ai-content-maker/.venv/Lib/site-packages/torchaudio/functional/_alignment.py

129 lines
4.6 KiB
Python
Raw Permalink Normal View History

2024-05-03 04:18:51 +03:00
from dataclasses import dataclass
from typing import List, Optional, Tuple
import torch
from torch import Tensor
from torchaudio._extension import fail_if_no_align
__all__ = []
@fail_if_no_align
def forced_align(
log_probs: Tensor,
targets: Tensor,
input_lengths: Optional[Tensor] = None,
target_lengths: Optional[Tensor] = None,
blank: int = 0,
) -> Tuple[Tensor, Tensor]:
r"""Align a CTC label sequence to an emission.
.. devices:: CPU CUDA
.. properties:: TorchScript
Args:
log_probs (Tensor): log probability of CTC emission output.
Tensor of shape `(B, T, C)`. where `B` is the batch size, `T` is the input length,
`C` is the number of characters in alphabet including blank.
targets (Tensor): Target sequence. Tensor of shape `(B, L)`,
where `L` is the target length.
input_lengths (Tensor or None, optional):
Lengths of the inputs (max value must each be <= `T`). 1-D Tensor of shape `(B,)`.
target_lengths (Tensor or None, optional):
Lengths of the targets. 1-D Tensor of shape `(B,)`.
blank_id (int, optional): The index of blank symbol in CTC emission. (Default: 0)
Returns:
Tuple(Tensor, Tensor):
Tensor: Label for each time step in the alignment path computed using forced alignment.
Tensor: Log probability scores of the labels for each time step.
Note:
The sequence length of `log_probs` must satisfy:
.. math::
L_{\text{log\_probs}} \ge L_{\text{label}} + N_{\text{repeat}}
where :math:`N_{\text{repeat}}` is the number of consecutively repeated tokens.
For example, in str `"aabbc"`, the number of repeats are `2`.
Note:
The current version only supports ``batch_size==1``.
"""
if blank in targets:
raise ValueError(f"targets Tensor shouldn't contain blank index. Found {targets}.")
if torch.max(targets) >= log_probs.shape[-1]:
raise ValueError("targets values must be less than the CTC dimension")
if input_lengths is None:
batch_size, length = log_probs.size(0), log_probs.size(1)
input_lengths = torch.full((batch_size,), length, dtype=torch.int64, device=log_probs.device)
if target_lengths is None:
batch_size, length = targets.size(0), targets.size(1)
target_lengths = torch.full((batch_size,), length, dtype=torch.int64, device=targets.device)
# For TorchScript compatibility
assert input_lengths is not None
assert target_lengths is not None
paths, scores = torch.ops.torchaudio.forced_align(log_probs, targets, input_lengths, target_lengths, blank)
return paths, scores
@dataclass
class TokenSpan:
"""TokenSpan()
Token with time stamps and score. Returned by :py:func:`merge_tokens`.
"""
token: int
"""The token"""
start: int
"""The start time (inclusive) in emission time axis."""
end: int
"""The end time (exclusive) in emission time axis."""
score: float
"""The score of the this token."""
def __len__(self) -> int:
"""Returns the time span"""
return self.end - self.start
def merge_tokens(tokens: Tensor, scores: Tensor, blank: int = 0) -> List[TokenSpan]:
"""Removes repeated tokens and blank tokens from the given CTC token sequence.
Args:
tokens (Tensor): Alignment tokens (unbatched) returned from :py:func:`forced_align`.
Shape: `(time, )`.
scores (Tensor): Alignment scores (unbatched) returned from :py:func:`forced_align`.
Shape: `(time, )`. When computing the token-size score, the given score is averaged
across the corresponding time span.
Returns:
list of TokenSpan
Example:
>>> aligned_tokens, scores = forced_align(emission, targets, input_lengths, target_lengths)
>>> token_spans = merge_tokens(aligned_tokens[0], scores[0])
"""
if tokens.ndim != 1 or scores.ndim != 1:
raise ValueError("`tokens` and `scores` must be 1D Tensor.")
if len(tokens) != len(scores):
raise ValueError("`tokens` and `scores` must be the same length.")
diff = torch.diff(
tokens, prepend=torch.tensor([-1], device=tokens.device), append=torch.tensor([-1], device=tokens.device)
)
changes_wo_blank = torch.nonzero((diff != 0)).squeeze().tolist()
tokens = tokens.tolist()
spans = [
TokenSpan(token=token, start=start, end=end, score=scores[start:end].mean().item())
for start, end in zip(changes_wo_blank[:-1], changes_wo_blank[1:])
if (token := tokens[start]) != blank
]
return spans