ai-content-maker/.venv/Lib/site-packages/torch/nested/_internal/sdpa.py

781 lines
28 KiB
Python
Raw Permalink Normal View History

2024-05-03 04:18:51 +03:00
import logging
from typing import Optional, Tuple
import torch
import torch.nn
import torch.nn.functional as F
from torch.backends.cuda import (
can_use_efficient_attention,
can_use_flash_attention,
flash_sdp_enabled,
math_sdp_enabled,
mem_efficient_sdp_enabled,
SDPAParams,
)
from torch.nn.attention import SDPBackend
from .nested_tensor import NestedTensor
log = logging.getLogger(__name__)
def _validate_sdpa_input(
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
attn_mask: Optional[torch.Tensor] = None,
dropout_p=0.0,
is_causal=False,
scale=None,
):
if (
not isinstance(query, NestedTensor)
or not isinstance(key, NestedTensor)
or not isinstance(value, NestedTensor)
):
raise ValueError(
f"Expected query, key, and value to be nested tensors, "
f"but got query.is_nested: {query.is_nested}, key.is_nested: {key.is_nested}, "
f"and value.is_nested: {value.is_nested} instead."
)
if query.dtype != key.dtype or query.dtype != value.dtype:
raise ValueError(
f"Expected query, key, and value to have the same dtype, "
f"but got query.dtype: {query.dtype}, key.dtype: {key.dtype}, "
f"and value.dtype: {value.dtype} instead."
)
if query.device != key.device or query.device != value.device:
raise ValueError(
f"Expected query, key, and value to have the same device type, "
f"but got query.device: {query.device}, key.device: {key.device}, "
f"and value.device: {value.device} instead."
)
if query.dim() < 2 or key.dim() < 2 or value.dim() < 2:
raise ValueError(
f"Expected query, key, and value to all be at least 2 dimensional, but got query.dim: "
f"{query.dim()}, key.dim: {key.dim()} and value.dim: {value.dim()} instead."
)
if query._ragged_idx != key._ragged_idx or query._ragged_idx != value._ragged_idx:
raise ValueError(
f"Expected query, key, and value to all be ragged on the same dimension, but got ragged "
f"dims {query._ragged_idx}, {key._ragged_idx}, and {value._ragged_idx}, respectively."
)
if attn_mask is not None:
# TODO: Figure out whether masks are actually supported for this layout or not
raise ValueError("Masks are not yet supported!")
if attn_mask.dtype != torch.bool and attn_mask.dtype != query.dtype:
raise ValueError(
f"Expected attn_mask dtype to be bool or to match query dtype, but got attn_mask.dtype: "
f"{attn_mask.dtype}, and query.dtype: {query.dtype} instead."
)
def _check_batch_size_nested(params: SDPAParams, debug=False) -> bool:
# This is expected to be called after check_tensor_shapes ensuring that the
# size() calls won't error since the inputs are all 4 dimensional
q_batch_size = params.query.size(0)
k_batch_size = params.key.size(0)
v_batch_size = params.value.size(0)
# num_heads logic for nested input is checked in
# check_for_seq_len_0_nested_tensor as there is handling there to make sure
# num_heads is not ragged
return q_batch_size == k_batch_size and q_batch_size == v_batch_size
def _check_head_dim_size_flash_nested(params: SDPAParams, debug=False) -> bool:
max_size = 256
query_size_last = params.query.size(-1)
key_size_last = params.key.size(-1)
value_size_last = params.value.size(-1)
same_head_dim_size = (
query_size_last == key_size_last and query_size_last == value_size_last
)
if not (
same_head_dim_size
and (query_size_last % 8 == 0)
and (query_size_last <= max_size)
):
if debug:
log.warning(
"For NestedTensor inputs, Flash attention requires q,k,v to have the same "
"last dimension and to be a multiple of 8 and less than or equal to 256. "
