1929 lines
73 KiB
Python
1929 lines
73 KiB
Python
|
import math
|
||
|
import os
|
||
|
import torch
|
||
|
import weakref
|
||
|
from functools import lru_cache
|
||
|
from torch.utils._triton import has_triton
|
||
|
from ._triton_ops_meta import get_meta
|
||
|
from typing import Optional, Tuple
|
||
|
|
||
|
TORCH_SPARSE_BSR_SCATTER_MM_LRU_CACHE_SIZE = int(os.getenv('TORCH_SPARSE_BSR_SCATTER_MM_LRU_CACHE_SIZE', 2))
|
||
|
|
||
|
|
||
|
def check(cond, msg):
|
||
|
if not cond:
|
||
|
raise ValueError(msg)
|
||
|
|
||
|
|
||
|
def check_bsr_layout(f_name, t):
|
||
|
check(
|
||
|
t.layout == torch.sparse_bsr,
|
||
|
f"{f_name}(): only BSR sparse format is supported for the sparse argument.",
|
||
|
)
|
||
|
|
||
|
|
||
|
def check_device(f_name, t, device):
|
||
|
check(
|
||
|
t.device == device and t.device.type == "cuda",
|
||
|
f"{f_name}(): all inputs are expected to be on the same GPU device.",
|
||
|
)
|
||
|
|
||
|
|
||
|
def check_mm_compatible_shapes(f_name, lhs, rhs):
|
||
|
check(
|
||
|
lhs.dim() >= 2 and rhs.dim() >= 2,
|
||
|
f"{f_name}(): all inputs involved in the matrix product are expected to be at least 2D, "
|
||
|
f"but got lhs.dim() == {lhs.dim()} and rhs.dim() == {rhs.dim()}."
|
||
|
)
|
||
|
|
||
|
m, kl = lhs.shape[-2:]
|
||
|
kr, n = rhs.shape[-2:]
|
||
|
|
||
|
check(
|
||
|
kl == kr,
|
||
|
f"{f_name}(): arguments' sizes involved in the matrix product are not compatible for matrix multiplication, "
|
||
|
f"got lhs.shape[-1] == {kl} which is not equal to rhs.shape[-2] == {kr}.",
|
||
|
)
|
||
|
|
||
|
|
||
|
def check_dtype(f_name, t, dtype, *additional_dtypes):
|
||
|
check(
|
||
|
t.dtype == dtype
|
||
|
and t.dtype in ((torch.half, torch.bfloat16, torch.float) + tuple(*additional_dtypes)),
|
||
|
f"{f_name}(): all inputs are expected to be of the same dtype "
|
||
|
f"and one of (half, bfloat16, float32) or {additional_dtypes}, "
|
||
|
f"but got dtype == {t.dtype}.",
|
||
|
)
|
||
|
|
||
|
|
||
|
def check_blocksize(f_name, blocksize):
|
||
|
assert len(blocksize) == 2
|
||
|
|
||
|
def is_power_of_two(v):
|
||
|
return not (v & (v - 1))
|
||
|
|
||
|
def is_compatible_blocksize(b):
|
||
|
res = True
|
||
|
for blocksize in b:
|
||
|
# Triton loads only blocks which are at least 16 and powers of 2.
|
||
|
res = (blocksize >= 16 and is_power_of_two(blocksize)) and res
|
||
|
return res
|
||
|
|
||
|
check(
|
||
|
is_compatible_blocksize(blocksize),
|
||
|
f"{f_name}(): sparse inputs' blocksize ({blocksize[0]}, {blocksize[1]}) "
|
||
|
"should be at least 16 and a power of 2 in each dimension.",
|
||
|
)
|
||
|
|
||
|
|
||
|
def make_triton_contiguous(t):
|
||
|
"""Return input as a triton-contiguous tensor.
|
||
|
|
||
|
A triton-contiguous tensor is defined as a tensor that has strides
|
||
|
with minimal value equal to 1.
|
||
|
|
||
|
While triton kernels support triton-non-contiguous tensors (all
|
||
|
strides being greater than 1 or having 0 strides) arguments, a
|
||
|
considerable slow-down occurs because tensor data is copied
|
||
|
element-wise rather than chunk-wise.
|
||
|
"""
|
||
|
if min(t.stride()) != 1:
|
||
|
# TODO: investigate if contiguity along other axes than the
|
||
|
# last one can be beneficial for performance
|
||
|
return t.contiguous()
|
||
|
else:
|
||
|
return t
|
||
|
|
||
|
|
||
|
def broadcast_batch_dims(f_name, *tensors):
|
||
|
try:
|
||
|
return torch.broadcast_shapes(*(t.shape[:-2] for t in tensors))
|
||
|
except Exception:
|
||
|
check(False, f"{f_name}(): inputs' batch dimensions are not broadcastable!")
|
||
|
|
||
|
|
||
|
def slicer(dim, slice_range, *tensors):
|
||
|
for t in tensors:
|
||
|
slices = [slice(None)] * t.dim()
|
||
|
slices[dim] = slice_range
|
||
|
yield t[slices]
|
||
|
|
||
|
|
||
|
def multidim_slicer(dims, slices, *tensors):
|
||
|
for t in tensors:
|
||
|
s = [slice(None)] * t.dim()
|
||
|
for d, d_slice in zip(dims, slices):
|
||
|
if d is not None:
|
||
|
s[d] = d_slice
|
||
|
yield t[s]
|
||
|
|
||
|
|
||
|
def ptr_stride_extractor(*tensors):
|
||
|
for t in tensors:
|
||
|
yield t
|
||
|
yield from t.stride()
|
||
|
|
||
|
|
||
|
def grid_partitioner(full_grid, grid_blocks, tensor_dims_map):
|
||
|
assert 0 <= len(full_grid) <= 3
|
||
|
assert 0 <= len(grid_blocks) <= 3
|
||
|
|
||
|
import itertools
|
||
|
|
||
|
def generate_grid_points():
|
||
|
for fg, mg in zip(full_grid, grid_blocks):
|
||
|
yield range(0, fg, mg)
|
||
|
|
||
|
def generate_sliced_tensors(slices):
|
||
|
for t, t_dims in tensor_dims_map.items():
|
||
|
yield next(multidim_slicer(t_dims, slices, t))
|
||
|
|
||
|
for grid_point in itertools.product(*generate_grid_points()):
|
||
|
grid = [min(fg - gp, mg) for fg, gp, mg in zip(full_grid, grid_point, grid_blocks)]
|
||
|
slices = [slice(gp, gp + g) for gp, g in zip(grid_point, grid)]
|
||
|
# grid_points are iterated in a "contiguous" order, i.e.
|
||
|
# left dimensions traversed slower than right dimensions.
|
||
|
# This order is reversed for CUDA grids.
|
||
|
yield grid[::-1], *generate_sliced_tensors(slices)
|
||
|
|
||
|
|
||
|
def launch_kernel(kernel, tensor_dims_map, full_grid, grid_blocks=None):
|
||
|
# cuda_max_grid = (2 ** 31 - 1, 2 ** 16 - 1, 2 ** 16 - 1)
|
||
|
cuda_max_grid = (2147483647, 65535, 65535)[::-1]
|
||
|
if grid_blocks is None:
|
||
|
grid_blocks = cuda_max_grid
|
||
|
else:
|
||
|
|
||
|
def valid_grid_dim(g, mg):
|
||
|
if g is None:
|
||
|
return mg
|
||
|
else:
|
||
|
# grid must be at least 1 and no greater than mg
|
||
|
return max(1, min(g, mg))
|
||
|
|
||
|
grid_blocks = tuple(
|
||
|
valid_grid_dim(g, mg) for g, mg in zip(grid_blocks, cuda_max_grid)
|
||
|
) # type: ignore[assignment]
|
||
|
|
||
|
for grid, *sliced_tensors in grid_partitioner(full_grid, grid_blocks, tensor_dims_map):
|
||
|
kernel(grid, *sliced_tensors)
|
||
|
|
||
|
|
||
|
def prepare_inputs(bsr, *dense_tensors):
|
||
|
# Introduce fake batch dimension if not present for convenience.
|
||
|
crow_indices = bsr.crow_indices().unsqueeze(0)
|
||
|
col_indices = bsr.col_indices().unsqueeze(0)
|
||
|
values = make_triton_contiguous(bsr.values().unsqueeze(0))
|
||
|
tensors = [make_triton_contiguous(t.unsqueeze(0)) for t in dense_tensors]
|
||
|
|
||
|
# Compute broadcasted batch dimension
|
||
|
batch_dims_broadcasted = torch.broadcast_shapes(values.shape[:-3], *(t.shape[:-2] for t in tensors))
|
||
|
|
||
|
# Broadcast batch dimensions and squash.
|
||
|
# The result can be either a view or a copy.
|
||
|
def batch_broadcast_and_squash(t, batch_dims, invariant_dims):
|
||
|
return t.broadcast_to(batch_dims + invariant_dims).flatten(
|
||
|
0, len(batch_dims) - 1
|
||
|
)
|
||
|
|
||
|
crow_indices = batch_broadcast_and_squash(
|
||
|
crow_indices, batch_dims_broadcasted, (-1,)
|
||
|
)
|
||
|
|
||
|
col_indices = batch_broadcast_and_squash(
|
||
|
col_indices, batch_dims_broadcasted, (-1,)
|
||
|
)
|
||
|
values = batch_broadcast_and_squash(
|
||
|
values, batch_dims_broadcasted, values.shape[-3:]
|
||
|
)
|
||
|
tensors = [
|
||
|
batch_broadcast_and_squash(t, batch_dims_broadcasted, t.shape[-2:]) for t in tensors
|
||
|
]
|
||
|
|
||
|
return crow_indices, col_indices, values, *tensors
|
||
|
|
||
|
|
||
|
def broadcast_batch_dims_bsr(f_name, bsr, *tensors):
|
||
|
batch_shape = broadcast_batch_dims(f_name, bsr, *tensors)
|
||
|
|
||
|
crow_indices = bsr.crow_indices().broadcast_to(batch_shape + (-1,))
|
||
|
col_indices = bsr.col_indices().broadcast_to(batch_shape + (-1,))
|
||
|
values = bsr.values().broadcast_to(batch_shape + bsr.values().shape[-3:])
|
||
|
size = batch_shape + bsr.shape[-2:]
|
||
|
return torch.sparse_compressed_tensor(crow_indices, col_indices, values, size=size, layout=bsr.layout)
|
||
|
|
||
|
|
||
|
# NOTE: this function will ALWAYS create a view
|
||
|
def tile_to_blocksize(t, blocksize):
|
||
|
*rest, m, n = t.shape
|
||
|
new_shape = rest + [
|
||
|
m // blocksize[0],
|
||
|
blocksize[0],
|
||
|
n // blocksize[1],
|
||
|
blocksize[1],
|
||
|
]
|
||
|
# using .view instead of .reshape to ensure that the result is
|
||
|
# indeed a view:
|
||
|
return t.view(new_shape).transpose(-3, -2)
|
||
|
|
||
|
|
||
|
def as1Dbatch(tensor):
|
||
|
"""Return tensor as 3D tensor by either prepending new dimensions to
|
||
|
the tensor shape (when ``tensor.ndim < 3``), or by collapsing
|
||
|
starting dimensions into the first dimension (when ``tensor.ndim >
|
||
|
3``).
|
||
|
"""
|
||
|
while tensor.ndim < 3:
|
||
|
tensor = tensor.unsqueeze(0)
|
||
|
if tensor.ndim > 3:
|
||
|
tensor = tensor.flatten(0, tensor.ndim - 3)
|
||
|
assert tensor.ndim == 3, tensor.shape
|
||
|
return tensor
|
||
|
|
||
|
|
||
|
def scatter_mm(blocks, others, indices_data, *, accumulators=None):
|
||
|
"""Scattered matrix multiplication of tensors.
|
||
|
|
||
|
A scattered matrix multiplication is defined as a series of matrix
|
||
|
multiplications applied to input tensors according to the input
|
||
|
and output mappings specified by indices data.
|
||
|
|
||
|
The following indices data formats are supported for defining a
|
||
|
scattered matrix multiplication operation (:attr:`indices_data[0]`
|
||
|
holds the name of the indices data format as specified below):
|
||
|
|
||
|
- ``"scatter_mm"`` - matrix multiplications scattered in batches
|
||
|
of tensors.
|
||
|
|
||
|
If :attr:`blocks` is a :math:`(* \times M \times K) tensor,
|
||
|
:attr:`others` is a :math:`(* \times K \times N)` tensor,
|
||
|
:attr:`accumulators` is a :math:`(* \times M \times N)` tensor,
|
||
|
and :attr:`indices = indices_data['indices']` is a :math:`(*
|
||
|
\times 3)` tensor, then the operation is equivalent to the
|
||
|
following code::
|
||
|
|
||
|
c_offsets, pq = indices_data[1:]
|
||
|
for r in range(len(c_offsets) - 1):
|
||
|
for g in range(c_offsets[r], c_offsets[r + 1]):
|
||
|
p, q = pq[g]
|
||
|
accumulators[r] += blocks[p] @ others[q]
|
||
|
|
||
|
- ``"bsr_strided_mm"`` - matrix multiplications scattered in
|
||
|
batches of tensors and a tensor.
