644 lines
23 KiB
Python
644 lines
23 KiB
Python
|
# coding=utf-8
|
||
|
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
|
||
|
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
""" GLUE processors and helpers"""
|
||
|
|
||
|
import os
|
||
|
import warnings
|
||
|
from dataclasses import asdict
|
||
|
from enum import Enum
|
||
|
from typing import List, Optional, Union
|
||
|
|
||
|
from ...tokenization_utils import PreTrainedTokenizer
|
||
|
from ...utils import is_tf_available, logging
|
||
|
from .utils import DataProcessor, InputExample, InputFeatures
|
||
|
|
||
|
|
||
|
if is_tf_available():
|
||
|
import tensorflow as tf
|
||
|
|
||
|
logger = logging.get_logger(__name__)
|
||
|
|
||
|
DEPRECATION_WARNING = (
|
||
|
"This {0} will be removed from the library soon, preprocessing should be handled with the 🤗 Datasets "
|
||
|
"library. You can have a look at this example script for pointers: "
|
||
|
"https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py"
|
||
|
)
|
||
|
|
||
|
|
||
|
def glue_convert_examples_to_features(
|
||
|
examples: Union[List[InputExample], "tf.data.Dataset"],
|
||
|
tokenizer: PreTrainedTokenizer,
|
||
|
max_length: Optional[int] = None,
|
||
|
task=None,
|
||
|
label_list=None,
|
||
|
output_mode=None,
|
||
|
):
|
||
|
"""
|
||
|
Loads a data file into a list of `InputFeatures`
|
||
|
|
||
|
Args:
|
||
|
examples: List of `InputExamples` or `tf.data.Dataset` containing the examples.
|
||
|
tokenizer: Instance of a tokenizer that will tokenize the examples
|
||
|
max_length: Maximum example length. Defaults to the tokenizer's max_len
|
||
|
task: GLUE task
|
||
|
label_list: List of labels. Can be obtained from the processor using the `processor.get_labels()` method
|
||
|
output_mode: String indicating the output mode. Either `regression` or `classification`
|
||
|
|
||
|
Returns:
|
||
|
If the `examples` input is a `tf.data.Dataset`, will return a `tf.data.Dataset` containing the task-specific
|
||
|
features. If the input is a list of `InputExamples`, will return a list of task-specific `InputFeatures` which
|
||
|
can be fed to the model.
|
||
|
|
||
|
"""
|
||
|
warnings.warn(DEPRECATION_WARNING.format("function"), FutureWarning)
|
||
|
if is_tf_available() and isinstance(examples, tf.data.Dataset):
|
||
|
if task is None:
|
||
|
raise ValueError("When calling glue_convert_examples_to_features from TF, the task parameter is required.")
|
||
|
return _tf_glue_convert_examples_to_features(examples, tokenizer, max_length=max_length, task=task)
|
||
|
return _glue_convert_examples_to_features(
|
||
|
examples, tokenizer, max_length=max_length, task=task, label_list=label_list, output_mode=output_mode
|
||
|
)
|
||
|
|
||
|
|
||
|
if is_tf_available():
|
||
|
|
||
|
def _tf_glue_convert_examples_to_features(
|
||
|
examples: tf.data.Dataset,
|
||
|
tokenizer: PreTrainedTokenizer,
|
||
|
task=str,
|
||
|
max_length: Optional[int] = None,
|
||
|
) -> tf.data.Dataset:
|
||
|
"""
|
||
|
Returns:
|
||
|
A `tf.data.Dataset` containing the task-specific features.