"Got Query.size(-1): %d, Key.size(-1): %d, Value.size(-1): %d instead.",
query_size_last,
key_size_last,
value_size_last,
)
return False
return True
def _check_for_seq_len_0_and_consistent_head_dim_nested_helper(
param: torch.Tensor, param_name: str, debug=False
) -> bool:
assert isinstance(param, NestedTensor), "param should be a jagged NT"
if param._ragged_idx == 1:
# num_head_dims is ragged
if debug:
log.warning(
"Fused kernels do not support ragged num_head_dims, %s has a ragged num_heads.",
param_name,
)
return False
# This is being called inside sdp with shape [batch, heads, {seq_len}, dim]
if param._min_seqlen == 0:
if debug:
log.warning(
"Fused kernels do not support seq_len == 0, %s has a seq len of 0.",
param_name,
)
return False
return True
def _try_broadcast_param_size(q_size, k_size, v_size, param_name, debug=False) -> bool:
max_size = max(q_size, k_size, v_size)
if (
(q_size != max_size and q_size != 1)
or (k_size != max_size and k_size != 1)
or (v_size != max_size and v_size != 1)
):
if debug:
log.warning(
"Both fused kernels require query, key and value to have broadcastable %s, "
"got Query %s %d, Key %s %d, Value %s %d instead.",
param_name,
param_name,
q_size,
param_name,
k_size,
param_name,
v_size,
)
return False
return True
def _check_for_seq_len_0_nested(params: SDPAParams, debug=False) -> bool:
# When this function is called we are assured that the nt is dim==4
q_is_safe = (
_check_for_seq_len_0_and_consistent_head_dim_nested_helper(
params.query, "query", debug
)
if params.query.is_nested
else True
)
# short circuit if any is unsafe
if not q_is_safe:
return False
k_is_safe = (
_check_for_seq_len_0_and_consistent_head_dim_nested_helper(
params.key, "key", debug
)
if params.key.is_nested
else True
)
# short circuit if any is unsafe
if not k_is_safe:
return False
v_is_safe = (
_check_for_seq_len_0_and_consistent_head_dim_nested_helper(
params.value, "value", debug
)
if params.value.is_nested
else True
)
# short circuit if any is unsafe
if not v_is_safe:
return False
# We now know none of the inputs have ragged num_heads, so we can safely
# access .size(1)
q_num_heads = params.query.size(1)
k_num_heads = params.key.size(1)
v_num_heads = params.value.size(1)
same_num_heads = q_num_heads == k_num_heads and q_num_heads == v_num_heads
if not same_num_heads:
if (
params.query.requires_grad
or params.key.requires_grad
or params.value.requires_grad
):
if debug:
log.warning(
"Both fused kernels do not support training with broadcasted NT inputs."
)
return False
return _try_broadcast_param_size(
q_num_heads, k_num_heads, v_num_heads, "num heads", debug
)
return True
def _can_use_flash_sdpa_jagged(params: SDPAParams, debug=False) -> bool:
constraints = (
_check_batch_size_nested,
_check_head_dim_size_flash_nested,
_check_for_seq_len_0_nested,
)
for constraint in constraints:
if not constraint(params, debug):
return False
return True
def _can_use_efficient_sdpa_jagged(params: SDPAParams, debug=False) -> bool:
constraints = (
_check_batch_size_nested,
_check_for_seq_len_0_nested,
)
for constraint in constraints:
if not constraint(params, debug):
return False
return True
def _can_use_math_sdpa_jagged(params: SDPAParams, debug=False) -> bool:
if (
not params.query.transpose(1, 2).is_contiguous()
or not params.key.transpose(1, 2).is_contiguous()
or not params.value.transpose(1, 2).is_contiguous()
):
if debug:
log.warning(
"If inputs are nested tensors they must be contiguous after transposing."
)
return False
if params.is_causal:
if debug:
log.warning(
"Nested tensors for query / key are not supported when is_causal=True."
