230 lines
9.0 KiB
Python
230 lines
9.0 KiB
Python
|
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
|
||
|
import os
|
||
|
import time
|
||
|
from dataclasses import dataclass, field
|
||
|
from enum import Enum
|
||
|
from typing import Dict, List, Optional, Union
|
||
|
|
||
|
import torch
|
||
|
from filelock import FileLock
|
||
|
from torch.utils.data import Dataset
|
||
|
|
||
|
from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING
|
||
|
from ...tokenization_utils import PreTrainedTokenizer
|
||
|
from ...utils import logging
|
||
|
from ..processors.squad import SquadFeatures, SquadV1Processor, SquadV2Processor, squad_convert_examples_to_features
|
||
|
|
||
|
|
||
|
logger = logging.get_logger(__name__)
|
||
|
|
||
|
MODEL_CONFIG_CLASSES = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys())
|
||
|
MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
|
||
|
|
||
|
|
||
|
@dataclass
|
||
|
class SquadDataTrainingArguments:
|
||
|
"""
|
||
|
Arguments pertaining to what data we are going to input our model for training and eval.
|
||
|
"""
|
||
|
|
||
|
model_type: str = field(
|
||
|
default=None, metadata={"help": "Model type selected in the list: " + ", ".join(MODEL_TYPES)}
|
||
|
)
|
||
|
data_dir: str = field(
|
||
|
default=None, metadata={"help": "The input data dir. Should contain the .json files for the SQuAD task."}
|
||
|
)
|
||
|
max_seq_length: int = field(
|
||
|
default=128,
|
||
|
metadata={
|
||
|
"help": (
|
||
|
"The maximum total input sequence length after tokenization. Sequences longer "
|
||
|
"than this will be truncated, sequences shorter will be padded."
|
||
|
)
|
||
|
},
|
||
|
)
|
||
|
doc_stride: int = field(
|
||
|
default=128,
|
||
|
metadata={"help": "When splitting up a long document into chunks, how much stride to take between chunks."},
|
||
|
)
|
||
|
max_query_length: int = field(
|
||
|
default=64,
|
||
|
metadata={
|
||
|
"help": (
|
||
|
"The maximum number of tokens for the question. Questions longer than this will "
|
||
|
"be truncated to this length."
|
||
|
)
|
||
|
},
|
||
|
)
|
||
|
max_answer_length: int = field(
|
||
|
default=30,
|
||
|
metadata={
|
||
|
"help": (
|
||
|
"The maximum length of an answer that can be generated. This is needed because the start "
|
||
|
"and end predictions are not conditioned on one another."
|
||
|
)
|
||
|
},
|
||
|
)
|
||
|
overwrite_cache: bool = field(
|
||
|
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
|
||
|
)
|
||
|
version_2_with_negative: bool = field(
|
||
|
default=False, metadata={"help": "If true, the SQuAD examples contain some that do not have an answer."}
|
||
|
)
|
||
|
null_score_diff_threshold: float = field(
|
||
|
default=0.0, metadata={"help": "If null_score - best_non_null is greater than the threshold predict null."}
|
||
|
)
|
||
|
n_best_size: int = field(
|
||
|
default=20, metadata={"help": "If null_score - best_non_null is greater than the threshold predict null."}
|
||
|
)
|
||
|
lang_id: int = field(
|
||
|
default=0,
|
||
|
metadata={
|
||
|
"help": (
|
||
|
"language id of input for language-specific xlm models (see"
|
||
|
" tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)"
|
||
|
)
|
||
|
},
|
||
|
)
|
||
|
threads: int = field(default=1, metadata={"help": "multiple threads for converting example to features"})
|
||
|
|
||
|
|
||
|
class Split(Enum):
|
||
|
train = "train"
|
||
|
dev = "dev"
|
||
|
|
||
|
|
||
|
class SquadDataset(Dataset):
|
||
|
"""
|
||
|
This will be superseded by a framework-agnostic approach soon.
|
||
|
"""
|
||
|
|
||
|
args: SquadDataTrainingArguments
|
||
|
features: List[SquadFeatures]
|
||
|
mode: Split
|
||
|
is_language_sensitive: bool
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
args: SquadDataTrainingArguments,
|
||
|
tokenizer: PreTrainedTokenizer,
|
||
|
limit_length: Optional[int] = None,
|
||
|
mode: Union[str, Split] = Split.train,
|
||
|
is_language_sensitive: Optional[bool] = False,
|
||
|
cache_dir: Optional[str] = None,
|
||
|
dataset_format: Optional[str] = "pt",
|
||
|
):
|
||
|
self.args = args
|
||
|
self.is_language_sensitive = is_language_sensitive
|
||
|
self.processor = SquadV2Processor() if args.version_2_with_negative else SquadV1Processor()
|
||
|
if isinstance(mode, str):
|
||
|
try:
|
||
|
mode = Split[mode]
|
||
|
except KeyError:
|
||
|
raise KeyError("mode is not a valid split name")
|
||
|
self.mode = mode
|
||
|
# Load data features from cache or dataset file
|
||
|
version_tag = "v2" if args.version_2_with_negative else "v1"
|
||
|
cached_features_file = os.path.join(
|
||
|
cache_dir if cache_dir is not None else args.data_dir,
|
||
|
f"cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}",
|
||
|
)