|
||
|
|
||
|
If :attr:`blocks` is a :math:`(Ms \times Ks) tensor,
|
||
|
:attr:`others` is a :math:`(* \times K \times N)` tensor,
|
||
|
:attr:`accumulators` is a :math:`(* \times M \times N)` tensor, then
|
||
|
the operation is equivalent to the following code::
|
||
|
|
||
|
c_indices, r_offsets, p_offsets, q_offsets, meta = indices_data[1:]
|
||
|
for b in range(nbatches):
|
||
|
for i, r in enumerate(r_offsets):
|
||
|
r0, r1 = divmod(r, N)
|
||
|
acc = accumulators[b, r0:r0 + Ms, r1:r1 + Ns]
|
||
|
for g in range(c_indices[i], c_indices[i+1]):
|
||
|
p = p_offsets[g]
|
||
|
q0, q1 = divmod(q_offsets[g], N)
|
||
|
acc += blocks[p] @ others[b, q0:q0 + Ks, q1:q1 + Ns]
|
||
|
|
||
|
where ``Ns = N // meta['SPLIT_N']``, and ``M`` and ``K`` are
|
||
|
integer multiples of ``Ms`` and ``Ks``, respectively.
|
||
|
|
||
|
- ``"bsr_strided_mm_compressed"`` - matrix multiplications
|
||
|
scattered in batches of tensors and a tensor. A memory and
|
||
|
processor efficient version of ``"bsr_strided_mm"`` format. If
|
||
|
:attr:`blocks` is a :math:`(Ms \times Ks) tensor, :attr:`others`
|
||
|
is a :math:`(* \times K \times N)` tensor, :attr:`accumulators`
|
||
|
is a :math:`(* \times M \times N)` tensor, then the operation is
|
||
|
equivalent to the following code::
|
||
|
|
||
|
c_indices, r_offsets, q_offsets, meta = indices_data[1:]
|
||
|
for b in range(nbatches):
|
||
|
for r in r_offsets:
|
||
|
m = (r // N) // Ms
|
||
|
n = (r % N) // Ns
|
||
|
r0, r1 = divmod(r, N)
|
||
|
c0, c1 = c_indices[m], c_indices[m + 1]
|
||
|
acc = accumulators[b, r0:r0 + Ms, r1:r1 + Ns]
|
||
|
for i, p in enumerate(range(c0, c1)):
|
||
|
q = q_offsets[n * c1 + (SPLIT_N - n) * c0 + i]
|
||
|
q0, q1 = divmod(q, N)
|
||
|
acc += blocks[p] @ others[b, q0:q0 + Ks, q1:q1 + Ns]
|
||
|
|
||
|
where ``Ns = N // meta['SPLIT_N']``, and ``M`` and ``K`` are
|
||
|
integer multiples of ``Ms`` and ``Ks``, respectively.
|
||
|
|
||
|
Notice that the order of ``r_offsets`` items can be arbitrary;
|
||
|
this property enables defining swizzle operators via
|
||
|
rearrangements of ``r_offsets`` items..
|
||
|
|
||
|
Auxilary functions are provided for pre-computing
|
||
|
:attr:`indices_data`. For example,
|
||
|
:func:`bsr_scatter_mm_indices_data` is used to define indices data
|
||
|
for matrix multiplication of BSR and strided tensors.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
blocks (Tensor): a 3-D tensor of first matrices to be multiplied
|
||
|
|
||
|
others (Tensor): a tensor of second matrices to be multiplied. If
|
||
|
``indices_data[0]=="scatter_mm"``, the tensor is a 1-D batch
|
||
|
tensor of second input matrices to be multiplied. Otherwise, the
|
||
|
second input matrices are slices of the :attr:`others` tensor.
|
||
|
indices_data (tuple): a format data that defines the inputs and
|
||
|
outputs of scattered matrix multiplications.
|
||
|
|
||
|
Keyword arguments
|
||
|
-----------------
|
||
|
|
||
|
accumulators (Tensor, optional): a tensor of matrix product
|
||
|
accumulators. If ``indices_data[0]=="scatter_mm"``, the tensor
|
||
|
is a 1-D batch tensor of output matrices. Otherwise, output
|
||
|
matrices are slices of the :attr:`accumulators` tensor.
|
||
|
"""
|
||
|
indices_format = indices_data[0]
|
||
|
|
||
|
assert blocks.ndim == 3
|
||
|
P, Ms, Ks = blocks.shape
|
||
|
|
||
|
if indices_format == 'scatter_mm':
|
||
|
c_offsets, pq = indices_data[1:]
|
||
|
|
||
|
assert others.ndim == 3
|
||
|
Q, Ks_, Ns = others.shape
|
||
|
assert Ks == Ks_
|
||
|
|
||
|
if accumulators is None:
|
||
|
R = c_offsets.shape[0] - 1
|
||
|
accumulators = torch.zeros((R, Ms, Ns), dtype=blocks.dtype, device=blocks.device)
|
||
|
else:
|
||
|
R, Ms_, Ns_ = accumulators.shape
|
||
|
assert Ms_ == Ms
|
||
|
assert Ns_ == Ns
|
||
|
|
||
|
if Ms % 16 or Ks % 16 or Ns % 16 or _scatter_mm2 is None:
|
||
|
for r in range(c_offsets.shape[0] - 1):
|
||
|
g0 = c_offsets[r]
|
||
|
g1 = c_offsets[r + 1]
|
||
|
for g in range(g0, g1):
|
||
|
p, q = pq[g]
|
||
|
accumulators[r] += blocks[p] @ others[q]
|
||
|
else:
|
||
|
_scatter_mm2(blocks, others, c_offsets, pq, accumulators)
|
||
|
return accumulators
|
||
|
|
||
|
elif indices_format == 'bsr_strided_mm':
|
||
|
others_shape = others.shape
|
||
|
others = as1Dbatch(others)
|
||
|
|
||
|
B, K, N = others.shape
|
||
|
assert K % Ks == 0
|
||
|
|
||
|
c_indices, r_offsets, p_offsets, q_offsets, meta = indices_data[1:]
|
||
|
SPLIT_N = meta['SPLIT_N']
|
||
|
|
||
|
if accumulators is None:
|
||
|
M = Ms + (r_offsets.max().item() + 1) // N
|
||
|
accumulators = torch.zeros((*others_shape[:-2], M, N), dtype=blocks.dtype, device=blocks.device)
|
||
|
else:
|
||
|
M, N_ = accumulators.shape[-2:]
|
||
|
assert N_ == N
|
||
|
|
||
|
accumulators_shape = accumulators.shape
|
||
|
accumulators = as1Dbatch(accumulators)
|
||
|
|
||
|
Ns = N // SPLIT_N
|
||
|
|
||
|
if Ms % 16 or Ks % 16 or Ns % 16 or _scatter_mm6 is None:
|
||
|
accumulators.zero_()
|
||
|
for b in range(B):
|
||
|
for r in range(r_offsets.shape[0]):
|
||
|
r_ = r_offsets[r].item()
|
||
|
g0 = c_indices[r].item()
|
||
|
g1 = c_indices[r + 1].item()
|
||
|
r0, r1 = divmod(r_, N)
|
||
|
acc = accumulators[b, r0:r0 + Ms, r1:r1 + Ns]
|
||
|
for g in range(g0, g1):
|
||
|
p, q = p_offsets[g], q_offsets[g]
|
||
|
q0, q1 = divmod(q.item(), N)
|
||
|
acc += blocks[p] @ others[b, q0:q0 + Ks, q1:q1 + Ns]
|
||
|
else:
|
||
|
_scatter_mm6(blocks, others, c_indices, r_offsets, p_offsets, q_offsets, meta, accumulators)
|
||
|
return accumulators.view(accumulators_shape)
|
||
|
|
||
|
elif indices_format == 'bsr_strided_mm_compressed':
|
||
|
others_shape = others.shape
|
||
|
others = as1Dbatch(others)
|
||
|
|
||
|
B, K, N = others.shape
|
||
|
assert K % Ks == 0
|
||
|
|
||
|
c_indices, r_offsets, q_offsets, meta = indices_data[1:]
|
||
|
SPLIT_N = meta['SPLIT_N']
|
||
|
|
||
|
if accumulators is None:
|
||
|
M = Ms + (r_offsets.max().item() + 1) // N
|
||
|
accumulators = torch.zeros((*others_shape[:-2], M, N), dtype=blocks.dtype, device=blocks.device)
|
||
|
else:
|
||
|
M, N_ = accumulators.shape[-2:]
|
||
|
assert N_ == N
|
||
|
|
||
|
accumulators_shape = accumulators.shape
|
||
|
accumulators = as1Dbatch(accumulators)
|
||
|
|
||
|
Ns = N // SPLIT_N
|
||
|
|
||
|
if Ms % 16 or Ks % 16 or Ns % 16 or _scatter_mm6 is None:
|
||
|
for b in range(B):
|
||
|
for j in range(len(r_offsets)):
|
||
|
r0, r1 = divmod(r_offsets[j].item(), N)
|
||
|
m = r0 // Ms
|
||
|
n = r1 // Ns
|
||
|
c0 = c_indices[m].item()
|
||
|
c1 = c_indices[m + 1].item()
|
||
|
acc = accumulators[b, r0:r0 + Ms, r1:r1 + Ns]
|
||
|
for i, p in enumerate(range(c0, c1)):
|
||
|
q = q_offsets[n * c1 + (SPLIT_N - n) * c0 + i].item()
|
||
|
q0, q1 = divmod(q, N)
|
||
|
acc += blocks[p] @ others[b, q0:q0 + Ks, q1:q1 + Ns]
|
||
|
else:
|
||
|
p_offsets = torch.empty((0, ), dtype=q_offsets.dtype, device=q_offsets.device)
|
||
|
_scatter_mm6(blocks, others, c_indices, r_offsets, p_offsets, q_offsets, meta, accumulators)
|
||
|
return accumulators.view(accumulators_shape)
|
||
|
|
||
|
else:
|
||
|
raise NotImplementedError(indices_format)
|
||
|
|
||
|
|
||
|
def scatter_mm_meta(M, K, N, Ms, Ks,
|
||
|
GROUP_SIZE=None, TILE_M=None, TILE_N=None, SPLIT_N=None, num_warps=None, num_stages=None, **extra):
|
||
|
if {TILE_M, TILE_N, SPLIT_N, num_warps, num_stages, GROUP_SIZE} == {None}:
|
||
|
device_name = torch.cuda.get_device_name()
|
||
|
meta = get_meta('scatter_mm', (M, K, N, Ms, Ks), device_name,
|
||
|
version=(0, torch.float16, 0.5))
|
||
|
if meta is not None:
|
||
|
meta.update(**extra)