)
return False
return True
def _select_sdp_backend(query, key, value, attn_mask, dropout, is_causal):
if (
not flash_sdp_enabled()
and not mem_efficient_sdp_enabled()
and not math_sdp_enabled()
):
return SDPBackend.ERROR
ordering = (
SDPBackend.FLASH_ATTENTION,
SDPBackend.EFFICIENT_ATTENTION,
SDPBackend.MATH,
)
params = SDPAParams(query, key, value, attn_mask, dropout, is_causal)
for backend in ordering:
if backend == SDPBackend.FLASH_ATTENTION:
if can_use_flash_attention(params) and _can_use_flash_sdpa_jagged(params):
return SDPBackend.FLASH_ATTENTION
if backend == SDPBackend.EFFICIENT_ATTENTION:
if can_use_efficient_attention(params) and _can_use_efficient_sdpa_jagged(
params
):
return SDPBackend.EFFICIENT_ATTENTION
if backend == SDPBackend.MATH:
if math_sdp_enabled() and _can_use_math_sdpa_jagged(params):
return SDPBackend.MATH
log.warning("Memory efficient kernel not used because:")
can_use_efficient_attention(params, debug=True)
_can_use_efficient_sdpa_jagged(params, debug=True)
log.warning("Flash attention kernel not used because:")
can_use_flash_attention(params, debug=True)
_can_use_flash_sdpa_jagged(params, debug=True)
log.warning("Math attention kernel not used because:")
_can_use_math_sdpa_jagged(params, debug=True)
return SDPBackend.ERROR
def _cumulative_and_max_seq_len_nnz(qkv: torch.Tensor) -> Tuple[torch.Tensor, int, int]:
# This function is used to calculate two pieces of metadata that are needed
# for use with flash-attention and efficient_attention kernels. They are the
# cumulative sequence_length over a batch of sequences and the maximum
# sequence length.
# It returns a tuple of cumulative sequence lengths and the maximum sequence
# length, and the last element in the cumulative_sequence_lengths
if not isinstance(qkv, NestedTensor):
raise ValueError("QKV must be nested for flash cumulative_seq_len calculation.")
if qkv.lengths() is None:
# TODO: Explore performance impact of copying
cumulative_seqlen = qkv.offsets().to(dtype=torch.int32, device=qkv.device)
max_seqlen = qkv._max_seqlen
n_elem = qkv.values().shape[0]
else:
# TODO: Explore performance impact of copying
cumulative_seqlen = (
qkv.lengths().cumsum(0).to(dtype=torch.int32, device=qkv.device)
)
batch_size = qkv.size(0)
max_seqlen = qkv._max_seqlen
# TODO: Explore performance impact when compiling
n_elem = int(cumulative_seqlen[-1].item())
return cumulative_seqlen, max_seqlen, n_elem
def _is_safe_to_get_storage_as_tensor(tensor: torch.Tensor):
# This function checks if a nested tensor is valid for
# use with the flash-attention and efficient_attention kernels without
# needing to call contiguous on the nested tensor input.
# It checks that the storage offsets' adjacent_differences are a constant
# mutiple of the previous tensor in the nested tensor and that the strides
# are monitonically decreasing. This check is done after calling transpose on
# the nested tensor resulting in a Nt of shape [bsz, {seq_len}, num_heads, dim]
# Returns a boolean indicating if contiguous needs to be called for input
assert isinstance(tensor, NestedTensor)
offsets = tensor.offsets()
strides = tensor._strides
n_tensors = offsets.size(0) - 1
if n_tensors <= 1:
return True
# Check initially that the tensor strides are in strictly descending order
prev_stride = strides[1]
for stride in strides[2:]:
if prev_stride <= stride:
