ai-content-maker/.venv/Lib/site-packages/torch/nn/modules/adaptive.py

313 lines
12 KiB
Python
Raw Permalink Normal View History

2024-05-03 04:18:51 +03:00
from collections import namedtuple
import torch
from torch import Tensor
from typing import List, Sequence
from . import Sequential, ModuleList, Linear
from .module import Module
from ..functional import log_softmax
__all__ = ['AdaptiveLogSoftmaxWithLoss']
_ASMoutput = namedtuple('_ASMoutput', ['output', 'loss'])
class AdaptiveLogSoftmaxWithLoss(Module):
r"""Efficient softmax approximation.
As described in
`Efficient softmax approximation for GPUs by Edouard Grave, Armand Joulin,
Moustapha Cissé, David Grangier, and Hervé Jégou
<https://arxiv.org/abs/1609.04309>`__.
Adaptive softmax is an approximate strategy for training models with large
output spaces. It is most effective when the label distribution is highly
imbalanced, for example in natural language modelling, where the word
frequency distribution approximately follows the `Zipf's law`_.
Adaptive softmax partitions the labels into several clusters, according to
their frequency. These clusters may contain different number of targets
each.
Additionally, clusters containing less frequent labels assign lower
dimensional embeddings to those labels, which speeds up the computation.
For each minibatch, only clusters for which at least one target is
present are evaluated.
The idea is that the clusters which are accessed frequently
(like the first one, containing most frequent labels), should also be cheap
to compute -- that is, contain a small number of assigned labels.
We highly recommend taking a look at the original paper for more details.
* :attr:`cutoffs` should be an ordered Sequence of integers sorted
in the increasing order.
It controls number of clusters and the partitioning of targets into
clusters. For example setting ``cutoffs = [10, 100, 1000]``
means that first `10` targets will be assigned
to the 'head' of the adaptive softmax, targets `11, 12, ..., 100` will be
assigned to the first cluster, and targets `101, 102, ..., 1000` will be
assigned to the second cluster, while targets
`1001, 1002, ..., n_classes - 1` will be assigned
to the last, third cluster.
* :attr:`div_value` is used to compute the size of each additional cluster,
which is given as
:math:`\left\lfloor\frac{\texttt{in\_features}}{\texttt{div\_value}^{idx}}\right\rfloor`,
where :math:`idx` is the cluster index (with clusters
for less frequent words having larger indices,
and indices starting from :math:`1`).
* :attr:`head_bias` if set to True, adds a bias term to the 'head' of the
adaptive softmax. See paper for details. Set to False in the official
implementation.
.. warning::
Labels passed as inputs to this module should be sorted according to
their frequency. This means that the most frequent label should be
represented by the index `0`, and the least frequent
label should be represented by the index `n_classes - 1`.
.. note::
This module returns a ``NamedTuple`` with ``output``
and ``loss`` fields. See further documentation for details.
.. note::
To compute log-probabilities for all classes, the ``log_prob``
method can be used.
Args:
in_features (int): Number of features in the input tensor
n_classes (int): Number of classes in the dataset
cutoffs (Sequence): Cutoffs used to assign targets to their buckets
div_value (float, optional): value used as an exponent to compute sizes
of the clusters. Default: 4.0
head_bias (bool, optional): If ``True``, adds a bias term to the 'head' of the
adaptive softmax. Default: ``False``
Returns:
``NamedTuple`` with ``output`` and ``loss`` fields:
* **output** is a Tensor of size ``N`` containing computed target
log probabilities for each example
* **loss** is a Scalar representing the computed negative
log likelihood loss
Shape:
- input: :math:`(N, \texttt{in\_features})` or :math:`(\texttt{in\_features})`
- target: :math:`(N)` or :math:`()` where each value satisfies :math:`0 <= \texttt{target[i]} <= \texttt{n\_classes}`
- output1: :math:`(N)` or :math:`()`
- output2: ``Scalar``
.. _Zipf's law: https://en.wikipedia.org/wiki/Zipf%27s_law
"""
in_features: int
n_classes: int
cutoffs: List[int]
div_value: float
head_bias: bool
head: Linear
tail: ModuleList
def __init__(
self,
in_features: int,
n_classes: int,
cutoffs: Sequence[int],
div_value: float = 4.,
head_bias: bool = False,
device=None,
dtype=None
) -> None:
factory_kwargs = {'device': device, 'dtype': dtype}
super().__init__()
cutoffs = list(cutoffs)
if (len(cutoffs) == 0):
raise ValueError("cutoffs should be a sequence of length larger than 0")
if (cutoffs != sorted(cutoffs)) \
or (min(cutoffs) <= 0) \
or (max(cutoffs) > (n_classes - 1)) \
or (len(set(cutoffs)) != len(cutoffs)) \
or any(int(c) != c for c in cutoffs):
raise ValueError("cutoffs should be a sequence of unique, positive "
"integers sorted in an increasing order, where "
"each value is between 1 and n_classes-1")
self.in_features = in_features
self.n_classes = n_classes
self.cutoffs = cutoffs + [n_classes]
self.div_value = div_value
self.head_bias = head_bias
self.shortlist_size = self.cutoffs[0]
self.n_clusters = len(self.cutoffs) - 1
self.head_size = self.shortlist_size + self.n_clusters
self.head = Linear(self.in_features, self.head_size, bias=self.head_bias,
**factory_kwargs)
self.tail = ModuleList()
for i in range(self.n_clusters):
hsz = int(self.in_features // (self.div_value ** (i + 1)))
osz = self.cutoffs[i + 1] - self.cutoffs[i]
projection = Sequential(
Linear(self.in_features, hsz, bias=False, **factory_kwargs),
Linear(hsz, osz, bias=False, **factory_kwargs),
)
self.tail.append(projection)
def reset_parameters(self) -> None:
self.head.reset_parameters()
for i2h, h2o in self.tail:
i2h.reset_parameters()
h2o.reset_parameters()
def forward(self, input_: Tensor, target_: Tensor) -> _ASMoutput:
targ_dim = target_.dim()
if targ_dim == 1:
if input_.size(0) != target_.size(0):
raise RuntimeError('Input and target should have the same size '
'in the batch dimension.')