|
||
|
return meta
|
||
|
# The following parameters are optimized for the performance
|
||
|
# equilibrium points of bsr-dense and dense-dense matrix
|
||
|
# multiplications when using GPU card NVIDIA GeForce RTX 2060
|
||
|
# SUPER. For points far from the performance equilibrium
|
||
|
# points as well as for other GPU cards, the optimal
|
||
|
# parameters are likely different from what specified below.
|
||
|
if (M, K, N) == (256,) * 3:
|
||
|
if (Ms, Ks) == (16, 16):
|
||
|
SPLIT_N=1;TILE_M=16;TILE_N=16;GROUP_SIZE=4;num_stages=1;num_warps=4 # noqa: E225,E231,E702
|
||
|
elif (Ms, Ks) == (32, 32):
|
||
|
SPLIT_N=2;TILE_M=32;TILE_N=16;GROUP_SIZE=4;num_stages=1;num_warps=4 # noqa: E225,E231,E702
|
||
|
elif (Ms, Ks) == (64, 64):
|
||
|
SPLIT_N=1;TILE_M=32;TILE_N=32;GROUP_SIZE=4;num_stages=1;num_warps=4 # noqa: E225,E231,E702
|
||
|
elif (Ms, Ks) == (128, 128):
|
||
|
SPLIT_N=1;TILE_M=32;TILE_N=32;GROUP_SIZE=2;num_stages=1;num_warps=4 # noqa: E225,E231,E702
|
||
|
elif (M, K, N) == (512,) * 3:
|
||
|
if (Ms, Ks) == (16, 16):
|
||
|
SPLIT_N=8;TILE_M=16;TILE_N=64;GROUP_SIZE=2;num_stages=1;num_warps=2 # noqa: E225,E231,E702
|
||
|
elif (Ms, Ks) == (32, 32):
|
||
|
SPLIT_N=8;TILE_M=32;TILE_N=64;GROUP_SIZE=4;num_stages=1;num_warps=2 # noqa: E225,E231,E702
|
||
|
elif (Ms, Ks) == (64, 64):
|
||
|
SPLIT_N=4;TILE_M=32;TILE_N=128;GROUP_SIZE=4;num_stages=1;num_warps=4 # noqa: E225,E231,E702
|
||
|
elif (Ms, Ks) == (128, 128):
|
||
|
SPLIT_N=8;TILE_M=64;TILE_N=64;GROUP_SIZE=4;num_stages=1;num_warps=4 # noqa: E225,E231,E702
|
||
|
elif (M, K, N) == (1024,) * 3:
|
||
|
if (Ms, Ks) == (16, 16):
|
||
|
SPLIT_N=4;TILE_M=16;TILE_N=128;GROUP_SIZE=2;num_stages=1;num_warps=1 # noqa: E225,E231,E702
|
||
|
elif (Ms, Ks) == (32, 32):
|
||
|
SPLIT_N=8;TILE_M=32;TILE_N=64;GROUP_SIZE=2;num_stages=1;num_warps=1 # noqa: E225,E231,E702
|
||
|
elif (Ms, Ks) == (64, 64):
|
||
|
SPLIT_N=16;TILE_M=64;TILE_N=64;GROUP_SIZE=4;num_stages=1;num_warps=2 # noqa: E225,E231,E702
|
||
|
elif (Ms, Ks) == (128, 128):
|
||
|
SPLIT_N=16;TILE_M=64;TILE_N=64;GROUP_SIZE=4;num_stages=1;num_warps=4 # noqa: E225,E231,E702
|
||
|
elif (Ms, Ks) == (256, 256):
|
||
|
SPLIT_N=16;TILE_M=64;TILE_N=64;GROUP_SIZE=2;num_stages=1;num_warps=4 # noqa: E225,E231,E702
|
||
|
elif (M, K, N) == (2048,) * 3:
|
||
|
if (Ms, Ks) == (16, 16):
|
||
|
SPLIT_N=4;TILE_M=16;TILE_N=128;GROUP_SIZE=8;num_stages=1;num_warps=1 # noqa: E225,E231,E702
|
||
|
elif (Ms, Ks) == (32, 32):
|
||
|
SPLIT_N=4;TILE_M=32;TILE_N=64;GROUP_SIZE=4;num_stages=1;num_warps=1 # noqa: E225,E231,E702
|
||
|
elif (Ms, Ks) == (64, 64):
|
||
|
SPLIT_N=4;TILE_M=64;TILE_N=128;GROUP_SIZE=4;num_stages=1;num_warps=4 # noqa: E225,E231,E702
|
||
|
elif (Ms, Ks) == (128, 128):
|
||
|
SPLIT_N=8;TILE_M=64;TILE_N=64;GROUP_SIZE=4;num_stages=1;num_warps=4 # noqa: E225,E231,E702
|
||
|
elif (Ms, Ks) == (256, 256):
|
||
|
SPLIT_N=4;TILE_M=64;TILE_N=64;GROUP_SIZE=2;num_stages=1;num_warps=4 # noqa: E225,E231,E702
|
||
|
elif (M, K, N) == (4096,) * 3:
|
||
|
if (Ms, Ks) == (16, 16):
|
||
|
SPLIT_N=2;TILE_M=16;TILE_N=256;GROUP_SIZE=2;num_stages=1;num_warps=2 # noqa: E225,E231,E702
|
||
|
elif (Ms, Ks) == (32, 32):
|
||
|
SPLIT_N=2;TILE_M=32;TILE_N=64;GROUP_SIZE=2;num_stages=1;num_warps=1 # noqa: E225,E231,E702
|
||
|
elif (Ms, Ks) == (64, 64):
|
||
|
SPLIT_N=2;TILE_M=64;TILE_N=128;GROUP_SIZE=2;num_stages=1;num_warps=4 # noqa: E225,E231,E702
|
||
|
|
||
|
if SPLIT_N is None:
|
||
|
# Assume NVIDIA GeForce RTX 2060 SUPER:
|
||
|
# With the probality of 92% (99.9% when N > 512), the
|
||
|
# performance will not be worse more than 2% from the
|
||
|
# performance when using an optimal value. Otherwise, when N
|
||
|
# <= 512, using the following heuristics may give upto 15%
|
||
|
# lower performance.
|
||
|
SPLIT_N = {16: 1, 32: 2, 64: 4, 128: 8, 256: 16, 512: 8, 1024: 16, 4096: 32, 8192: 64}.get(N, 16)
|
||
|
if Ms >= 512 and N >= 2048:
|
||
|
SPLIT_N = 1
|
||
|
Ns = N // SPLIT_N
|
||
|
if TILE_M is None:
|
||
|
TILE_M = min(64 if Ns < 512 else 32, Ms)
|
||
|
if TILE_N is None:
|
||
|
TILE_N = min(64 if Ns < 512 else 32, Ns)
|
||
|
num_stages = num_stages or 1
|
||
|
if num_warps is None:
|
||
|
if min(M, N) > 1024:
|
||
|
num_warps = {16: 1, 32: 1, 64: 2}.get(Ms, 4)
|
||
|
elif min(M, N) == 1024:
|
||
|
num_warps = {16: 1, 32: 1, 64: 2}.get(Ms, 4)
|
||
|
elif min(M, N) == 256:
|
||
|
num_warps = {16: 1, 32: 4}.get(Ms, 4)
|
||
|
else:
|
||
|
num_warps = {16: 1, 32: 2}.get(Ms, 4)
|
||
|
GROUP_SIZE = GROUP_SIZE or 4
|
||
|
|
||
|
assert TILE_M <= Ms, dict(TILE_M=TILE_M, Ms=Ms)
|
||
|
assert TILE_N <= Ns, dict(TILE_N=TILE_N, Ns=Ns)
|
||
|
assert Ms <= M, dict(M=M, Ms=Ms)
|
||
|
assert Ns <= N, dict(N=N, Ns=Ns)
|
||
|
assert Ks <= K, dict(K=K, Ks=Ks)
|
||
|
|
||
|
return dict(TILE_M=TILE_M, TILE_N=TILE_N, GROUP_SIZE=GROUP_SIZE,
|
||
|
num_stages=num_stages, num_warps=num_warps, SPLIT_N=SPLIT_N, **extra)
|
||
|
|
||
|
|
||
|
def bsr_dense_addmm_meta(M, K, N, Ms, Ks, beta, alpha,
|
||
|
SPLIT_N=None, GROUP_SIZE_ROW=None, num_warps=None, num_stages=None, sparsity=None, dtype=None, **extra):
|
||
|
if dtype is None:
|
||
|
dtype = torch.float16
|
||
|
if sparsity is None:
|
||
|
sparsity = 0.5
|
||
|
if {SPLIT_N, num_warps, num_stages, GROUP_SIZE_ROW} == {None}:
|
||
|
device_name = torch.cuda.get_device_name()
|
||
|
key = (M, K, N, Ms, Ks, beta == 0, beta == 1, alpha == 1)
|
||
|
meta = get_meta('bsr_dense_addmm', key,
|
||
|
device_name, version=(0, dtype, sparsity))
|
||
|
if meta is None and sparsity != 0.5:
|
||
|
meta = get_meta('bsr_dense_addmm', key,
|
||
|
device_name, version=(0, dtype, 0.5))
|
||
|
if meta is not None:
|
||
|
meta.update(**extra)
|
||
|
return meta
|
||
|
SPLIT_N = SPLIT_N or max(N // Ms, 1)
|
||
|
GROUP_SIZE_ROW = GROUP_SIZE_ROW or 4
|
||
|
num_stages = num_stages or 1
|
||
|
num_warps = num_warps or 4
|
||
|
return dict(SPLIT_N=SPLIT_N, GROUP_SIZE_ROW=GROUP_SIZE_ROW, num_stages=num_stages, num_warps=num_warps, **extra)
|
||
|
|
||
|
|
||
|
class TensorAsKey:
|
||
|
"""A light-weight wrapper of a tensor that enables storing tensors as
|
||
|
keys with efficient memory reference based comparision as an
|
||
|
approximation to data equality based keys.
|
||
|
|
||
|
Motivation: the hash value of a torch tensor is tensor instance
|
||
|
based that does not use data equality and makes the usage of
|
||
|
tensors as keys less useful. For instance, the result of
|
||
|
``len({a.crow_indices(), a.crow_indices()})`` is `2`, although,
|
||
|
the tensor results from `crow_indices` method call are equal, in
|
||
|
fact, these share the same data storage.
|
||
|
On the other hand, for efficient caching of tensors we want to
|
||
|
avoid calling torch.equal that compares tensors item-wise.
|
||
|
|
||
|
TensorAsKey offers a compromise in that it guarantees key equality
|
||
|
of tensors that references data in the same storage in the same
|
||
|
manner and without accessing underlying data. However, this
|
||
|
approach does not always guarantee correctness. For instance, for
|
||
|
a complex tensor ``x``, we have ``TensorAsKey(x) ==
|
||
|
TensorAsKey(x.conj())`` while ``torch.equal(x, x.conj())`` would
|
||
|
return False.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, obj):
|
||
|
|
||
|
def get_tensor_key(obj):
|
||
|
# Warning: TensorAsKey does not track negative nor
|
||
|
# conjugate bits of its input object because in the use
|
||
|
# case of wrapping compressed/plain indices of compressed
|
||
|
# sparse tensors (that are always integer tensors with
|
||
|
# non-negative items) these bits are never set. However,
|
||
|
# when extending the use of TensorAsKey to float or
|
||
|
# complex tensors, the values of these bits (see is_neg
|
||
|
# and is_conj methods) must be included in the key as
|
||
|
# well.
|
||
|
assert not (obj.dtype.is_floating_point or obj.dtype.is_complex), obj.dtype
|
||
|
return (obj.data_ptr(), obj.storage_offset(), obj.shape, obj.stride(), obj.dtype)
|
||
|
|
||
|
self._obj_ref = weakref.ref(obj)
|
||
|
if obj.layout is torch.strided:
|
||
|
self.key = get_tensor_key(obj)
|
||
|
elif obj.layout in {torch.sparse_csr, torch.sparse_bsr}:
|
||
|
self.key = (get_tensor_key(obj.crow_indices()), get_tensor_key(obj.col_indices()))
|
||
|
elif obj.layout in {torch.sparse_csc, torch.sparse_bsc}:
|
||
|
self.key = (get_tensor_key(obj.ccol_indices()), get_tensor_key(obj.row_indices()))
|
||
|
else:
|
||
|
raise NotImplementedError(obj.layout)
|
||
|
self._hash = hash(self.key)
|
||
|
|
||
|
def __hash__(self):
|
||
|
return self._hash
|
||
|
|
||
|
def __eq__(self, other):
|
||
|
if not isinstance(other, TensorAsKey):
|
||
|
return False
|
||
|
if self.obj is None or other.obj is None:
|
||
|
# dead objects always compare unequal unless these are
|
||
|
# same objects
|
||
|
return self is other
|
||
|
return self.key == other.key
|
||
|
|
||
|
@property
|
||
|
def obj(self):
|
||
|
"""Return object if alive, otherwise None."""