# This would mean that the last stride is greater than the seq_len
# stride
return False
prev_stride = stride
# Congrats you made it!
return True
def _view_as_dense(
tensor: torch.Tensor, Nnz: int, num_heads: int, head_dim: int
) -> torch.Tensor:
if tensor.is_nested:
return tensor.values()
return tensor.view(Nnz, num_heads, head_dim)
# TODO: Next iteration should add test cases and check it works
# def _sdpa_nested_preprocessing_with_broadcast(query, key, value):
# # Query (Batch x Num_heads x {Q_seq_len} x Dim_per_head)
# # Key (Batch x Num_heads x {KV_seq_len} x Dim_per_head)
# # Value (Batch x Num_heads x {KV_seq_len} x Dim_per_head)
# q_batch_size = query.size(0)
# k_batch_size = key.size(0)
# v_batch_size = value.size(0)
# output_batch_size = max(q_batch_size, k_batch_size, v_batch_size)
# q_num_heads = query.size(1)
# k_num_heads = key.size(1)
# v_num_heads = value.size(1)
# output_num_heads = max(q_num_heads, k_num_heads, v_num_heads)
# head_dim_qk = query.size(3)
# head_dim_v = value.size(3)
# q_t = query.transpose(1, 2)
# k_t = key.transpose(1, 2)
# v_t = value.transpose(1, 2)
# # Checks in sdp_utils ensure that if {*}_batch_size/{*}_num_heads !=
# # output_batch_size/num_heads then they are 1
# q_batch_size_needs_broadcast = q_batch_size != output_batch_size
# k_batch_size_needs_broadcast = k_batch_size != output_batch_size
# v_batch_size_needs_broadcast = v_batch_size != output_batch_size
# # If {*}_batch_size_needs_broadcast, then
# # (1) max_seqlen_batch_{*} is given by {*}_t.size(1)
# # this is because needs_broadcast indicates that the batch_size is 1
# # and hence there is only 1 value for seq_len
# # (2) The cum_seq_lens are given by [0, {*}_t.size(1), 2 * {*}_t.size(1),
# # ..., outut_batch_size * {*}_t.size(1)]
# # (3) Nnz_{*} is given by output_batch_size * {*}_t.size(1)
# if q_batch_size_needs_broadcast or not q_t.is_nested:
# max_seqlen_batch_q = q_t.size(1)
# cumulative_sequence_length_q = torch.arange(
# 0,
# (output_batch_size + 1) * max_seqlen_batch_q,
# max_seqlen_batch_q,
# device=q_t.device,
# dtype=torch.int32,
# )
# Nnz_q = output_batch_size * max_seqlen_batch_q
# else:
# (
# cumulative_sequence_length_q,
# max_seqlen_batch_q,
# Nnz_q,
# ) = _cumulative_and_max_seq_len_nnz(q_t)
# if k_batch_size_needs_broadcast and v_batch_size_needs_broadcast:
# assert k_t.size(1) == v_t.size(1)
# max_seqlen_batch_kv = k_t.size(1)
# cumulative_sequence_length_kv = torch.arange(
# 0,
# (output_batch_size + 1) * max_seqlen_batch_kv,
# max_seqlen_batch_kv,
# device=k_t.device,
# dtype=torch.int32,
# )
# Nnz_kv = output_batch_size * max_seqlen_batch_kv
# else:
# cumulative_sequence_length_kv, max_seqlen_batch_kv, Nnz_kv = (
# _cumulative_and_max_seq_len_nnz(v_t)
# if k_batch_size_needs_broadcast
# else _cumulative_and_max_seq_len_nnz(k_t)