|
||
|
|
||
|
"""
|
||
|
processor = glue_processors[task]()
|
||
|
examples = [processor.tfds_map(processor.get_example_from_tensor_dict(example)) for example in examples]
|
||
|
features = glue_convert_examples_to_features(examples, tokenizer, max_length=max_length, task=task)
|
||
|
label_type = tf.float32 if task == "sts-b" else tf.int64
|
||
|
|
||
|
def gen():
|
||
|
for ex in features:
|
||
|
d = {k: v for k, v in asdict(ex).items() if v is not None}
|
||
|
label = d.pop("label")
|
||
|
yield (d, label)
|
||
|
|
||
|
input_names = tokenizer.model_input_names
|
||
|
|
||
|
return tf.data.Dataset.from_generator(
|
||
|
gen,
|
||
|
({k: tf.int32 for k in input_names}, label_type),
|
||
|
({k: tf.TensorShape([None]) for k in input_names}, tf.TensorShape([])),
|
||
|
)
|
||
|
|
||
|
|
||
|
def _glue_convert_examples_to_features(
|
||
|
examples: List[InputExample],
|
||
|
tokenizer: PreTrainedTokenizer,
|
||
|
max_length: Optional[int] = None,
|
||
|
task=None,
|
||
|
label_list=None,
|
||
|
output_mode=None,
|
||
|
):
|
||
|
if max_length is None:
|
||
|
max_length = tokenizer.model_max_length
|
||
|
|
||
|
if task is not None:
|
||
|
processor = glue_processors[task]()
|
||
|
if label_list is None:
|
||
|
label_list = processor.get_labels()
|
||
|
logger.info(f"Using label list {label_list} for task {task}")
|
||
|
if output_mode is None:
|
||
|
output_mode = glue_output_modes[task]
|
||
|
logger.info(f"Using output mode {output_mode} for task {task}")
|
||
|
|
||
|
label_map = {label: i for i, label in enumerate(label_list)}
|
||
|
|
||
|
def label_from_example(example: InputExample) -> Union[int, float, None]:
|
||
|
if example.label is None:
|
||
|
return None
|
||
|
if output_mode == "classification":
|
||
|
return label_map[example.label]
|
||
|
elif output_mode == "regression":
|
||
|
return float(example.label)
|
||
|
raise KeyError(output_mode)
|
||
|
|
||
|
labels = [label_from_example(example) for example in examples]
|
||
|
|
||
|
batch_encoding = tokenizer(
|
||
|
[(example.text_a, example.text_b) for example in examples],
|
||
|
max_length=max_length,
|
||
|
padding="max_length",
|
||
|
truncation=True,
|
||
|
)
|
||
|
|
||
|
features = []
|
||
|
for i in range(len(examples)):
|
||
|
inputs = {k: batch_encoding[k][i] for k in batch_encoding}
|
||
|
|
||
|
feature = InputFeatures(**inputs, label=labels[i])
|
||
|
features.append(feature)
|
||
|
|
||
|
for i, example in enumerate(examples[:5]):
|
||
|
logger.info("*** Example ***")
|
||
|
logger.info(f"guid: {example.guid}")
|
||
|
logger.info(f"features: {features[i]}")
|
||
|
|
||
|
return features
|
||
|
|
||
|
|
||
|
class OutputMode(Enum):
|
||
|
classification = "classification"
|
||
|
regression = "regression"
|
||
|
|
||
|
|
||
|
class MrpcProcessor(DataProcessor):
|
||
|
"""Processor for the MRPC data set (GLUE version)."""
|
||
|
|
||
|
def __init__(self, *args, **kwargs):
|
||
|
super().__init__(*args, **kwargs)
|
||
|
warnings.warn(DEPRECATION_WARNING.format("processor"), FutureWarning)
|
||
|
|
||
|
def get_example_from_tensor_dict(self, tensor_dict):
|
||
|
"""See base class."""
|
||
|
return InputExample(
|
||
|
tensor_dict["idx"].numpy(),
|
||
|
tensor_dict["sentence1"].numpy().decode("utf-8"),
|
||
|
tensor_dict["sentence2"].numpy().decode("utf-8"),
|
||
|
str(tensor_dict["label"].numpy()),
|
||
|
)
|
||
|
|
||
|
def get_train_examples(self, data_dir):
|
||
|
"""See base class."""
|
||
|
logger.info(f"LOOKING AT {os.path.join(data_dir, 'train.tsv')}")
|
||
|
return self._create_examples(self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")
|
||
|
|
||
|
def get_dev_examples(self, data_dir):
|
||
|
"""See base class."""