|
||
|
return self._obj_ref()
|
||
|
|
||
|
|
||
|
@lru_cache(maxsize=TORCH_SPARSE_BSR_SCATTER_MM_LRU_CACHE_SIZE)
|
||
|
def _bsr_scatter_mm_indices_data(indices_format, M, K, N, Ms, Ks, nbatches, SPLIT_N, compressed_sparse_tensor_as_key):
|
||
|
bsr = compressed_sparse_tensor_as_key.obj
|
||
|
assert bsr is not None
|
||
|
crow_indices, col_indices = bsr.crow_indices(), bsr.col_indices()
|
||
|
device = crow_indices.device
|
||
|
indices_dtype = torch.int32
|
||
|
|
||
|
if indices_format == 'bsr_strided_mm_compressed':
|
||
|
Ns = N // SPLIT_N
|
||
|
q_offsets_lst = []
|
||
|
b = torch.arange(SPLIT_N, dtype=indices_dtype, device=device) * Ns
|
||
|
for m in range(M // Ms):
|
||
|
r0 = crow_indices[m].item()
|
||
|
r1 = crow_indices[m + 1].item()
|
||
|
if r1 == r0:
|
||
|
continue
|
||
|
q_offsets_lst.append((col_indices[r0:r1] * (Ks * N)).repeat(SPLIT_N) + b.repeat_interleave(r1 - r0))
|
||
|
q_offsets = torch.cat(q_offsets_lst)
|
||
|
crow_indices_diff = crow_indices.diff()
|
||
|
non_zero_row_indices = crow_indices_diff.nonzero()
|
||
|
a = non_zero_row_indices * (Ms * N)
|
||
|
r_offsets = (a + b).view(-1)
|
||
|
c_indices = crow_indices
|
||
|
# swizzle operation: mm elements with longer sums are computed first:
|
||
|
nnz_per_row = crow_indices_diff[non_zero_row_indices].repeat_interleave(SPLIT_N)
|
||
|
nnz_per_row, indices = nnz_per_row.sort(descending=True, stable=True)
|
||
|
r_offsets = r_offsets[indices]
|
||
|
return (indices_format, c_indices, r_offsets, q_offsets)
|
||
|
|
||
|
elif indices_format == 'bsr_strided_mm':
|
||
|
Ns = N // SPLIT_N
|
||
|
p_offsets_lst = []
|
||
|
q_offsets_lst = []
|
||
|
b = torch.arange(SPLIT_N, dtype=indices_dtype, device=device) * Ns
|
||
|
for m in range(M // Ms):
|
||
|
r0 = crow_indices[m].item()
|
||
|
r1 = crow_indices[m + 1].item()
|
||
|
if r1 == r0:
|
||
|
continue
|
||
|
p_offsets_lst.append(torch.arange(r0, r1, dtype=indices_dtype, device=device).repeat(SPLIT_N))
|
||
|
q_offsets_lst.append((col_indices[r0:r1] * (Ks * N)).repeat(SPLIT_N) + b.repeat_interleave(r1 - r0))
|
||
|
q_offsets = torch.cat(q_offsets_lst)
|
||
|
crow_indices_diff = crow_indices.diff()
|
||
|
non_zero_row_indices = crow_indices_diff.nonzero()
|
||
|
a = non_zero_row_indices * (Ms * N)
|
||
|
r_offsets = (a + b).view(-1)
|
||
|
c_indices = torch.cat((crow_indices[:1],
|
||
|
torch.cumsum(crow_indices_diff[non_zero_row_indices].repeat_interleave(SPLIT_N), 0)))
|
||
|
p_offsets = torch.cat(p_offsets_lst)
|
||
|
return (indices_format, c_indices, r_offsets, p_offsets, q_offsets)
|
||
|
|
||
|
elif indices_format == 'scatter_mm':
|
||
|
Ns = Ms
|
||
|
c_indices = [0]
|
||
|
pq_offsets = []
|
||
|
# todo: eliminate inner for-loops for efficiency
|
||
|
for b in range(nbatches):
|
||
|
for m in range(M // Ms):
|
||
|
r0 = crow_indices[m].item()
|
||
|
r1 = crow_indices[m + 1].item()
|
||
|
for n in range(N // Ns):
|
||
|
c_indices.append(c_indices[-1] + r1 - r0)
|
||
|
for t in range(r1 - r0):
|
||
|
p = r0 + t
|
||
|
q = (col_indices[p].item() + b * (K // Ks)) * (N // Ns) + n
|
||
|
pq_offsets.append([p, q])
|
||
|
|
||
|
return (indices_format,
|
||
|
torch.tensor(c_indices, dtype=indices_dtype, device=device),
|
||
|
torch.tensor(pq_offsets, dtype=indices_dtype, device=device))
|
||
|
|
||
|
else:
|
||
|
raise ValueError(f'Invalid {indices_format=}. Expected bsr_strided_mm_compressed|bsr_strided_mm|scatter_mm')
|
||
|
|
||
|
|
||
|
def bsr_scatter_mm_indices_data(bsr, other, indices_format='bsr_strided_mm_compressed', **meta_input):
|
||
|
"""Computes indices data for :func:`scatter_mm` used in BSR and
|
||
|
strided tensor matrix multiplication.
|
||
|
"""
|
||
|
assert bsr.dense_dim() == 0
|
||
|
assert bsr.ndim == 2 # no batch dims
|
||
|
crow_indices = bsr.crow_indices()
|
||
|
col_indices = bsr.col_indices()
|
||
|
blocksize = bsr.values().shape[-2:]
|
||
|
M, K = bsr.shape
|
||
|
Ms, Ks = blocksize
|
||
|
K_, N = other.shape[-2:]
|
||
|
assert K_ == K
|
||
|
nbatches = other.shape[:-2].numel()
|
||
|
|
||
|
meta = scatter_mm_meta(M, K, N, Ms, Ks, **meta_input)
|
||
|
if 'allow_tf32' not in meta_input:
|
||
|
meta.update(allow_tf32=bsr.dtype in {torch.float16, torch.bfloat16})
|
||
|
SPLIT_N = meta['SPLIT_N']
|
||
|
indices_data = _bsr_scatter_mm_indices_data(
|
||
|
indices_format, M, K, N, Ms, Ks, nbatches, SPLIT_N, TensorAsKey(bsr))
|
||
|
|
||
|
if indices_format == 'bsr_strided_mm_compressed':
|
||
|
meta.update(is_compressed=True)
|
||
|
return indices_data + (meta,)
|
||
|
elif indices_format == 'bsr_strided_mm':
|
||
|
meta.update(is_compressed=False)
|
||
|
return indices_data + (meta,)
|
||
|
else:
|
||
|
return indices_data
|
||
|
|
||
|
|
||
|
def bsr_scatter_mm(bsr, other, indices_data=None, out=None):
|
||
|
"""BSR @ strided -> strided
|
||
|
"""
|
||
|
|
||
|
assert bsr.ndim == 2
|
||
|
assert other.ndim >= 2
|
||
|
|
||
|
Ms, Ks, Ns = bsr.shape[-2], bsr.shape[-1], other.shape[-1]
|
||
|
blocksize = bsr.values().shape[-2:]
|
||
|
|
||
|
if indices_data is None:
|
||
|
indices_data = bsr_scatter_mm_indices_data(bsr, other, indices_format='bsr_strided_mm_compressed')
|
||
|
|
||
|
indices_format = indices_data[0]
|
||
|
|
||
|
if out is None:
|
||
|
out = torch.empty((*other.shape[:-2], Ms, Ns), dtype=bsr.dtype, device=bsr.device)
|
||
|
out_shape = out.shape
|
||
|
out = as1Dbatch(out)
|
||
|
|
||
|
if bsr._nnz() == 0:
|
||
|
out.zero_()
|
||
|
elif indices_format in {'bsr_strided_mm_compressed', 'bsr_strided_mm'}:
|
||
|
out.zero_()
|
||
|
scatter_mm(bsr.values(), other, indices_data, accumulators=out)
|
||
|
elif indices_format == 'scatter_mm':
|
||
|
nbatches = other.shape[:-2].numel()
|
||
|
accumulators = torch.zeros((nbatches * Ms // blocksize[0] * Ns // blocksize[0], blocksize[0], blocksize[0]),
|
||
|
dtype=bsr.dtype, device=bsr.device)
|
||
|
others = (as1Dbatch(other)
|
||
|
.transpose(-2, -1)
|
||
|
.view(nbatches, Ns // blocksize[0], blocksize[0], Ks // blocksize[1], blocksize[1])
|
||
|
.movedim((3, 1, 4, 2), (1, 2, 3, 4)) # equivalent to .transpose(-3, -2).transpose(-2, -1).transpose(-4, -3)
|
||
|
.flatten(0, 2)
|
||
|
)
|
||
|
scatter_mm(bsr.values(), others, indices_data, accumulators=accumulators)
|
||
|
out.copy_(accumulators
|
||
|
.unflatten(0, (nbatches, Ms // blocksize[0], Ns // blocksize[0]))
|
||
|
.movedim((1, 2, 3, 4), (3, 1, 4, 2)) # equivalent to .transpose(-4, -3).transpose(-2, -1).transpose(-3, -2)
|
||
|
.reshape(nbatches, Ns, Ms)
|
||
|
.transpose(-2, -1))
|
||
|
else:
|
||
|
raise NotImplementedError(indices_format)
|
||
|
|
||
|
return out.view(out_shape)
|
||
|
|
||
|
|
||
|
def bsr_dense_addmm(
|
||
|
input: torch.Tensor,
|
||
|
bsr: torch.Tensor,
|
||
|
dense: torch.Tensor,
|
||
|
*,
|
||
|
beta=1,
|
||
|
alpha=1,
|
||
|
out: Optional[torch.Tensor] = None,
|
||
|
skip_checks: bool = False,
|
||
|
max_grid: Optional[Tuple[Optional[int], Optional[int], Optional[int]]] = None,
|
||
|
meta: Optional[dict] = None):
|
||
|
f_name = 'bsr_dense_addmm'
|
||
|
values = bsr.values()
|
||
|
crow_indices = bsr.crow_indices()
|
||
|
col_indices = bsr.col_indices()
|
||
|
batch_ndim = crow_indices.dim() - 1
|
||
|
M, K = bsr.shape[batch_ndim:batch_ndim + 2]
|
||
|
blocksize = values.shape[batch_ndim + 1:batch_ndim + 3]
|
||
|
N = dense.shape[-1]
|
||
|
|
||
|
# todo: implement checks
|
||
|
|
||
|
if out is None:
|
||
|
original_batch_dims_broadcasted = broadcast_batch_dims(f_name, bsr, dense)
|
||
|
out = dense.new_empty(original_batch_dims_broadcasted + (M, N))
|
||
|
|
||
|
if bsr._nnz() == 0 or alpha == 0 or N == 0 or M == 0 or K == 0:
|
||
|
if beta == 0:
|
||
|
out.zero_()
|
||
|
else:
|
||
|
out.copy_(input)
|
||
|
if beta != 1:
|
||
|
out.mul_(beta)
|
||
|
return out
|
||
|
|
||
|
if meta is None:
|
||
|
sparsity = round(1 - bsr._nnz() * blocksize[0] * blocksize[1] / (M * K), 2)
|
||
|
meta = bsr_dense_addmm_meta(M, K, N, blocksize[0], blocksize[1], beta, alpha, sparsity=sparsity, dtype=out.dtype)
|
||
|
out_backup = out
|
||
|
|
||
|
crow_indices, col_indices, values, input, dense, out = prepare_inputs(bsr, input, dense, out)
|
||
|
|
||
|
BM, BK = blocksize
|
||
|
SPLIT_N = meta.get('SPLIT_N', N // BM)
|
||
|
BN = N // SPLIT_N
|
||
|
|
||
|
out_untiled = out
|
||
|
out = tile_to_blocksize(out, (BM, BN))
|
||
|
dense = tile_to_blocksize(dense, (BK, BN))
|
||
|
input = tile_to_blocksize(input, (BM, BN))
|
||
|
|
||
|
dot_out_dtype = {torch.float16: tl.float32,
|
||
|
torch.bfloat16: tl.float32,
|
||
|
torch.float32: tl.float64,
|
||
|
torch.float64: tl.float64}[out.dtype]
|
||
|
|
||
|
n_batches = dense.size(0)
|
||
|
n_block_rows = crow_indices.size(-1) - 1
|
||
|
n_block_cols = dense.size(-3)
|
||
|
|
||
|
full_grid = (n_batches, n_block_cols, n_block_rows)
|
||
|
if max_grid is not None:
|
||
|
grid_blocks = tuple(max_grid[:3][::-1]) + (None,) * (3 - len(max_grid[:3]))
|
||
|
else:
|
||
|
grid_blocks = None
|
||
|
|
||
|
tensor_dims_map = {
|
||
|
values: (0, None, None),
|
||
|
crow_indices: (0, None, -1),
|
||
|
col_indices: (0, None, None),
|
||
|
input: (0, -3, -4),
|
||
|
dense: (0, -3, None),
|
||
|
out: (0, -3, -4),
|
||
|
}
|
||
|
|
||
|
assert alpha != 0
|
||
|
|
||
|
def kernel(grid, *sliced_tensors):
|
||
|
_bsr_strided_addmm_kernel[grid](
|
||
|
*ptr_stride_extractor(*sliced_tensors),
|
||
|
beta, alpha,
|
||
|
beta_is_one=beta == 1,
|
||
|
beta_is_nonzero=beta != 0,
|
||
|
alpha_is_one=alpha == 1,
|
||
|
BLOCKSIZE_ROW=BM,
|
||
|
BLOCKSIZE_INNER=BK,
|
||
|
BLOCKSIZE_COL=BN,
|
||
|
allow_tf32=dot_out_dtype == tl.float32,
|
||
|
acc_dtype=dot_out_dtype,
|
||
|
**meta)
|
||
|
|
||
|
launch_kernel(kernel, tensor_dims_map, full_grid, grid_blocks)
|
||
|
|
||
|
if out.data_ptr() != out_backup.data_ptr():
|
||
|
# prepare_inputs has made a copy of out, copy its content back
|
||
|
# to out_backup:
|
||
|
out_backup.copy_(out_untiled.view(out_backup.shape))
|
||
|
|
||
|
return out_backup
|
||
|
|
||
|
|
||
|
if has_triton():
|
||
|
import triton
|
||
|
import triton.language as tl
|
||
|
|
||
|
@triton.jit
|
||
|
def _sampled_addmm_kernel(
|
||
|
alpha,
|
||
|
beta,
|
||
|
IS_BETA_ZERO: tl.constexpr,
|
||
|
BLOCKSIZE_ROW: tl.constexpr,
|
||
|
BLOCKSIZE_COL: tl.constexpr,
|
||
|
k,
|
||
|
TILE_K: tl.constexpr,
|
||
|
values_ptr,
|
||
|
values_batch_stride,
|
||
|
values_nnz_stride,
|
||
|
values_row_block_stride,
|
||
|
values_col_block_stride,
|
||
|
crow_indices_ptr,
|
||
|
crow_indices_batch_stride,
|
||
|
crow_indices_stride,
|
||
|
col_indices_ptr,
|
||
|
col_indices_batch_stride,
|
||
|
col_indices_stride,
|
||
|
mat1_ptr,
|
||
|
mat1_batch_stride,
|
||
|
mat1_tiled_row_stride,
|
||
|
mat1_tiled_col_stride,
|
||
|
mat1_row_block_stride,
|
||
|
mat1_col_block_stride,
|
||
|
mat2_ptr,
|
||
|
mat2_batch_stride,
|
||
|
mat2_tiled_row_stride,
|
||
|
mat2_tiled_col_stride,
|
||
|
mat2_row_block_stride,
|
||
|
mat2_col_block_stride,
|
||
|
acc_dtype: tl.constexpr,
|
||
|
allow_tf32: tl.constexpr,
|
||
|
):
|
||
|
batch_pid = tl.program_id(axis=1)
|
||
|
row_block_pid = tl.program_id(axis=0)
|
||
|
|
||
|
crow_indices_offset_ptr = (
|
||
|
crow_indices_ptr
|
||
|
+ crow_indices_batch_stride * batch_pid
|
||
|
+ crow_indices_stride * row_block_pid
|
||
|
)
|
||
|
nnz_offset = tl.load(crow_indices_offset_ptr)
|
||
|
nnz_offset_next = tl.load(crow_indices_offset_ptr + crow_indices_stride)