# )
# q_num_heads_needs_broadcast = q_num_heads != output_num_heads
# k_num_heads_needs_broadcast = k_num_heads != output_num_heads
# v_num_heads_needs_broadcast = v_num_heads != output_num_heads
# if not q_t.is_nested:
# query_buffer_reshaped = q_t.expand(
# output_batch_size, q_t.size(1), output_num_heads, head_dim_qk
# )
# query_buffer_reshaped = query_buffer_reshaped.reshape(
# Nnz_q, output_num_heads, head_dim_qk
# )
# else:
# if not q_t.is_contiguous() and not _is_safe_to_get_storage_as_tensor(q_t):
# q_t = q_t.contiguous()
# # If we are broadcasting then Nnz_q will be the output_batch_size since
# # seq_len is 1
# effective_batch_size_q = (
# output_batch_size if q_batch_size_needs_broadcast else Nnz_q
# )
# query_buffer_reshaped = _view_as_dense(
# q_t, effective_batch_size_q, output_num_heads, head_dim_qk
# )
# # If the physical layout of the NestedTensor's storage
# # is not: batch, {seq_len}, num_heads, head_dim then we need
# # to call contiguous
# if not k_t.is_contiguous() and not _is_safe_to_get_storage_as_tensor(k_t):
# k_t = k_t.contiguous()
# if not v_t.is_contiguous() and not _is_safe_to_get_storage_as_tensor(v_t):
# v_t = v_t.contiguous()
# effective_batch_size_k = (
# output_batch_size if k_batch_size_needs_broadcast else Nnz_kv
# )
# key_buffer_reshaped = _view_as_dense(
# k_t, effective_batch_size_k, output_num_heads, head_dim_qk
# )
# effective_batch_size_v = (
# output_batch_size if v_batch_size_needs_broadcast else Nnz_kv
# )
# value_buffer_reshaped = _view_as_dense(
# v_t, effective_batch_size_v, output_num_heads, head_dim_v
# )
# if not q_batch_size_needs_broadcast:
# output_shape = q_t._size
# if head_dim_v != head_dim_qk:
# output_shape[-1] = head_dim_v
# if q_num_heads_needs_broadcast:
# output_shape[1] = output_num_heads
# else:
# output_shape = torch.empty(3, dtype=torch.int64, device=torch.device("cpu"))
# output_shape[0] = q_t.size(1)
# output_shape[1] = output_num_heads
# output_shape[2] = head_dim_v
# return (
# query_buffer_reshaped,
# key_buffer_reshaped,
# value_buffer_reshaped,
# cumulative_sequence_length_q,
# cumulative_sequence_length_kv,
# max_seqlen_batch_q,
# max_seqlen_batch_kv,
# output_shape,
# )
def _sdpa_nested_preprocessing(query, key, value):
# Query (Batch x Num_heads x {Q_seq_len} x Dim_per_head)
# Key (Batch x Num_heads x {KV_seq_len} x Dim_per_head)
# Value (Batch x Num_heads x {KV_seq_len} x Dim_per_head)
q_batch_size = query.size(0)
k_batch_size = key.size(0)
v_batch_size = value.size(0)
q_num_heads = query.size(1)
k_num_heads = key.size(1)
v_num_heads = value.size(1)
if not (q_batch_size == k_batch_size and q_batch_size == v_batch_size) or not (
q_num_heads == k_num_heads and k_num_heads == v_num_heads
):
raise RuntimeError(
"This path is currently not implemented for jagged layout NT."
