ai-content-maker/.venv/Lib/site-packages/torch/onnx/errors.py

107 lines
3.5 KiB
Python
Raw Permalink Normal View History

2024-05-03 04:18:51 +03:00
"""ONNX exporter exceptions."""
from __future__ import annotations
import textwrap
from typing import Optional
from torch import _C
from torch.onnx import _constants
from torch.onnx._internal import diagnostics
__all__ = [
"OnnxExporterError",
"OnnxExporterWarning",
"CheckerError",
"SymbolicValueError",
"UnsupportedOperatorError",
]
class OnnxExporterWarning(UserWarning):
"""Base class for all warnings in the ONNX exporter."""
pass
class OnnxExporterError(RuntimeError):
"""Errors raised by the ONNX exporter."""
pass
class CheckerError(OnnxExporterError):
"""Raised when ONNX checker detects an invalid model."""
pass
class UnsupportedOperatorError(OnnxExporterError):
"""Raised when an operator is unsupported by the exporter."""
def __init__(self, name: str, version: int, supported_version: Optional[int]):
if supported_version is not None:
diagnostic_rule: diagnostics.infra.Rule = (
diagnostics.rules.operator_supported_in_newer_opset_version
)
msg = diagnostic_rule.format_message(name, version, supported_version)
diagnostics.diagnose(diagnostic_rule, diagnostics.levels.ERROR, msg)
else:
if name.startswith(("aten::", "prim::", "quantized::")):
diagnostic_rule = diagnostics.rules.missing_standard_symbolic_function
msg = diagnostic_rule.format_message(
name, version, _constants.PYTORCH_GITHUB_ISSUES_URL
)
diagnostics.diagnose(diagnostic_rule, diagnostics.levels.ERROR, msg)
else:
diagnostic_rule = diagnostics.rules.missing_custom_symbolic_function
msg = diagnostic_rule.format_message(name)
diagnostics.diagnose(diagnostic_rule, diagnostics.levels.ERROR, msg)
super().__init__(msg)
class SymbolicValueError(OnnxExporterError):
"""Errors around TorchScript values and nodes."""
def __init__(self, msg: str, value: _C.Value):
message = (
f"{msg} [Caused by the value '{value}' (type '{value.type()}') in the "
f"TorchScript graph. The containing node has kind '{value.node().kind()}'.] "
)
code_location = value.node().sourceRange()
if code_location:
message += f"\n (node defined in {code_location})"
try:
# Add its input and output to the message.
message += "\n\n"
message += textwrap.indent(
(
"Inputs:\n"
+ (
"\n".join(
f" #{i}: {input_} (type '{input_.type()}')"
for i, input_ in enumerate(value.node().inputs())
)
or " Empty"
)
+ "\n"
+ "Outputs:\n"
+ (
"\n".join(
f" #{i}: {output} (type '{output.type()}')"
for i, output in enumerate(value.node().outputs())
)
or " Empty"
)
),
" ",
)
except AttributeError:
message += (
" Failed to obtain its input and output for debugging. "
"Please refer to the TorchScript graph for debugging information."
)
super().__init__(message)