|
||
|
|
||
|
# Compute nnz for the row with number row_block_pid.
|
||
|
# If it is zero, skip the row.
|
||
|
row_nnz = nnz_offset_next - nnz_offset
|
||
|
if row_nnz == 0:
|
||
|
return
|
||
|
|
||
|
row_block_arange = tl.arange(0, BLOCKSIZE_ROW)
|
||
|
col_block_arange = tl.arange(0, BLOCKSIZE_COL)
|
||
|
|
||
|
# Pointers are set to the first block of the current row.
|
||
|
values_block_ptrs = (
|
||
|
values_ptr
|
||
|
+ values_batch_stride * batch_pid
|
||
|
+ values_nnz_stride * nnz_offset
|
||
|
+ values_row_block_stride * row_block_arange[:, None]
|
||
|
+ values_col_block_stride * col_block_arange[None, :]
|
||
|
)
|
||
|
|
||
|
col_index_nnz_ptr = (
|
||
|
col_indices_ptr
|
||
|
+ col_indices_batch_stride * batch_pid
|
||
|
+ col_indices_stride * nnz_offset
|
||
|
)
|
||
|
|
||
|
# Advance mat1 to the current tiled row, ignore columns.
|
||
|
mat1_block_ptrs = (
|
||
|
mat1_ptr
|
||
|
+ mat1_batch_stride * batch_pid
|
||
|
+ mat1_tiled_row_stride * row_block_pid
|
||
|
+ mat1_row_block_stride * row_block_arange[:, None]
|
||
|
)
|
||
|
|
||
|
# Advance mat2 in batch and block col dimension.
|
||
|
mat2_block_ptrs = (
|
||
|
mat2_ptr
|
||
|
+ mat2_batch_stride * batch_pid
|
||
|
+ mat2_col_block_stride * col_block_arange[None, :]
|
||
|
)
|
||
|
|
||
|
k_tile_arange = tl.arange(0, TILE_K)
|
||
|
for _ in range(row_nnz):
|
||
|
acc_block = tl.zeros((BLOCKSIZE_ROW, BLOCKSIZE_COL), dtype=acc_dtype)
|
||
|
|
||
|
# find column block index
|
||
|
col_block = tl.load(col_index_nnz_ptr)
|
||
|
|
||
|
for k_tile in range(0, k, TILE_K):
|
||
|
k_offsets = k_tile + k_tile_arange
|
||
|
mask_k = k_offsets < k
|
||
|
|
||
|
mat1_block = tl.load(
|
||
|
mat1_block_ptrs
|
||
|
+ mat1_col_block_stride * k_offsets[None, :],
|
||
|
mask=mask_k[None, :], other=0.0
|
||
|
)
|
||
|
|
||
|
mat2_block = tl.load(
|
||
|
mat2_block_ptrs
|
||
|
+ mat2_tiled_col_stride * col_block
|
||
|
+ mat2_row_block_stride * k_offsets[:, None],
|
||
|
mask=mask_k[:, None], other=0.0
|
||
|
)
|
||
|
|
||
|
acc_block += tl.dot(mat1_block, mat2_block, allow_tf32=allow_tf32, out_dtype=acc_dtype)
|
||
|
|
||
|
if IS_BETA_ZERO:
|
||
|
acc_block *= alpha
|
||
|
else:
|
||
|
acc_block = alpha * acc_block + beta * tl.load(values_block_ptrs)
|
||
|
|
||
|
# write result
|
||
|
tl.store(values_block_ptrs, acc_block.to(values_ptr.dtype.element_ty))
|
||
|
|
||
|
# advance val/col_index ptrs to the next block in the row.
|
||
|
values_block_ptrs += values_nnz_stride
|
||
|
col_index_nnz_ptr += col_indices_stride
|
||
|
|
||
|
@triton.jit
|
||
|
def _bsr_strided_dense_rowspace_kernel(
|
||
|
# values prologue
|
||
|
values_ptr,
|
||
|
values_batch_stride,
|
||
|
values_nnz_stride,
|
||
|
values_row_block_stride,
|
||
|
values_col_block_stride,
|
||
|
# values epilogue
|
||
|
# crow_indices prologue
|
||
|
crow_indices_ptr,
|
||
|
crow_indices_batch_stride,
|
||
|
crow_indices_stride,
|
||
|
# crow_indices epilogue
|
||
|
# col_indices prologue
|
||
|
col_indices_ptr,
|
||
|
col_indices_batch_stride,
|
||
|
col_indices_stride,
|
||
|
# col_indices epilogue
|
||
|
# dense prologue
|
||
|
dense_ptr,
|
||
|
dense_batch_stride,
|
||
|
dense_tiled_row_stride,
|
||
|
dense_tiled_col_stride,
|
||
|
dense_row_block_stride,
|
||
|
dense_col_block_stride,
|
||
|
# dense epilogue
|
||
|
# output prologue
|
||
|
output_ptr,
|
||
|
output_batch_stride,
|
||
|
output_tiled_row_stride,
|
||
|
output_tiled_col_stride,
|
||
|
output_row_block_stride,
|
||
|
output_col_block_stride,
|
||
|
# output epilogue
|
||
|
#
|
||
|
# gh-113754: Always keep all constexpr arguments at the end of
|
||
|
# triton kernel arguments list because with triton 2.1 or
|
||
|
# earlier non-contiguous outputs will corrupt CUDA state due
|
||
|
# to a triton bug (fixed in openai/triton#2262).
|
||
|
BLOCKSIZE_ROW: tl.constexpr,
|
||
|
BLOCKSIZE_COL: tl.constexpr,
|
||
|
acc_dtype: tl.constexpr,
|
||
|
allow_tf32: tl.constexpr,
|
||
|
GROUP_SIZE_ROW: tl.constexpr,
|
||
|
):
|
||
|
batch_pid = tl.program_id(axis=2)
|
||
|
row_block_pid = tl.program_id(axis=0)
|
||
|
col_block_pid = tl.program_id(axis=1)
|
||
|
n_block_rows = tl.num_programs(axis=0)
|
||
|
n_block_cols = tl.num_programs(axis=1)
|
||
|
|
||
|
row_block_pid, col_block_pid = tl.swizzle2d(
|
||
|
row_block_pid, col_block_pid, n_block_rows, n_block_cols, GROUP_SIZE_ROW
|
||
|
)
|
||
|
|
||
|
crow_indices_offset_ptr = (
|
||
|
crow_indices_ptr
|
||
|
+ crow_indices_batch_stride * batch_pid
|
||
|
+ crow_indices_stride * row_block_pid
|
||
|
)
|
||
|
nnz_offset = tl.load(crow_indices_offset_ptr)
|
||
|
nnz_offset_next = tl.load(crow_indices_offset_ptr + crow_indices_stride)
|
||
|
|
||
|
# Compute nnz for the row with number row_block_pid.
|
||
|
# If it is zero, skip the row.
|
||
|
row_nnz = nnz_offset_next - nnz_offset
|
||
|
if row_nnz == 0:
|
||
|
return
|
||
|
|
||
|
row_block_arange = tl.arange(0, BLOCKSIZE_ROW)
|
||
|
col_block_arange = tl.arange(0, BLOCKSIZE_COL)
|
||
|
|
||
|
# Pointers are set to the first block of the current row.
|
||
|
values_block_ptrs = (
|
||
|
values_ptr
|
||
|
+ values_batch_stride * batch_pid
|
||
|
+ values_nnz_stride * nnz_offset
|
||
|
+ values_row_block_stride * row_block_arange[:, None]
|
||
|
+ values_col_block_stride * col_block_arange[None, :]
|
||
|
)
|
||
|
|
||
|
# NOTE: dense is advanced into all dimensions but the tiled row one.
|
||
|
# That will be advanced in the loop according to values in col_indices.
|
||
|
dense_block_ptrs = (
|
||
|
dense_ptr
|
||
|
+ dense_batch_stride * batch_pid
|
||
|
+ dense_tiled_col_stride * col_block_pid
|
||
|
+ dense_row_block_stride * col_block_arange[:, None]
|
||
|
+ dense_col_block_stride * row_block_arange[None, :]
|
||
|
)
|
||
|
|
||
|
# Pointers are set to exact write-to locations
|
||
|
output_ptrs = (
|
||
|
output_ptr
|
||
|
+ output_batch_stride * batch_pid
|
||
|
+ output_tiled_row_stride * row_block_pid
|
||
|
+ output_tiled_col_stride * col_block_pid
|
||
|
+ output_row_block_stride * row_block_arange[:, None]
|
||
|
+ output_col_block_stride * row_block_arange[None, :]
|
||
|
)
|
||
|
|
||
|
# Set pointer to the first nonzero element in the current row
|
||
|
col_index_nnz_ptr = (
|
||
|
col_indices_ptr
|
||
|
+ col_indices_batch_stride * batch_pid
|
||
|
+ col_indices_stride * nnz_offset
|
||
|
)
|
||
|
|
||
|
output_acc_block = tl.zeros((BLOCKSIZE_ROW, BLOCKSIZE_COL), dtype=acc_dtype)
|
||
|
for _ in range(row_nnz):
|
||
|
values_block = tl.load(values_block_ptrs)