)
# return _sdpa_nested_preprocessing_with_broadcast(query, key, value)
num_heads = query.size(1)
head_dim_qk = query.size(3)
head_dim_v = value.size(3)
q_t = query.transpose(1, 2)
k_t = key.transpose(1, 2)
v_t = value.transpose(1, 2)
(
cumulative_sequence_length_q,
max_seqlen_batch_q,
Nnz_q,
) = _cumulative_and_max_seq_len_nnz(q_t)
(
cumulative_sequence_length_kv,
max_seqlen_batch_kv,
Nnz_kv,
) = _cumulative_and_max_seq_len_nnz(k_t)
# [TODO] K and V have to have the same Nnz, should probably torch_check
# assume in order to not iterate over v
# If the physical layout of the NestedTensor's storage
# is not: batch, {seq_len}, num_heads, head_dim then we need
# to call contiguous
if not q_t.is_contiguous() and not _is_safe_to_get_storage_as_tensor(q_t):
q_t = q_t.contiguous()
if not k_t.is_contiguous() and not _is_safe_to_get_storage_as_tensor(k_t):
k_t = k_t.contiguous()
if not v_t.is_contiguous() and not _is_safe_to_get_storage_as_tensor(v_t):
v_t = v_t.contiguous()
query_buffer_reshaped = _view_as_dense(q_t, Nnz_q, num_heads, head_dim_qk)
key_buffer_reshaped = _view_as_dense(k_t, Nnz_kv, num_heads, head_dim_qk)
value_buffer_reshaped = _view_as_dense(v_t, Nnz_kv, num_heads, head_dim_v)
output_nt_info = {
"offsets": q_t.offsets(),
"_max_seqlen": q_t._max_seqlen,
"_min_seqlen": q_t._min_seqlen,
}
return (
query_buffer_reshaped,
key_buffer_reshaped,
value_buffer_reshaped,
cumulative_sequence_length_q,
cumulative_sequence_length_kv,
max_seqlen_batch_q,
max_seqlen_batch_kv,
output_nt_info,
)
def _pad_last_dim(
tensor: torch.Tensor, alignment_size: int, slice: bool
) -> torch.Tensor:
# FlashAttentionV2 requires that head dimension be a multiple of 8
# This was previously done within the kernel, however
# This causes the kernel to maybe alias query, key, value
# So instead we pad the head_dimensions to be a multiple of 8
# in the composite region
last_dim_size = tensor.size(-1)
if last_dim_size % alignment_size == 0:
return tensor
pad_count = alignment_size - (last_dim_size % alignment_size)
tensor = torch.nn.functional.pad(tensor, [0, pad_count])
if slice:
return tensor[..., 0:last_dim_size]
return tensor
# TODO: coalesce with torch/nn/utils/attention.py
def _calculate_scale(query, scale):
# TODO: Investigate why math.sqrt() isn't properly handled by Dynamo?
softmax_scale = scale if scale is not None else torch.sym_sqrt(1.0 / query.size(-1))
return softmax_scale
def _post_process_flash_output(out: torch.Tensor, og_size):
if not out.is_nested and out.size(-1) != og_size:
out = out[..., 0:og_size]
return out
def jagged_scaled_dot_product_attention(
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
attn_mask: Optional[torch.Tensor] = None,
dropout_p=0.0,
is_causal=False,
scale=None,
):
_validate_sdpa_input(query, key, value, attn_mask, dropout_p, is_causal, scale)
# for mypy, ugh
assert (
isinstance(query, NestedTensor)
and isinstance(key, NestedTensor)
and isinstance(value, NestedTensor)
)
# Special path for non-ragged sequence length (e.g. for SAM where we have a ragged
# second batch dim instead). For this case, we can just send the dense buffers through
# vanilla SDPA.
if query.dim() > 3 and key.dim() > 3 and value.dim() > 3 and query._ragged_idx == 1:
from torch.nested._internal.ops import extract_kwargs
output = F.scaled_dot_product_attention(
query._values,
key._values,
value._values,
attn_mask=(
attn_mask._values if isinstance(attn_mask, NestedTensor) else attn_mask
),
dropout_p=dropout_p,
is_causal=is_causal,
scale=scale,
)
return NestedTensor(output, **extract_kwargs(query))
compute_logsumexp = query.requires_grad or key.requires_grad or value.requires_grad
backend_choice = _select_sdp_backend(