|
||
|
return self._create_examples(self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")
|
||
|
|
||
|
def get_test_examples(self, data_dir):
|
||
|
"""See base class."""
|
||
|
return self._create_examples(self._read_tsv(os.path.join(data_dir, "test.tsv")), "test")
|
||
|
|
||
|
def get_labels(self):
|
||
|
"""See base class."""
|
||
|
return ["0", "1"]
|
||
|
|
||
|
def _create_examples(self, lines, set_type):
|
||
|
"""Creates examples for the training, dev and test sets."""
|
||
|
examples = []
|
||
|
for i, line in enumerate(lines):
|
||
|
if i == 0:
|
||
|
continue
|
||
|
guid = f"{set_type}-{i}"
|
||
|
text_a = line[3]
|
||
|
text_b = line[4]
|
||
|
label = None if set_type == "test" else line[0]
|
||
|
examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
|
||
|
return examples
|
||
|
|
||
|
|
||
|
class MnliProcessor(DataProcessor):
|
||
|
"""Processor for the MultiNLI data set (GLUE version)."""
|
||
|
|
||
|
def __init__(self, *args, **kwargs):
|
||
|
super().__init__(*args, **kwargs)
|
||
|
warnings.warn(DEPRECATION_WARNING.format("processor"), FutureWarning)
|
||
|
|
||
|
def get_example_from_tensor_dict(self, tensor_dict):
|
||
|
"""See base class."""
|
||
|
return InputExample(
|
||
|
tensor_dict["idx"].numpy(),
|
||
|
tensor_dict["premise"].numpy().decode("utf-8"),
|
||
|
tensor_dict["hypothesis"].numpy().decode("utf-8"),
|
||
|
str(tensor_dict["label"].numpy()),
|
||
|
)
|
||
|
|
||
|
def get_train_examples(self, data_dir):
|
||
|
"""See base class."""
|
||
|
return self._create_examples(self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")
|
||
|
|
||
|
def get_dev_examples(self, data_dir):
|
||
|
"""See base class."""
|
||
|
return self._create_examples(self._read_tsv(os.path.join(data_dir, "dev_matched.tsv")), "dev_matched")
|
||
|
|
||
|
def get_test_examples(self, data_dir):
|
||
|
"""See base class."""
|
||
|
return self._create_examples(self._read_tsv(os.path.join(data_dir, "test_matched.tsv")), "test_matched")
|
||
|
|
||
|
def get_labels(self):
|
||
|
"""See base class."""
|
||
|
return ["contradiction", "entailment", "neutral"]
|
||
|
|
||
|
def _create_examples(self, lines, set_type):
|
||
|
"""Creates examples for the training, dev and test sets."""
|
||
|
examples = []
|
||
|
for i, line in enumerate(lines):
|
||
|
if i == 0:
|
||
|
continue
|
||
|
guid = f"{set_type}-{line[0]}"
|
||
|
text_a = line[8]
|
||
|
text_b = line[9]
|
||
|
label = None if set_type.startswith("test") else line[-1]
|
||
|
examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
|
||
|
return examples
|
||
|
|
||
|
|
||
|
class MnliMismatchedProcessor(MnliProcessor):
|
||
|
"""Processor for the MultiNLI Mismatched data set (GLUE version)."""
|
||
|
|
||
|
def __init__(self, *args, **kwargs):
|
||
|
super().__init__(*args, **kwargs)
|
||
|
warnings.warn(DEPRECATION_WARNING.format("processor"), FutureWarning)
|
||
|
|
||
|
def get_dev_examples(self, data_dir):
|
||
|
"""See base class."""
|
||
|
return self._create_examples(self._read_tsv(os.path.join(data_dir, "dev_mismatched.tsv")), "dev_mismatched")
|
||
|
|
||
|
def get_test_examples(self, data_dir):
|
||
|
"""See base class."""