|
||
|
|
||
|
# find which row of dense needs to get loaded
|
||
|
# for multiplication with values_block.
|
||
|
dense_row_idx = tl.load(col_index_nnz_ptr)
|
||
|
dense_block = tl.load(dense_block_ptrs + dense_tiled_row_stride * dense_row_idx)
|
||
|
|
||
|
# do block mm
|
||
|
output_acc_block += tl.dot(values_block, dense_block, allow_tf32=allow_tf32, out_dtype=acc_dtype)
|
||
|
|
||
|
# move val/col_index ptrs to the next block in the row
|
||
|
values_block_ptrs += values_nnz_stride
|
||
|
col_index_nnz_ptr += col_indices_stride
|
||
|
|
||
|
# write back the result
|
||
|
tl.store(output_ptrs, output_acc_block.to(output_ptr.dtype.element_ty))
|
||
|
|
||
|
|
||
|
def _run_sampled_addmm_kernel(
|
||
|
alpha, beta, is_beta_zero,
|
||
|
blocksize, k, tile_k,
|
||
|
values, crow_indices, col_indices,
|
||
|
mat1, mat2,
|
||
|
max_grid
|
||
|
):
|
||
|
n_batches = values.size(0)
|
||
|
n_block_rows = crow_indices.size(-1) - 1
|
||
|
|
||
|
full_grid = (n_batches, n_block_rows)
|
||
|
if max_grid is not None:
|
||
|
grid_blocks = tuple(max_grid[:2][::-1]) + (None,) * (2 - len(max_grid[:2]))
|
||
|
else:
|
||
|
grid_blocks = None
|
||
|
tensor_dims_map = {
|
||
|
values: (0, None),
|
||
|
crow_indices: (0, -1),
|
||
|
col_indices: (0, None),
|
||
|
mat1: (0, -4),
|
||
|
mat2: (0, None),
|
||
|
}
|
||
|
if values.dtype in (torch.half, torch.bfloat16):
|
||
|
acc_dtype = tl.float32
|
||
|
allow_tf32 = True
|
||
|
else:
|
||
|
acc_dtype = tl.float64
|
||
|
allow_tf32 = False
|
||
|
|
||
|
def kernel(grid, *sliced_tensors):
|
||
|
_sampled_addmm_kernel[grid](
|
||
|
alpha, beta, is_beta_zero,
|
||
|
*blocksize, k, tile_k,
|
||
|
*ptr_stride_extractor(*sliced_tensors),
|
||
|
acc_dtype=acc_dtype,
|
||
|
allow_tf32=allow_tf32,
|
||
|
num_stages=1,
|
||
|
num_warps=4
|
||
|
)
|
||
|
|
||
|
launch_kernel(kernel, tensor_dims_map, full_grid, grid_blocks)
|
||
|
|
||
|
|
||
|
def sampled_addmm(
|
||
|
input: torch.Tensor,
|
||
|
mat1: torch.Tensor,
|
||
|
mat2: torch.Tensor,
|
||
|
*,
|
||
|
beta=1.0,
|
||
|
alpha=1.0,
|
||
|
out: Optional[torch.Tensor] = None,
|
||
|
skip_checks: bool = False,
|
||
|
max_grid: Optional[Tuple[Optional[int], Optional[int], Optional[int]]] = None,
|
||
|
):
|
||
|
f_name = "sampled_addmm"
|
||
|
|
||
|
check_bsr_layout(f_name, input)
|
||
|
input_broadcasted = broadcast_batch_dims_bsr(f_name, input, mat1, mat2)
|
||
|
|
||
|
if not skip_checks:
|
||
|
check_device(f_name, mat1, input.device)
|
||
|
check_device(f_name, mat2, input.device)
|
||
|
if beta != 0.0 and input.dtype is torch.bool:
|
||
|
check(
|
||
|
False,
|
||
|
f"{f_name}(): having beta == {beta} not equal to 0.0 with boolean mask is not allowed."
|
||
|
)
|
||
|
if input.dtype is not torch.bool:
|
||
|
check_dtype(f_name, mat1, input.dtype)
|
||
|
check_dtype(f_name, mat2, input.dtype)
|
||
|
else:
|
||
|
check_dtype(f_name, mat1, mat2.dtype)
|
||
|
check_mm_compatible_shapes(f_name, mat1, mat2)
|
||
|
if out is not None:
|
||
|
check_bsr_layout(f_name, out)
|
||
|
check_device(f_name, out, mat1.device)
|
||
|
check_dtype(f_name, out, input.dtype)
|
||
|
check(
|
||
|
out.shape == input_broadcasted.shape
|
||
|
and out._nnz() == input._nnz(),
|
||
|
f"{f_name}(): Expects `out` to be of shape {input_broadcasted.shape} "
|
||
|
f"and with nnz equal to {input_broadcasted._nnz()} "
|
||
|
f"but got out.shape = {out.shape} and out.nnz = {out._nnz()}"
|
||
|
)
|
||
|
|
||
|
if out is None:
|
||
|
out = input_broadcasted.to(mat1.dtype, copy=True)
|
||
|
else:
|
||
|
out.copy_(input_broadcasted)
|
||
|
|
||
|
if out.numel() == 0 or out._nnz() == 0:
|
||
|
return out
|
||
|
|
||
|
blocksize = out.values().shape[-2:]
|
||
|
m = mat1.size(-2)
|
||
|
n = mat2.size(-1)
|
||
|
k = mat1.size(-1)
|
||
|
|
||
|
# NOTE: (m, 0) @ (0, n) == zeros(m, n)
|
||
|
if alpha == 0.0 or k == 0:
|
||
|
out.values().mul_(beta)
|
||
|
return out
|
||
|
|
||
|
# prepare inputs by reshaping them to be kernel-compatible
|
||
|
out_backup = out
|
||
|
crow_indices, col_indices, values, mat1, mat2 = prepare_inputs(out, mat1, mat2)
|
||
|
|
||
|
mat1 = tile_to_blocksize(mat1, (blocksize[0], k))
|
||
|
mat2 = tile_to_blocksize(mat2, (k, blocksize[1]))
|
||
|
tile_k = max(*blocksize)
|
||
|
|
||
|
_run_sampled_addmm_kernel(
|
||
|
alpha, beta, beta == 0.0,
|
||
|
blocksize, k, tile_k,
|
||
|
values, crow_indices, col_indices,
|
||
|
mat1, mat2,
|
||
|
max_grid
|
||
|
)
|
||
|
|
||
|
# If nnz x block strides are not the same in out_backup.values and values,
|
||
|
# it means that out_backup.values and values are not the views of each other,
|
||
|
# so we have to copy.
|
||
|
if out_backup.values().stride()[-3:] != values.stride()[-3:]:
|
||
|
out_backup.values().copy_(values.reshape(out_backup.values().shape))
|
||
|
return out_backup
|
||
|
|
||
|
|
||
|
def bsr_dense_mm(
|
||
|
bsr: torch.Tensor,
|
||
|
dense: torch.Tensor,
|
||
|
*,
|
||
|
out: Optional[torch.Tensor] = None,
|
||
|
skip_checks: bool = False,
|
||
|
max_grid: Optional[Tuple[Optional[int], Optional[int], Optional[int]]] = None,
|
||
|
meta: Optional[dict] = None
|
||
|
):
|
||
|
f_name = "bsr_dense_mm"
|
||
|
m, kl = bsr.shape[-2:]
|
||
|
if not skip_checks:
|
||
|
check_bsr_layout(f_name, bsr)
|
||
|
check_device(f_name, bsr, dense.device)
|
||
|
check_dtype(f_name, bsr, dense.dtype)
|
||
|
check_mm_compatible_shapes(f_name, bsr, dense)
|
||
|
|
||
|
n = dense.size(-1)
|
||
|
row_block, col_block = bsr.values().shape[-2:]
|
||
|
check_blocksize(f_name, (row_block, col_block))
|
||
|
check(
|
||
|
not n % 16,
|
||
|
f"{f_name}(): dense.size(-1) == {n} should be divisible by 16"
|
||
|
)
|
||
|
else:
|
||
|
kr, n = dense.shape[-2:]
|
||
|
|
||
|
original_batch_dims_broadcasted = broadcast_batch_dims(f_name, bsr, dense)
|
||
|
|
||
|
if out is not None and not skip_checks:
|
||
|
expected_out_shape = original_batch_dims_broadcasted + (m, n)
|
||
|
check(
|
||
|
out.shape == expected_out_shape,
|
||
|
"bsr_dense_mm(): `out` argument has wrong shape, "
|
||
|
f"expected {expected_out_shape}, but got {out.shape}.",
|
||
|
)
|
||
|
check(
|
||
|
out.is_contiguous() or out.transpose(-2, -1).is_contiguous(),
|
||
|
"bsr_dense_mm(): only row-major/col-major `out` arguments are supported, "
|
||
|
"i.e. (out.is_contiguous() or out.transpose(-2, -1).is_contiguous()) "
|
||
|
"should be True.",
|
||
|
)
|
||
|
|
||
|
# Allocate out
|
||
|
if out is None:
|
||
|
out = dense.new_empty(original_batch_dims_broadcasted + (m, n))
|
||
|
|
||
|
# Short circuit if lhs is zero
|
||
|
if bsr._nnz() == 0:
|
||
|
return out.zero_()
|
||
|
|
||
|
# with beta==0, addmm ignores input content, so we can use out
|
||
|
# as a placeholder for input because their shapes match:
|
||
|
return bsr_dense_addmm(out, bsr, dense, alpha=1, beta=0, out=out)
|
||
|
|
||
|
|
||
|
@triton.jit
|
||
|
def _bsr_softmax_kernel(
|
||
|
crow_indices_ptr,
|
||
|
crow_indices_batch_stride,
|
||
|
crow_indices_stride,
|
||
|
values_ptr,
|
||
|
values_batch_stride,
|
||
|
values_row_block_stride,
|
||
|
values_nnz_col_block_stride,
|
||
|
row_block, col_block,
|
||
|
MAX_ROW_NNZ: tl.constexpr,
|
||
|
TILE: tl.constexpr
|
||
|
):
|
||
|
batch_pid = tl.program_id(axis=2)
|
||
|
row_block_offset_pid = tl.program_id(axis=1)
|
||
|
row_block_pid = tl.program_id(axis=0)
|
||
|
|
||
|
crow_indices_offset_ptr = (
|
||
|
crow_indices_ptr
|
||
|
+ crow_indices_batch_stride * batch_pid
|
||
|
+ crow_indices_stride * row_block_pid
|
||
|
)
|
||
|
nnz_offset = tl.load(crow_indices_offset_ptr)
|
||
|
nnz_offset_next = tl.load(crow_indices_offset_ptr + crow_indices_stride)
|
||
|
|
||
|
# Compute nnz for the row with number row_block_pid.
|
||
|
# If it is zero, skip the row.
|
||
|
row_nnz = nnz_offset_next - nnz_offset
|
||
|
if row_nnz == 0:
|
||
|
return
|
||
|
|
||
|
row_arange = tl.arange(0, TILE)
|
||
|
mask = row_arange < row_nnz * col_block
|
||
|
|
||
|
curr_row_values_ptrs = (
|
||
|
values_ptr
|
||
|
+ values_batch_stride * batch_pid
|
||
|
+ values_row_block_stride * row_block_offset_pid
|
||
|
+ nnz_offset * col_block
|
||
|
)
|
||
|
|
||
|
# find max in the row
|
||
|
row_tile = tl.load(curr_row_values_ptrs + row_arange, mask=mask, other=-float('inf')).to(tl.float32)
|
||
|
max_row_value = tl.max(row_tile, axis=0)
|
||
|
for _ in range(TILE, MAX_ROW_NNZ, TILE):
|
||
|
row_arange += TILE
|
||
|
mask = row_arange < row_nnz * col_block
|
||
|
row_tile = tl.load(curr_row_values_ptrs + row_arange, mask=mask, other=-float('inf')).to(tl.float32)
|
||
|
curr_max_row_value = tl.max(row_tile, axis=0)
|
||
|
max_row_value = tl.where(max_row_value > curr_max_row_value, max_row_value, curr_max_row_value)
|
||
|
|
||
|
# find denominator for stable softmax
|
||
|
num = tl.exp(row_tile - max_row_value)
|
||
|
denom = tl.sum(num, axis=0)
|
||
|
for _ in range(TILE, MAX_ROW_NNZ, TILE):
|
||
|
row_arange -= TILE
|
||
|
mask = row_arange < row_nnz * col_block
|
||
|
row_tile = tl.load(curr_row_values_ptrs + row_arange, mask=mask, other=-float('inf')).to(tl.float32)
|
||
|
num = tl.exp(row_tile - max_row_value)
|
||
|
denom += tl.sum(num, axis=0)
|
||
|
|
||
|
# populate output
|
||
|
tl.store(curr_row_values_ptrs + row_arange, (num / denom).to(values_ptr.dtype.element_ty), mask=mask)
|
||
|
for _ in range(TILE, MAX_ROW_NNZ, TILE):
|
||
|
row_arange += TILE
|
||
|
mask = row_arange < row_nnz * col_block
|
||
|
row_tile = tl.load(curr_row_values_ptrs + row_arange, mask=mask, other=-float('inf')).to(tl.float32)
|
||
|
num = tl.exp(row_tile - max_row_value)
|
||
|
tl.store(curr_row_values_ptrs + row_arange, (num / denom).to(values_ptr.dtype.element_ty), mask=mask)
|
||
|
|
||
|
|
||
|
def bsr_softmax(input, max_row_nnz=None):
|
||
|
f_name = "bsr_softmax"
|
||
|
|
||
|
check_bsr_layout(f_name, input)
|
||
|
check_dtype(f_name, input, input.dtype)
|
||
|
|
||
|
if input._nnz() == 0 or input.numel() == 0:
|
||
|
return input.clone()
|
||
|
|
||
|
m, n = input.shape[-2:]
|
||
|
nnz = input._nnz()
|
||
|
row_block, col_block = input.values().shape[-2:]
|
||
|
|
||
|
if max_row_nnz is None:
|
||
|
max_row_nnz = triton.next_power_of_2(n)
|
||
|
else:
|
||
|
max_row_nnz = triton.next_power_of_2(max_row_nnz)
|
||
|
|
||
|
crow_indices = input.crow_indices().unsqueeze(0).flatten(0, -2)