query, key, value, attn_mask, dropout_p, is_causal
)
if backend_choice == SDPBackend.FLASH_ATTENTION:
og_size = query.size(-1)
query_padded = _pad_last_dim(query, 8, False)
key_padded = _pad_last_dim(key, 8, False)
value_padded = _pad_last_dim(value, 8, False)
# We need to calculate the scale based off the OG head dim size
og_scale = _calculate_scale(query, scale)
(
query_buffer_reshaped,
key_buffer_reshaped,
value_buffer_reshaped,
cumulative_sequence_length_q,
cumulative_sequence_length_kv,
max_seqlen_batch_q,
max_seqlen_batch_kv,
output_nt_info,
) = _sdpa_nested_preprocessing(query_padded, key_padded, value_padded)
(
attention,
logsumexp,
philox_seed,
philox_offset,
debug_attn_mask,
) = torch.ops.aten._flash_attention_forward(
query_buffer_reshaped,
key_buffer_reshaped,
value_buffer_reshaped,
cumulative_sequence_length_q,
cumulative_sequence_length_kv,
max_seqlen_batch_q,
max_seqlen_batch_kv,
dropout_p,
is_causal,
False,
scale=og_scale,
)
# Reshape output to convert nnz to batch_size and seq_len
from torch.nested._internal.nested_tensor import nested_view_from_values_offsets
attention = nested_view_from_values_offsets(
attention.squeeze(0), output_nt_info["offsets"]
).transpose(1, 2)
return _post_process_flash_output(attention, og_size)
elif backend_choice == SDPBackend.EFFICIENT_ATTENTION:
(
query_reshaped,
key_reshaped,
value_reshaped,
cumulative_sequence_length_q,
cumulative_sequence_length_kv,
max_seqlen_batch_q,
max_seqlen_batch_kv,
output_nt_info,
) = _sdpa_nested_preprocessing(query, key, value)
(
attention,
log_sumexp,
seed,
offset,
max_seqlen_q,
max_seqlen_batch_kv,
) = torch.ops.aten._efficient_attention_forward(
query_reshaped.unsqueeze(0),
key_reshaped.unsqueeze(0),
value_reshaped.unsqueeze(0),
None,
cumulative_sequence_length_q,
cumulative_sequence_length_kv,
max_seqlen_batch_q,
max_seqlen_batch_kv,
dropout_p,
int(is_causal),
compute_logsumexp,
scale=scale,
)
# Reshape output to convert nnz to batch_size and seq_len
from torch.nested._internal.nested_tensor import nested_view_from_values_offsets
return nested_view_from_values_offsets(
attention.squeeze(0), output_nt_info["offsets"]
).transpose(1, 2)
elif backend_choice == SDPBackend.MATH:
# save the offsets and shape of the inputs, so we can reshape the final output
# query @ key = attn: [B, D1, j0, D'] @ [B, D1, D' j1] = [B, D1, j0, j1]
# attn @ value = out: [B, D1, j0, j1] @ [B, D1, j1, D2] = [B, D1, j0, D2]
offsets = query.offsets()
d1 = query._size[1]
d2 = value._size[-1]
# convert jagged layout Nested Tensor to strided layout Nested Tensor
# which support the math implementation of SDPA
def get_strided_layout_nested_tensor(jagged_layout_nt):
lengths = jagged_layout_nt._offsets[1:] - jagged_layout_nt._offsets[:-1]
transpose = torch.transpose(jagged_layout_nt, 1, 2)
tensor_list = transpose.values().split(list(lengths), dim=0)
strided_nt = torch.nested.as_nested_tensor(list(tensor_list))
strided_nt = strided_nt.transpose(1, 2).contiguous()
return strided_nt
query = get_strided_layout_nested_tensor(query)
key = get_strided_layout_nested_tensor(key)
value = get_strided_layout_nested_tensor(value)
attn_out = torch._scaled_dot_product_attention_math(
query, key, value, attn_mask, dropout_p, is_causal, scale=scale
)[0]
from torch.nested._internal.nested_tensor import nested_view_from_values_offsets
# convert strided layout Nested Tensor back to jagged layout Nested Tensor
attn_out = attn_out.transpose(1, 2).contiguous().values()
attn_out = attn_out.view(-1, d1, d2)
attn_out = nested_view_from_values_offsets(attn_out, offsets)
attn_out = attn_out.transpose(1, 2)
return attn_out
else:
raise RuntimeError(
"No viable backend for scaled_dot_product_attention was found."
)