if input_.dim() != 2:
raise RuntimeError('1D target tensor expects 2D input tensors, '
'but found inputs with size', input_.size())
elif targ_dim == 0:
if input_.dim() != 1:
raise RuntimeError('0D target tensor expects 1D input tensors, '
'but found inputs with size', input_.size())
else:
raise RuntimeError('0D or 1D target tensor expected, '
'multi-target not supported')
is_batched = targ_dim > 0
input = input_ if is_batched else input_.unsqueeze(0)
target = target_ if is_batched else target_.unsqueeze(0)
used_rows = 0
batch_size = target.size(0)
output = input.new_zeros(batch_size)
gather_inds = target.new_empty(batch_size)
cutoff_values = [0] + self.cutoffs
for i in range(len(cutoff_values) - 1):
low_idx = cutoff_values[i]
high_idx = cutoff_values[i + 1]
target_mask = (target >= low_idx) & (target < high_idx)
row_indices = target_mask.nonzero().squeeze()
if row_indices.numel() == 0:
continue
if i == 0:
gather_inds.index_copy_(0, row_indices, target[target_mask])
else:
relative_target = target[target_mask] - low_idx
input_subset = input.index_select(0, row_indices)
cluster_output = self.tail[i - 1](input_subset)
cluster_index = self.shortlist_size + i - 1
gather_inds.index_fill_(0, row_indices, cluster_index)
cluster_logprob = log_softmax(cluster_output, dim=1)
local_logprob = cluster_logprob.gather(1, relative_target.unsqueeze(1))
output.index_copy_(0, row_indices, local_logprob.squeeze(1))
used_rows += row_indices.numel()
if used_rows != batch_size:
raise RuntimeError(f"Target values should be in [0, {self.n_classes - 1}], "
f"but values in range [{target.min().item()}, {target.max().item()}] "
"were found. ")
head_output = self.head(input)
head_logprob = log_softmax(head_output, dim=1)
output += head_logprob.gather(1, gather_inds.unsqueeze(1)).squeeze()
loss = (-output).mean()
if not is_batched:
output = output.squeeze(0)
return _ASMoutput(output, loss)
def _get_full_log_prob(self, input, head_output):
"""Given input tensor, and output of ``self.head``, compute the log of the full distribution."""
out = input.new_empty((head_output.size(0), self.n_classes))
head_logprob = log_softmax(head_output, dim=1)
out[:, :self.shortlist_size] = head_logprob[:, :self.shortlist_size]
for i, (start_idx, stop_idx) in enumerate(zip(self.cutoffs, self.cutoffs[1:])):
cluster_output = self.tail[i](input)
cluster_logprob = log_softmax(cluster_output, dim=1)
output_logprob = cluster_logprob + head_logprob[:, self.shortlist_size + i].unsqueeze(1)
out[:, start_idx:stop_idx] = output_logprob
return out
def log_prob(self, input: Tensor) -> Tensor:
r"""Compute log probabilities for all :math:`\texttt{n\_classes}`.
Args:
input (Tensor): a minibatch of examples
Returns:
log-probabilities of for each class :math:`c`
in range :math:`0 <= c <= \texttt{n\_classes}`, where :math:`\texttt{n\_classes}` is a
parameter passed to ``AdaptiveLogSoftmaxWithLoss`` constructor.
Shape:
- Input: :math:`(N, \texttt{in\_features})`
- Output: :math:`(N, \texttt{n\_classes})`
"""
head_output = self.head(input)
return self._get_full_log_prob(input, head_output)
def predict(self, input: Tensor) -> Tensor:
r"""Return the class with the highest probability for each example in the input minibatch.
This is equivalent to ``self.log_prob(input).argmax(dim=1)``, but is more efficient in some cases.
Args:
input (Tensor): a minibatch of examples
Returns:
output (Tensor): a class with the highest probability for each example
Shape:
- Input: :math:`(N, \texttt{in\_features})`
- Output: :math:`(N)`
"""
head_output = self.head(input)
output = torch.argmax(head_output, dim=1)
not_in_shortlist = (output >= self.shortlist_size)
all_in_shortlist = not (not_in_shortlist.any())
if all_in_shortlist:
return output
elif not_in_shortlist.all():
log_prob = self._get_full_log_prob(input, head_output)
return torch.argmax(log_prob, dim=1)
else:
log_prob = self._get_full_log_prob(input[not_in_shortlist],
head_output[not_in_shortlist])
output[not_in_shortlist] = torch.argmax(log_prob, dim=1)
return output