|
||
|
# reshape values from
|
||
|
# (b1, ..., bn, nnz, row_block, col_block) to
|
||
|
# (b1 * ... * bn, row_block, nnz * col_block).
|
||
|
# This simplifies batch dim manipulation and unlocks
|
||
|
# the possibility to access all nnzs in any given row.
|
||
|
if input.values().transpose(-3, -2).is_contiguous():
|
||
|
# Need to clone to avoid `contiguous` returning a view.
|
||
|
values = input.values().clone()
|
||
|
else:
|
||
|
values = input.values()
|
||
|
values = values.transpose(-3, -2).contiguous().unsqueeze(0).flatten(0, -4).reshape(-1, row_block, nnz * col_block)
|
||
|
full_grid = (values.shape[0], row_block, m // row_block)
|
||
|
grid_blocks = None
|
||
|
tensor_dims_map = {
|
||
|
# We span nnz number of blocks, not nnz + 1,
|
||
|
# hence crow_indices[..., :-1]
|
||
|
crow_indices[..., :-1]: (0, None, -1),
|
||
|
values: (0, None, None),
|
||
|
}
|
||
|
|
||
|
def kernel(grid, *sliced_tensors):
|
||
|
_bsr_softmax_kernel[grid](
|
||
|
*ptr_stride_extractor(*sliced_tensors),
|
||
|
row_block, col_block,
|
||
|
max_row_nnz,
|
||
|
# Triton's max numel is bounded by 2 ** 17.
|
||
|
min(2 ** 17, max_row_nnz)
|
||
|
)
|
||
|
|
||
|
launch_kernel(kernel, tensor_dims_map, full_grid, grid_blocks)
|
||
|
|
||
|
values = values.reshape(-1, row_block, nnz, col_block).transpose(-3, -2).reshape(*input.values().shape)
|
||
|
|
||
|
return torch.sparse_compressed_tensor(
|
||
|
input.crow_indices().clone(),
|
||
|
input.col_indices().clone(),
|
||
|
values,
|
||
|
size=input.shape,
|
||
|
layout=input.layout
|
||
|
)
|
||
|
|
||
|
def _scaled_dot_product_attention(
|
||
|
query: torch.Tensor,
|
||
|
key: torch.Tensor,
|
||
|
value: torch.Tensor,
|
||
|
attn_mask: Optional[torch.Tensor],
|
||
|
dropout_p: float = 0.0,
|
||
|
is_causal: bool = False,
|
||
|
scale: Optional[float] = None
|
||
|
):
|
||
|
f_name = "_scaled_dot_product_attention"
|
||
|
check(
|
||
|
not is_causal,
|
||
|
f"{f_name}(): is_causal == True is not supported."
|
||
|
)
|
||
|
check(
|
||
|
attn_mask is not None,
|
||
|
f"{f_name}(): attn_mask == None is not supported."
|
||
|
)
|
||
|
assert attn_mask is not None
|
||
|
|
||
|
check(
|
||
|
attn_mask.layout == torch.sparse_bsr,
|
||
|
f"{f_name}(): "
|
||
|
f"attn_mask.layout must be {torch.sparse_bsr}, but got "
|
||
|
f"attn_mask.layout == {attn_mask.layout}."
|
||
|
)
|
||
|
|
||
|
check_device(f_name, key, query.device)
|
||
|
check_device(f_name, value, query.device)
|
||
|
check_device(f_name, attn_mask, query.device)
|
||
|
|
||
|
check_dtype(f_name, key, query.dtype)
|
||
|
check_dtype(f_name, value, query.dtype)
|
||
|
if attn_mask.dtype is not torch.bool:
|
||
|
check_dtype(f_name, attn_mask, query.dtype)
|
||
|
|
||
|
sdpa = sampled_addmm(attn_mask, query, key.transpose(-2, -1), beta=0.0, skip_checks=False)
|
||
|
if scale is None and query.size(-1) == 0 or scale == 0.0:
|
||
|
check(
|
||
|
False,
|
||
|
f"{f_name}(): current value of scale == {scale} "
|
||
|
"results in division by zero."
|
||
|
)
|
||
|
scale_factor = 1 / math.sqrt(query.size(-1)) if scale is None else scale
|
||
|
sdpa.values().mul_(scale_factor)
|
||
|
sdpa = bsr_softmax(sdpa)
|
||
|
torch.nn.functional.dropout(sdpa.values(), p=dropout_p, inplace=True)
|
||
|
sdpa = bsr_dense_mm(sdpa, value)
|
||
|
return sdpa
|
||
|
|
||
|
@triton.jit
|
||
|
def _scatter_mm2_kernel(
|
||
|
M: tl.constexpr, K: tl.constexpr, N: tl.constexpr,
|
||
|
blocks_ptr, blocks_stride_P, blocks_stride_M, blocks_stride_K,
|
||
|
others_ptr, others_stride_Q, others_stride_K, others_stride_N,
|
||
|
accumulators_ptr, accumulators_stride_R, accumulators_stride_M, accumulators_stride_N,
|
||
|
pq_offsets_ptr, pq_offsets_stride,
|
||
|
pq_ptr, pq_stride_T, pq_stride_1,
|
||
|
dot_out_dtype: tl.constexpr,
|
||
|
TILE_M: tl.constexpr,
|
||
|
TILE_N: tl.constexpr,
|
||
|
allow_tf32: tl.constexpr):
|
||
|
|
||
|
Ms = M // TILE_M
|
||
|
Ns = N // TILE_N
|
||
|
|
||
|
pid_t = tl.program_id(axis=0)
|
||
|
|
||
|
pid = tl.program_id(axis=1)
|
||
|
pid_m = pid // Ms
|
||
|
pid_n = pid % Ms
|
||
|
|
||
|
rm = (pid_m * TILE_M + tl.arange(0, TILE_M))
|
||
|
rn = (pid_n * TILE_N + tl.arange(0, TILE_N))
|
||
|
rk = tl.arange(0, K)
|
||
|
|
||
|
A_ptr = blocks_ptr + (rm[:, None] * blocks_stride_M + rk[None, :] * blocks_stride_K)
|
||
|
B_ptr = others_ptr + (rk[:, None] * others_stride_K + rn[None, :] * others_stride_N)
|
||
|
|
||
|
g0 = tl.load(pq_offsets_ptr + pid_t * pq_offsets_stride)
|
||
|
g1 = tl.load(pq_offsets_ptr + (pid_t + 1) * pq_offsets_stride)
|
||
|
|
||
|
if g0 == g1:
|
||
|
return
|
||
|
|
||
|
acc_block = tl.zeros((TILE_M, TILE_N), dtype=dot_out_dtype)
|
||
|
|
||
|
for i in range(g0, g1):
|
||
|
p = tl.load(pq_ptr + i * pq_stride_T)
|
||
|
q = tl.load(pq_ptr + i * pq_stride_T + pq_stride_1)
|
||
|
A = tl.load(A_ptr + p * blocks_stride_P)
|
||
|
B = tl.load(B_ptr + q * others_stride_Q)
|
||
|
acc_block += tl.dot(A, B, out_dtype=dot_out_dtype, allow_tf32=allow_tf32)
|
||
|
|
||
|
C_ptr = accumulators_ptr + pid_t * accumulators_stride_R + (
|
||
|
rm[:, None] * accumulators_stride_M + rn[None, :] * accumulators_stride_N)
|
||
|
tl.store(C_ptr, acc_block.to(accumulators_ptr.dtype.element_ty))
|
||
|
|
||
|
def _scatter_mm2(
|
||
|
blocks: torch.Tensor,
|
||
|
others: torch.Tensor,
|
||
|
pq_offsets: torch.Tensor,
|
||
|
pq_indices: torch.Tensor,
|
||
|
accumulators: torch.Tensor
|
||
|
):
|
||
|
P, M, K = blocks.shape
|
||
|
Q, _, N = others.shape
|
||
|
R, _, _ = accumulators.shape
|
||
|
|
||
|
meta = dict(TILE_M=max(16, M // 4), TILE_N=max(16, N // 4), num_stages=1, num_warps=2)
|
||
|
|
||
|
def grid(META):
|
||
|
return (pq_offsets.shape[0] - 1, triton.cdiv(M, META['TILE_M']) * triton.cdiv(N, META['TILE_N']), 1)
|
||
|
|
||
|
dot_out_dtype = {torch.float16: tl.float32,
|
||
|
torch.bfloat16: tl.float32,
|
||
|
torch.float32: tl.float64,
|
||
|
torch.float64: tl.float64}[accumulators.dtype]
|
||
|
if 'allow_tf32' not in meta:
|
||
|
meta.update(allow_tf32=dot_out_dtype == tl.float32)
|
||
|
_scatter_mm2_kernel[grid](
|
||
|
M, K, N,
|
||
|
blocks, blocks.stride(0), blocks.stride(1), blocks.stride(2),
|
||
|
others, others.stride(0), others.stride(1), others.stride(2),
|
||
|
accumulators, accumulators.stride(0), accumulators.stride(1), accumulators.stride(2),
|
||
|
pq_offsets, pq_offsets.stride(0),
|
||
|
pq_indices, pq_indices.stride(0), pq_indices.stride(1),
|
||
|
dot_out_dtype=dot_out_dtype,
|
||
|
**meta
|
||
|
)
|
||
|
|
||
|
@triton.jit
|
||
|
def _scatter_mm6_kernel(
|
||
|
nbatches, Ms, Ks: tl.constexpr, N,
|
||
|
blocks_ptr, blocks_stride_P, blocks_stride_M, blocks_stride_K,
|
||
|
others_ptr, others_stride_B, others_stride_K, others_stride_N,
|
||
|
accumulators_ptr, accumulators_stride_B, accumulators_stride_M, accumulators_stride_N,
|
||
|
c_indices_ptr, r_offsets_ptr,
|
||
|
p_offsets_ptr, q_offsets_ptr,
|
||
|
is_compressed: tl.constexpr,
|
||
|
dot_out_dtype: tl.constexpr,
|
||
|
SPLIT_N: tl.constexpr,
|
||
|
TILE_M: tl.constexpr,
|
||
|
TILE_N: tl.constexpr,
|
||
|
GROUP_SIZE: tl.constexpr,
|
||
|
allow_tf32: tl.constexpr):
|
||
|
Ns = N // SPLIT_N
|
||
|
BLOCKS_M = Ms // TILE_M
|
||
|
BLOCKS_N = Ns // TILE_N
|
||
|
|
||
|
pid_t_ = tl.program_id(axis=0)
|
||
|
pid = tl.program_id(axis=1)
|
||
|
pid_b = pid_t_ % nbatches
|
||
|
pid_t = pid_t_ // nbatches
|
||
|
|
||
|
num_pid_in_group = GROUP_SIZE * BLOCKS_N
|
||
|
group_id = pid // num_pid_in_group
|
||
|
first_pid_m = group_id * GROUP_SIZE
|
||
|
group_size_m = min(BLOCKS_M - first_pid_m, GROUP_SIZE)
|
||
|
pid_m = first_pid_m + (pid % group_size_m)
|
||
|
pid_n = (pid % num_pid_in_group) // group_size_m
|
||
|
|
||
|
rm = (pid_m * TILE_M + tl.arange(0, TILE_M))
|
||
|
rn = (pid_n * TILE_N + tl.arange(0, TILE_N))
|
||
|
rk = tl.arange(0, Ks)
|
||
|
A_ptr = blocks_ptr + (rm[:, None] * blocks_stride_M + rk[None, :] * blocks_stride_K)
|
||
|
B_ptr = others_ptr + pid_b * others_stride_B + (rk[:, None] * others_stride_K + rn[None, :] * others_stride_N)