|
||
|
return self._create_examples(self._read_tsv(os.path.join(data_dir, "test_mismatched.tsv")), "test_mismatched")
|
||
|
|
||
|
|
||
|
class ColaProcessor(DataProcessor):
|
||
|
"""Processor for the CoLA data set (GLUE version)."""
|
||
|
|
||
|
def __init__(self, *args, **kwargs):
|
||
|
super().__init__(*args, **kwargs)
|
||
|
warnings.warn(DEPRECATION_WARNING.format("processor"), FutureWarning)
|
||
|
|
||
|
def get_example_from_tensor_dict(self, tensor_dict):
|
||
|
"""See base class."""
|
||
|
return InputExample(
|
||
|
tensor_dict["idx"].numpy(),
|
||
|
tensor_dict["sentence"].numpy().decode("utf-8"),
|
||
|
None,
|
||
|
str(tensor_dict["label"].numpy()),
|
||
|
)
|
||
|
|
||
|
def get_train_examples(self, data_dir):
|
||
|
"""See base class."""
|
||
|
return self._create_examples(self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")
|
||
|
|
||
|
def get_dev_examples(self, data_dir):
|
||
|
"""See base class."""
|
||
|
return self._create_examples(self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")
|
||
|
|
||
|
def get_test_examples(self, data_dir):
|
||
|
"""See base class."""
|
||
|
return self._create_examples(self._read_tsv(os.path.join(data_dir, "test.tsv")), "test")
|
||
|
|
||
|
def get_labels(self):
|
||
|
"""See base class."""
|
||
|
return ["0", "1"]
|
||
|
|
||
|
def _create_examples(self, lines, set_type):
|
||
|
"""Creates examples for the training, dev and test sets."""
|
||
|
test_mode = set_type == "test"
|
||
|
if test_mode:
|
||
|
lines = lines[1:]
|
||
|
text_index = 1 if test_mode else 3
|
||
|
examples = []
|
||
|
for i, line in enumerate(lines):
|
||
|
guid = f"{set_type}-{i}"
|
||
|
text_a = line[text_index]
|
||
|
label = None if test_mode else line[1]
|
||
|
examples.append(InputExample(guid=guid, text_a=text_a, text_b=None, label=label))
|
||
|
return examples
|
||
|
|
||
|
|
||
|
class Sst2Processor(DataProcessor):
|
||
|
"""Processor for the SST-2 data set (GLUE version)."""
|
||
|
|
||
|
def __init__(self, *args, **kwargs):
|
||
|
super().__init__(*args, **kwargs)
|
||
|
warnings.warn(DEPRECATION_WARNING.format("processor"), FutureWarning)
|
||
|
|
||
|
def get_example_from_tensor_dict(self, tensor_dict):
|
||
|
"""See base class."""
|
||
|
return InputExample(
|
||
|
tensor_dict["idx"].numpy(),
|
||
|
tensor_dict["sentence"].numpy().decode("utf-8"),
|
||
|
None,
|
||
|
str(tensor_dict["label"].numpy()),
|
||
|
)
|
||
|
|
||
|
def get_train_examples(self, data_dir):
|
||
|
"""See base class."""
|
||
|
return self._create_examples(self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")
|
||
|
|
||
|
def get_dev_examples(self, data_dir):
|
||
|
"""See base class."""
|
||
|
return self._create_examples(self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")
|
||
|
|
||
|
def get_test_examples(self, data_dir):
|
||
|
"""See base class."""
|
||
|
return self._create_examples(self._read_tsv(os.path.join(data_dir, "test.tsv")), "test")
|
||
|
|
||
|
def get_labels(self):
|
||
|
"""See base class."""
|
||
|
return ["0", "1"]
|
||
|
|
||
|
def _create_examples(self, lines, set_type):
|
||
|
"""Creates examples for the training, dev and test sets."""
