname to old qualname
|
||
|
if qualname_map is not None:
|
||
|
# When creating the split module later, the submodules will have
|
||
|
# path prefix matching the corresponding partition's submod_name
|
||
|
qualname = f"{partition.submod_name}.{target}"
|
||
|
qualname_map[qualname] = node.target
|
||
|
|
||
|
assert isinstance(gathered_args, tuple)
|
||
|
assert isinstance(gathered_kwargs, dict)
|
||
|
name = node.name if keep_original_node_name else None
|
||
|
new_node = partition.graph.create_node(
|
||
|
op=node.op,
|
||
|
target=target,
|
||
|
args=gathered_args,
|
||
|
kwargs=gathered_kwargs,
|
||
|
type_expr=node.type,
|
||
|
name=name,
|
||
|
)
|
||
|
new_node.meta = node.meta.copy()
|
||
|
partition.environment[node] = new_node
|
||
|
|
||
|
# Exit epilogue
|
||
|
for regions_mapping in [autocast_regions]:
|
||
|
for node in reversed(regions_mapping):
|
||
|
regions = regions_mapping[node]
|
||
|
assert len(regions) > 0
|
||
|
for r in regions[:-1]:
|
||
|
partition = partitions[str(r)]
|
||
|
exit_node = autocast_exits[node]
|
||
|
assert exit_node is not None, "Missing exit node"
|
||
|
new_node = partition.graph.create_node(
|
||
|
op=exit_node.op,
|
||
|
target=exit_node.target,
|
||
|
args=(partition.environment[node],),
|
||
|
kwargs={},
|
||
|
type_expr=exit_node.type,
|
||
|
)
|
||
|
new_node.meta = exit_node.meta.copy() # is it really a good idea to copy this?
|
||
|
|
||
|
# original module environment dict mapping node names to nodes
|
||
|
orig_mod_env: Dict[str, Node] = {}
|
||
|
# Set up values to construct base module
|
||
|
base_mod_env: Dict[str, Node] = {}
|
||
|
base_mod_graph: torch.fx.graph.Graph = torch.fx.graph.Graph()
|
||
|
base_mod_attrs: Dict[str, torch.fx.graph_module.GraphModule] = {}
|
||
|
if not keep_original_order:
|
||
|
for node in m.graph.nodes:
|
||
|
base_mod_env, base_mod_attrs = construct_graph(
|
||
|
node, base_mod_env, base_mod_attrs
|
||
|
)
|
||
|
|
||
|
else:
|
||
|
# Go through the graph to construct the mapping dict
|
||
|
for node in m.graph.nodes:
|
||
|
orig_mod_env[node.name] = node
|
||
|
|
||
|
# Do some things iterating over the partitions in topological order again:
|
||
|
# 1) Finish off submodule Graphs by setting corresponding outputs
|
||
|
# 2) Construct GraphModules for each submodule
|
||
|
# 3) Construct the base graph by emitting calls to those submodules in
|
||
|
# topological order or original order specified by keep_original_order
|
||
|
|
||
|
construct_order_partitions = (
|
||
|
sorted_partitions if not keep_original_order else original_partition_order
|
||
|
)
|
||
|
|
||
|
already_constructed_attr_nodes = set()
|
||
|
for partition_name in construct_order_partitions:
|
||
|
partition = partitions[partition_name]
|
||
|
|
||
|
# Set correct output values
|
||
|
output_vals = tuple(
|
||
|
partition.environment[orig_nodes[name]] for name in partition.outputs
|
||
|
)
|
||
|
|
||
|
# skip output node generation if there are no output values
|
||
|
num_output_vals = len(output_vals)
|
||
|
if num_output_vals == 1:
|
||
|
partition.graph.output(output_vals[0])
|
||
|
elif num_output_vals > 1:
|
||
|
partition.graph.output(output_vals)
|
||
|
|
||
|
if keep_original_order:
|
||
|
# first get the attr nodes required by this partition
|
||
|
orig_mod_attr_nodes: List[Node] = [
|
||
|
orig_mod_env[key] for key in partition.inputs
|
||
|
]
|
||
|
# Construct GraphModule for this partition
|
||
|
for node in orig_mod_attr_nodes: # type: ignore[attr-defined]
|
||
|
if node in already_constructed_attr_nodes:
|
||
|
continue
|
||
|
base_mod_env, base_mod_attrs = construct_graph(
|
||
|
node, base_mod_env, base_mod_attrs
|
||
|
)
|
||
|
already_constructed_attr_nodes.add(node)
|
||
|
|
||
|
base_mod_attrs[partition.submod_name] = torch.fx.graph_module.GraphModule(
|
||
|
partition.targets, partition.graph
|
||
|
) # noqa: B950
|
||
|
|
||
|
# Emit call in base graph to this submodule
|
||
|
output_val = base_mod_graph.call_module(
|
||
|
partition.submod_name,
|
||
|
tuple(base_mod_env[name] for name in partition.inputs),
|
||
|
)
|
||
|
|
||
|
num_outputs = len(partition.outputs)
|
||
|
if num_outputs > 1:
|
||
|
# Unpack multiple return values from submodule
|
||
|
output_val_proxy = torch.fx.proxy.Proxy(output_val)
|
||
|
for i, output_name in enumerate(partition.outputs):
|
||
|
base_mod_env[output_name] = output_val_proxy[i].node # type: ignore[index]
|
||
|
elif num_outputs == 1:
|
||
|
base_mod_env[next(iter(partition.outputs))] = output_val
|
||
|
|
||
|
for node in m.graph.nodes:
|
||
|
if node.op == "output":
|
||
|
base_mod_graph.output(
|
||
|
torch.fx.graph.map_arg(node.args[0], lambda n: base_mod_env[n.name])
|
||
|
) # noqa: B950
|
||
|
|
||
|
return torch.fx.graph_module.GraphModule(base_mod_attrs, base_mod_graph)
|