|
||
|
|
||
|
# When is_compressed is True, r is the only variable that
|
||
|
# depends on pid_t. This property allows sorting r values
|
||
|
# before calling the kernel. The sorting of r is equivalent to
|
||
|
# defining swizzle operator outside of the kernel.
|
||
|
r = tl.load(r_offsets_ptr + pid_t)
|
||
|
|
||
|
if is_compressed:
|
||
|
m = (r // N) // Ms
|
||
|
n = (r % N) // Ns
|
||
|
r0 = tl.load(c_indices_ptr + m)
|
||
|
r1 = tl.load(c_indices_ptr + m + 1)
|
||
|
g0 = n * r1 + (SPLIT_N - n) * r0
|
||
|
nnz = r1 - r0
|
||
|
else:
|
||
|
g0 = tl.load(c_indices_ptr + pid_t)
|
||
|
g1 = tl.load(c_indices_ptr + pid_t + 1)
|
||
|
nnz = g1 - g0
|
||
|
|
||
|
q_ptr = q_offsets_ptr + g0
|
||
|
acc_block = tl.zeros((TILE_M, TILE_N), dtype=dot_out_dtype)
|
||
|
|
||
|
if is_compressed:
|
||
|
A_ptr += r0 * blocks_stride_P # type: ignore[possibly-undefined]
|
||
|
for _ in range(nnz):
|
||
|
q = tl.load(q_ptr)
|
||
|
B = tl.load(B_ptr + q)
|
||
|
A = tl.load(A_ptr)
|
||
|
acc_block += tl.dot(A, B, out_dtype=dot_out_dtype, allow_tf32=allow_tf32)
|
||
|
A_ptr += blocks_stride_P
|
||
|
q_ptr += 1
|
||
|
else:
|
||
|
p_ptr = p_offsets_ptr + g0
|
||
|
for _ in range(nnz):
|
||
|
q = tl.load(q_ptr)
|
||
|
B = tl.load(B_ptr + q)
|
||
|
p = tl.load(p_ptr)
|
||
|
A = tl.load(A_ptr + p * blocks_stride_P)
|
||
|
p_ptr += 1
|
||
|
q_ptr += 1
|
||
|
acc_block += tl.dot(A, B, out_dtype=dot_out_dtype, allow_tf32=allow_tf32)
|
||
|
|
||
|
C_ptr = accumulators_ptr + r + pid_b * accumulators_stride_B + (
|
||
|
rm[:, None] * accumulators_stride_M + rn[None, :] * accumulators_stride_N)
|
||
|
tl.store(C_ptr, acc_block.to(accumulators_ptr.dtype.element_ty))
|
||
|
|
||
|
def _scatter_mm6(
|
||
|
blocks: torch.Tensor,
|
||
|
others: torch.Tensor,
|
||
|
c_indices: torch.Tensor,
|
||
|
r_offsets: torch.Tensor,
|
||
|
p_offsets: torch.Tensor,
|
||
|
q_offsets: torch.Tensor,
|
||
|
meta: dict,
|
||
|
accumulators: torch.Tensor,
|
||
|
force_contiguous: bool = True,
|
||
|
):
|
||
|
SPLIT_N = meta['SPLIT_N']
|
||
|
P, Ms, Ks = blocks.shape
|
||
|
B, K_, N = others.shape
|
||
|
B_, M, N_ = accumulators.shape
|
||
|
assert N_ == N
|
||
|
Ns = N // SPLIT_N
|
||
|
assert B_ == B
|
||
|
|
||
|
def grid(META):
|
||
|
return (r_offsets.shape[0] * B, triton.cdiv(Ms, META['TILE_M']) * triton.cdiv(Ns, META['TILE_N']))
|
||
|
|
||
|
dot_out_dtype = {torch.float16: tl.float32,
|
||
|
torch.bfloat16: tl.float32,
|
||
|
torch.float32: tl.float64,
|
||
|
torch.float64: tl.float64}[accumulators.dtype]
|
||
|
if 'allow_tf32' not in meta:
|
||
|
meta.update(allow_tf32=dot_out_dtype == tl.float32)
|
||
|
|
||
|
assert c_indices.stride(0) == 1
|
||
|
assert r_offsets.stride(0) == 1
|
||
|
assert p_offsets.stride(0) == 1
|
||
|
assert q_offsets.stride(0) == 1
|
||
|
|
||
|
# Re non-contiguous tensor arguments. Sometimes triton kernel
|
||
|
# launches may fail with
|
||
|
#
|
||
|
# RuntimeError: Triton Error [CUDA]: an illegal memory access was encountered
|
||
|
#
|
||
|
# that appears to be case when the size of a non-contiguous
|
||
|
# tensor argument is larger than a certain threshold. Could
|
||
|
# this be related to shared memory or L1 cache size of a GPU
|
||
|
# card? In anycase, ensuring that tensor arguments are
|
||
|
# contiguous seems to avoid the above exception. So, in the
|
||
|
# following we'll always convert tensor arguments to
|
||
|
# C-contiguous tensors.
|
||
|
|
||
|
if force_contiguous:
|
||
|
blocks = blocks.contiguous()
|
||
|
others = others.contiguous()
|
||
|
if not accumulators.is_contiguous():
|
||
|
accumulators_ = accumulators.contiguous()
|
||
|
else:
|
||
|
accumulators_ = accumulators
|
||
|
else:
|
||
|
accumulators_ = accumulators
|
||
|
|
||
|
_scatter_mm6_kernel[grid](
|
||
|
B, Ms, Ks, N,
|
||
|
blocks, blocks.stride(0), blocks.stride(1), blocks.stride(2),
|
||
|
others, others.stride(0), others.stride(1), others.stride(2),
|
||
|
accumulators_, accumulators_.stride(0), accumulators_.stride(1), accumulators_.stride(2),
|
||
|
c_indices,
|
||
|
r_offsets,
|
||
|
p_offsets,
|
||
|
q_offsets,
|
||
|
dot_out_dtype=dot_out_dtype,
|
||
|
**meta
|
||
|
)
|
||
|
|
||
|
if force_contiguous and not accumulators.is_contiguous():
|
||
|
accumulators.copy_(accumulators_)
|
||
|
|
||
|
@triton.jit
|
||
|
def _bsr_strided_addmm_kernel(
|
||
|
# values prologue
|
||
|
values_ptr,
|
||
|
values_batch_stride,
|
||
|
values_nnz_stride,
|
||
|
values_row_block_stride,
|
||
|
values_col_block_stride,
|
||
|
# values epilogue
|
||
|
# crow_indices prologue
|
||
|
crow_indices_ptr,
|
||
|
crow_indices_batch_stride,
|
||
|
crow_indices_stride,
|
||
|
# crow_indices epilogue
|
||
|
# col_indices prologue
|
||
|
col_indices_ptr,
|
||
|
col_indices_batch_stride,
|
||
|
col_indices_stride,
|
||
|
# col_indices epilogue
|
||
|
# input prologue
|
||
|
input_ptr,
|
||
|
input_batch_stride,
|
||
|
input_tiled_row_stride,
|
||
|
input_tiled_col_stride,
|
||
|
input_row_block_stride,
|
||
|
input_col_block_stride,
|
||
|
# input epilogue
|
||
|
# dense prologue
|
||
|
dense_ptr,
|
||
|
dense_batch_stride,
|
||
|
dense_tiled_row_stride,
|
||
|
dense_tiled_col_stride,
|
||
|
dense_row_block_stride,
|
||
|
dense_col_block_stride,
|
||
|
# dense epilogue
|
||
|
# output prologue
|
||
|
output_ptr,
|
||
|
output_batch_stride,
|
||
|
output_tiled_row_stride,
|
||
|
output_tiled_col_stride,
|
||
|
output_row_block_stride,
|
||
|
output_col_block_stride,
|
||
|
# output epilogue
|
||
|
beta,
|
||
|
alpha,
|
||
|
beta_is_one: tl.constexpr,
|
||
|
beta_is_nonzero: tl.constexpr,
|
||
|
alpha_is_one: tl.constexpr,
|
||
|
BLOCKSIZE_ROW: tl.constexpr,
|
||
|
BLOCKSIZE_COL: tl.constexpr,
|
||
|
BLOCKSIZE_INNER: tl.constexpr,
|
||
|
acc_dtype: tl.constexpr,
|
||
|
allow_tf32: tl.constexpr,
|
||
|
GROUP_SIZE_ROW: tl.constexpr,
|
||
|
SPLIT_N: tl.constexpr
|
||
|
):
|
||
|
|
||
|
batch_pid = tl.program_id(axis=2)
|
||
|
row_block_pid = tl.program_id(axis=0)
|
||
|
col_block_pid = tl.program_id(axis=1)
|
||
|
n_block_rows = tl.num_programs(axis=0)
|
||
|
n_block_cols = tl.num_programs(axis=1)
|
||
|
|
||
|
row_block_pid, col_block_pid = tl.swizzle2d(
|
||
|
row_block_pid, col_block_pid, n_block_rows, n_block_cols, GROUP_SIZE_ROW
|
||
|
)
|
||
|
|
||
|
crow_indices_offset_ptr = (
|
||
|
crow_indices_ptr
|
||
|
+ crow_indices_batch_stride * batch_pid
|
||
|
+ crow_indices_stride * row_block_pid
|
||
|
)
|
||
|
nnz_offset = tl.load(crow_indices_offset_ptr)
|
||
|
nnz_offset_next = tl.load(crow_indices_offset_ptr + crow_indices_stride)
|
||
|
|
||
|
# Compute nnz for the row with number row_block_pid.
|
||
|
row_nnz = nnz_offset_next - nnz_offset
|
||
|
|
||
|
row_block_arange = tl.arange(0, BLOCKSIZE_ROW)
|
||
|
inner_block_arange = tl.arange(0, BLOCKSIZE_INNER)
|
||
|
col_block_arange = tl.arange(0, BLOCKSIZE_COL)
|
||
|
|
||
|
if beta_is_nonzero:
|
||
|
# Pointers are set to exact write-to locations
|
||
|
input_ptrs = (
|
||
|
input_ptr
|
||
|
+ input_batch_stride * batch_pid
|
||
|
+ input_tiled_row_stride * row_block_pid
|
||
|
+ input_tiled_col_stride * col_block_pid
|
||
|
+ input_row_block_stride * row_block_arange[:, None]
|
||
|
+ input_col_block_stride * col_block_arange[None, :]
|
||
|
)
|
||
|
|
||
|
# Pointers are set to the first block of the current row.
|
||
|
values_block_ptrs = (
|
||
|
values_ptr
|
||
|
+ values_batch_stride * batch_pid
|
||
|
+ values_nnz_stride * nnz_offset
|
||
|
+ values_row_block_stride * row_block_arange[:, None]
|
||
|
+ values_col_block_stride * inner_block_arange[None, :]
|
||
|
)
|
||
|
|
||
|
# NOTE: dense is advanced into all dimensions but the tiled row one.
|
||
|
# That will be advanced in the loop according to values in col_indices.
|
||
|
dense_block_ptrs = (
|
||
|
dense_ptr
|
||
|
+ dense_batch_stride * batch_pid
|
||
|
+ dense_tiled_col_stride * col_block_pid
|
||
|
+ dense_row_block_stride * inner_block_arange[:, None]
|
||
|
+ dense_col_block_stride * col_block_arange[None, :]
|
||
|
)
|
||
|
|
||
|
# Pointers are set to exact write-to locations
|
||
|
output_ptrs = (
|
||
|
output_ptr
|
||
|
+ output_batch_stride * batch_pid
|
||
|
+ output_tiled_row_stride * row_block_pid
|
||
|
+ output_tiled_col_stride * col_block_pid
|
||
|
+ output_row_block_stride * row_block_arange[:, None]
|
||
|
+ output_col_block_stride * col_block_arange[None, :]
|
||
|
)
|
||
|
|
||
|
# Set pointer to the first nonzero element in the current row
|
||
|
col_index_nnz_ptr = (
|
||
|
col_indices_ptr
|
||
|
+ col_indices_batch_stride * batch_pid
|
||
|
+ col_indices_stride * nnz_offset
|
||
|
)
|
||
|
|
||
|
# alpha is never 0
|
||
|
if beta_is_nonzero:
|
||
|
output_acc_block = tl.load(input_ptrs).to(acc_dtype) # type: ignore[possibly-undefined]
|
||
|
if not (beta_is_one and alpha_is_one):
|
||
|
beta_alpha = beta / alpha
|
||
|
output_acc_block *= beta_alpha
|
||
|
else:
|
||
|
output_acc_block = tl.zeros((BLOCKSIZE_ROW, BLOCKSIZE_COL), dtype=acc_dtype)
|
||
|
|
||
|
for _ in range(row_nnz):
|
||
|
values_block = tl.load(values_block_ptrs)
|
||
|
|
||
|
# find which row of dense needs to get loaded
|
||
|
# for multiplication with values_block.
|
||
|
dense_row_idx = tl.load(col_index_nnz_ptr)
|
||
|
dense_block = tl.load(dense_block_ptrs + dense_tiled_row_stride * dense_row_idx)
|
||
|
|
||
|
# do block mm
|
||
|
output_acc_block += tl.dot(values_block, dense_block, allow_tf32=allow_tf32, out_dtype=acc_dtype)
|
||
|
|
||
|
# move val/col_index ptrs to the next block in the row
|
||
|
values_block_ptrs += values_nnz_stride
|
||
|
col_index_nnz_ptr += col_indices_stride
|
||
|
|
||
|
if not alpha_is_one:
|
||
|
output_acc_block *= alpha
|
||
|
|
||
|
# write back the result
|
||
|
tl.store(output_ptrs, output_acc_block.to(output_ptr.dtype.element_ty))
|
||
|
|
||
|
|
||
|
else:
|
||
|
bsr_softmax = None # type: ignore[assignment]
|
||
|
bsr_dense_mm = None # type: ignore[assignment]
|
||
|
sampled_addmm = None # type: ignore[assignment]
|
||
|
_scaled_dot_product_attention = None # type: ignore[assignment]
|
||
|
_scatter_mm2 = None # type: ignore[assignment]
|
||
|
_scatter_mm6 = None # type: ignore[assignment]
|
||
|
_bsr_strided_addmm_kernel = None # type: ignore[assignment]
|