|
||
|
examples = []
|
||
|
text_index = 1 if set_type == "test" else 0
|
||
|
for i, line in enumerate(lines):
|
||
|
if i == 0:
|
||
|
continue
|
||
|
guid = f"{set_type}-{i}"
|
||
|
text_a = line[text_index]
|
||
|
label = None if set_type == "test" else line[1]
|
||
|
examples.append(InputExample(guid=guid, text_a=text_a, text_b=None, label=label))
|
||
|
return examples
|
||
|
|
||
|
|
||
|
class StsbProcessor(DataProcessor):
|
||
|
"""Processor for the STS-B data set (GLUE version)."""
|
||
|
|
||
|
def __init__(self, *args, **kwargs):
|
||
|
super().__init__(*args, **kwargs)
|
||
|
warnings.warn(DEPRECATION_WARNING.format("processor"), FutureWarning)
|
||
|
|
||
|
def get_example_from_tensor_dict(self, tensor_dict):
|
||
|
"""See base class."""
|
||
|
return InputExample(
|
||
|
tensor_dict["idx"].numpy(),
|
||
|
tensor_dict["sentence1"].numpy().decode("utf-8"),
|
||
|
tensor_dict["sentence2"].numpy().decode("utf-8"),
|
||
|
str(tensor_dict["label"].numpy()),
|
||
|
)
|
||
|
|
||
|
def get_train_examples(self, data_dir):
|
||
|
"""See base class."""
|
||
|
return self._create_examples(self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")
|
||
|
|
||
|
def get_dev_examples(self, data_dir):
|
||
|
"""See base class."""
|
||
|
return self._create_examples(self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")
|
||
|
|
||
|
def get_test_examples(self, data_dir):
|
||
|
"""See base class."""
|
||
|
return self._create_examples(self._read_tsv(os.path.join(data_dir, "test.tsv")), "test")
|
||
|
|
||
|
def get_labels(self):
|
||
|
"""See base class."""
|
||
|
return [None]
|
||
|
|
||
|
def _create_examples(self, lines, set_type):
|
||
|
"""Creates examples for the training, dev and test sets."""
|
||
|
examples = []
|
||
|
for i, line in enumerate(lines):
|
||
|
if i == 0:
|
||
|
continue
|
||
|
guid = f"{set_type}-{line[0]}"
|
||
|
text_a = line[7]
|
||
|
text_b = line[8]
|
||
|
label = None if set_type == "test" else line[-1]
|
||
|
examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
|
||
|
return examples
|
||
|
|
||
|
|
||
|
class QqpProcessor(DataProcessor):
|
||
|
"""Processor for the QQP data set (GLUE version)."""
|
||
|
|
||
|
def __init__(self, *args, **kwargs):
|
||
|
super().__init__(*args, **kwargs)
|
||
|
warnings.warn(DEPRECATION_WARNING.format("processor"), FutureWarning)
|
||
|
|
||
|
def get_example_from_tensor_dict(self, tensor_dict):
|
||
|
"""See base class."""
|
||
|
return InputExample(
|
||
|
tensor_dict["idx"].numpy(),
|
||
|
tensor_dict["question1"].numpy().decode("utf-8"),
|
||
|
tensor_dict["question2"].numpy().decode("utf-8"),
|
||
|
str(tensor_dict["label"].numpy()),
|
||
|
)
|
||
|
|
||
|
def get_train_examples(self, data_dir):
|
||
|
"""See base class."""
|
||
|
return self._create_examples(self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")
|
||
|
|
||
|
def get_dev_examples(self, data_dir):
|
||
|
"""See base class."""
|
||
|
return self._create_examples(self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")
|
||
|
|
||
|
def get_test_examples(self, data_dir):
|
||
|
"""See base class."""
|
||
|
return self._create_examples(self._read_tsv(os.path.join(data_dir, "test.tsv")), "test")
|
||
|
|
||
|
def get_labels(self):
|
||
|
"""See base class."""
|
||
|
return ["0", "1"]
|
||
|
|
||
|
def _create_examples(self, lines, set_type):
|
||
|
"""Creates examples for the training, dev and test sets."""