|
||
|
|
||
|
# Make sure only the first process in distributed training processes the dataset,
|
||
|
# and the others will use the cache.
|
||
|
lock_path = cached_features_file + ".lock"
|
||
|
with FileLock(lock_path):
|
||
|
if os.path.exists(cached_features_file) and not args.overwrite_cache:
|
||
|
start = time.time()
|
||
|
self.old_features = torch.load(cached_features_file)
|
||
|
|
||
|
# Legacy cache files have only features, while new cache files
|
||
|
# will have dataset and examples also.
|
||
|
self.features = self.old_features["features"]
|
||
|
self.dataset = self.old_features.get("dataset", None)
|
||
|
self.examples = self.old_features.get("examples", None)
|
||
|
logger.info(
|
||
|
f"Loading features from cached file {cached_features_file} [took %.3f s]", time.time() - start
|
||
|
)
|
||
|
|
||
|
if self.dataset is None or self.examples is None:
|
||
|
logger.warning(
|
||
|
f"Deleting cached file {cached_features_file} will allow dataset and examples to be cached in"
|
||
|
" future run"
|
||
|
)
|
||
|
else:
|
||
|
if mode == Split.dev:
|
||
|
self.examples = self.processor.get_dev_examples(args.data_dir)
|
||
|
else:
|
||
|
self.examples = self.processor.get_train_examples(args.data_dir)
|
||
|
|
||
|
self.features, self.dataset = squad_convert_examples_to_features(
|
||
|
examples=self.examples,
|
||
|
tokenizer=tokenizer,
|
||
|
max_seq_length=args.max_seq_length,
|
||
|
doc_stride=args.doc_stride,
|
||
|
max_query_length=args.max_query_length,
|
||
|
is_training=mode == Split.train,
|
||
|
threads=args.threads,
|
||
|
return_dataset=dataset_format,
|
||
|
)
|
||
|
|
||
|
start = time.time()
|
||
|
torch.save(
|
||
|
{"features": self.features, "dataset": self.dataset, "examples": self.examples},
|
||
|
cached_features_file,
|
||
|
)
|
||
|
# ^ This seems to take a lot of time so I want to investigate why and how we can improve.
|
||
|
logger.info(
|
||
|
f"Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]"
|
||
|
)
|
||
|
|
||
|
def __len__(self):
|
||
|
return len(self.features)
|
||
|
|
||
|
def __getitem__(self, i) -> Dict[str, torch.Tensor]:
|
||
|
# Convert to Tensors and build dataset
|
||
|
feature = self.features[i]
|
||
|
|
||
|
input_ids = torch.tensor(feature.input_ids, dtype=torch.long)
|
||
|
attention_mask = torch.tensor(feature.attention_mask, dtype=torch.long)
|
||
|
token_type_ids = torch.tensor(feature.token_type_ids, dtype=torch.long)
|
||
|
cls_index = torch.tensor(feature.cls_index, dtype=torch.long)
|
||
|
p_mask = torch.tensor(feature.p_mask, dtype=torch.float)
|
||
|
is_impossible = torch.tensor(feature.is_impossible, dtype=torch.float)
|
||
|
|
||
|
inputs = {
|
||
|
"input_ids": input_ids,
|
||
|
"attention_mask": attention_mask,
|
||
|
"token_type_ids": token_type_ids,
|
||
|
}
|
||
|
|
||
|
if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]:
|
||
|
del inputs["token_type_ids"]
|
||
|
|
||
|
if self.args.model_type in ["xlnet", "xlm"]:
|
||
|
inputs.update({"cls_index": cls_index, "p_mask": p_mask})
|
||
|
if self.args.version_2_with_negative:
|
||
|
inputs.update({"is_impossible": is_impossible})
|
||
|
if self.is_language_sensitive:
|
||
|
inputs.update({"langs": (torch.ones(input_ids.shape, dtype=torch.int64) * self.args.lang_id)})
|
||
|
|
||
|
if self.mode == Split.train:
|
||
|
start_positions = torch.tensor(feature.start_position, dtype=torch.long)
|
||
|
end_positions = torch.tensor(feature.end_position, dtype=torch.long)
|
||
|
inputs.update({"start_positions": start_positions, "end_positions": end_positions})
|
||
|
|
||
|
return inputs
|