|
||
|
test_mode = set_type == "test"
|
||
|
q1_index = 1 if test_mode else 3
|
||
|
q2_index = 2 if test_mode else 4
|
||
|
examples = []
|
||
|
for i, line in enumerate(lines):
|
||
|
if i == 0:
|
||
|
continue
|
||
|
guid = f"{set_type}-{line[0]}"
|
||
|
try:
|
||
|
text_a = line[q1_index]
|
||
|
text_b = line[q2_index]
|
||
|
label = None if test_mode else line[5]
|
||
|
except IndexError:
|
||
|
continue
|
||
|
examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
|
||
|
return examples
|
||
|
|
||
|
|
||
|
class QnliProcessor(DataProcessor):
|
||
|
"""Processor for the QNLI data set (GLUE version)."""
|
||
|
|
||
|
def __init__(self, *args, **kwargs):
|
||
|
super().__init__(*args, **kwargs)
|
||
|
warnings.warn(DEPRECATION_WARNING.format("processor"), FutureWarning)
|
||
|
|
||
|
def get_example_from_tensor_dict(self, tensor_dict):
|
||
|
"""See base class."""
|
||
|
return InputExample(
|
||
|
tensor_dict["idx"].numpy(),
|
||
|
tensor_dict["question"].numpy().decode("utf-8"),
|
||
|
tensor_dict["sentence"].numpy().decode("utf-8"),
|
||
|
str(tensor_dict["label"].numpy()),
|
||
|
)
|
||
|
|
||
|
def get_train_examples(self, data_dir):
|
||
|
"""See base class."""
|
||
|
return self._create_examples(self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")
|
||
|
|
||
|
def get_dev_examples(self, data_dir):
|
||
|
"""See base class."""
|
||
|
return self._create_examples(self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")
|
||
|
|
||
|
def get_test_examples(self, data_dir):
|
||
|
"""See base class."""
|
||
|
return self._create_examples(self._read_tsv(os.path.join(data_dir, "test.tsv")), "test")
|
||
|
|
||
|
def get_labels(self):
|
||
|
"""See base class."""
|
||
|
return ["entailment", "not_entailment"]
|
||
|
|
||
|
def _create_examples(self, lines, set_type):
|
||
|
"""Creates examples for the training, dev and test sets."""
|
||
|
examples = []
|
||
|
for i, line in enumerate(lines):
|
||
|
if i == 0:
|
||
|
continue
|
||
|
guid = f"{set_type}-{line[0]}"
|
||
|
text_a = line[1]
|
||
|
text_b = line[2]
|
||
|
label = None if set_type == "test" else line[-1]
|
||
|
examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
|
||
|
return examples
|
||
|
|
||
|
|
||
|
class RteProcessor(DataProcessor):
|
||
|
"""Processor for the RTE data set (GLUE version)."""
|
||
|
|
||
|
def __init__(self, *args, **kwargs):
|
||
|
super().__init__(*args, **kwargs)
|
||
|
warnings.warn(DEPRECATION_WARNING.format("processor"), FutureWarning)
|
||
|
|
||
|
def get_example_from_tensor_dict(self, tensor_dict):
|
||
|
"""See base class."""
|
||
|
return InputExample(
|
||
|
tensor_dict["idx"].numpy(),
|
||
|
tensor_dict["sentence1"].numpy().decode("utf-8"),
|
||
|
tensor_dict["sentence2"].numpy().decode("utf-8"),
|
||
|
str(tensor_dict["label"].numpy()),
|
||
|
)
|
||
|
|
||
|
def get_train_examples(self, data_dir):
|
||
|
"""See base class."""
|
||
|
return self._create_examples(self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")
|
||
|
|
||
|
def get_dev_examples(self, data_dir):
|
||
|
"""See base class."""
|
||
|
return self._create_examples(self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")
|
||
|
|
||
|
def get_test_examples(self, data_dir):
|
||
|
"""See base class."""
|
||
|
return self._create_examples(self._read_tsv(os.path.join(data_dir, "test.tsv")), "test")
|
||
|
|
||
|
def get_labels(self):
|
||
|
"""See base class."""
|
||
|
return ["entailment", "not_entailment"]
|
||
|
|
||
|
def _create_examples(self, lines, set_type):
|
||
|
"""Creates examples for the training, dev and test sets."""
|
||
|
examples = []
|
||
|
for i, line in enumerate(lines):
|
||
|
if i == 0:
|
||
|
continue
|
||
|
guid = f"{set_type}-{line[0]}"
|
||
|
text_a = line[1]
|
||
|
text_b = line[2]
|
||
|
label = None if set_type == "test" else line[-1]
|
||
|
examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
|
||
|
return examples
|
||
|
|
||
|
|
||
|
class WnliProcessor(DataProcessor):
|
||
|
"""Processor for the WNLI data set (GLUE version)."""
|
||
|
|
||
|
def __init__(self, *args, **kwargs):
|
||
|
super().__init__(*args, **kwargs)
|
||
|
warnings.warn(DEPRECATION_WARNING.format("processor"), FutureWarning)
|
||
|
|
||
|
def get_example_from_tensor_dict(self, tensor_dict):
|
||
|
"""See base class."""
|
||
|
return InputExample(
|
||
|
tensor_dict["idx"].numpy(),
|
||
|
tensor_dict["sentence1"].numpy().decode("utf-8"),
|
||
|
tensor_dict["sentence2"].numpy().decode("utf-8"),
|
||
|
str(tensor_dict["label"].numpy()),
|
||
|
)
|
||
|
|
||
|
def get_train_examples(self, data_dir):
|
||
|
"""See base class."""
|
||
|
return self._create_examples(self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")
|
||
|
|
||
|
def get_dev_examples(self, data_dir):
|
||
|
"""See base class."""
|
||
|
return self._create_examples(self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")
|
||
|
|
||
|
def get_test_examples(self, data_dir):
|
||
|
"""See base class."""
|
||
|
return self._create_examples(self._read_tsv(os.path.join(data_dir, "test.tsv")), "test")
|
||
|
|
||
|
def get_labels(self):
|
||
|
"""See base class."""
|
||
|
return ["0", "1"]
|
||
|
|
||
|
def _create_examples(self, lines, set_type):
|
||
|
"""Creates examples for the training, dev and test sets."""
|
||
|
examples = []
|
||
|
for i, line in enumerate(lines):
|
||
|
if i == 0:
|
||
|
continue
|
||
|
guid = f"{set_type}-{line[0]}"
|
||
|
text_a = line[1]
|
||
|
text_b = line[2]
|
||
|
label = None if set_type == "test" else line[-1]
|
||
|
examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
|
||
|
return examples
|
||
|
|
||
|
|
||
|
glue_tasks_num_labels = {
|
||
|
"cola": 2,
|
||
|
"mnli": 3,
|
||
|
"mrpc": 2,
|
||
|
"sst-2": 2,
|
||
|
"sts-b": 1,
|
||
|
"qqp": 2,
|
||
|
"qnli": 2,
|
||
|
"rte": 2,
|
||
|
"wnli": 2,
|
||
|
}
|
||
|
|
||
|
glue_processors = {
|
||
|
"cola": ColaProcessor,
|
||
|
"mnli": MnliProcessor,
|
||
|
"mnli-mm": MnliMismatchedProcessor,
|
||
|
"mrpc": MrpcProcessor,
|
||
|
"sst-2": Sst2Processor,
|
||
|
"sts-b": StsbProcessor,
|
||
|
"qqp": QqpProcessor,
|
||
|
"qnli": QnliProcessor,
|
||
|
"rte": RteProcessor,
|
||
|
"wnli": WnliProcessor,
|
||
|
}
|
||
|
|
||
|
glue_output_modes = {
|
||
|
"cola": "classification",
|
||
|
"mnli": "classification",
|
||
|
"mnli-mm": "classification",
|
||
|
"mrpc": "classification",
|
||
|
"sst-2": "classification",
|
||
|
"sts-b": "regression",
|
||
|
"qqp": "classification",
|
||
|
"qnli": "classification",
|
||
|
"rte": "classification",
|
||
|
"wnli": "classification",
|
||
|
}
|