155 lines
4.0 KiB
Plaintext
155 lines
4.0 KiB
Plaintext
|
#include <torch/extension.h>
|
||
|
#include <ATen/ATen.h>
|
||
|
#include "cuda_launch.h"
|
||
|
#include "cuda_kernel.h"
|
||
|
#include <vector>
|
||
|
|
||
|
//////////////////////////////////////////////////////////////////////////////////////////////////
|
||
|
//////////////////////////////////////////////////////////////////////////////////////////////////
|
||
|
|
||
|
std::vector<at::Tensor> index_max_kernel(
|
||
|
at::Tensor index_vals, // [batch_size, 32, num_block]
|
||
|
at::Tensor indices, // [batch_size, num_block],
|
||
|
int A_num_block,
|
||
|
int B_num_block
|
||
|
) {
|
||
|
int batch_size = indices.size(0);
|
||
|
int num_block = indices.size(1);
|
||
|
|
||
|
at::Tensor max_vals = at::zeros({batch_size, A_num_block * 32}, index_vals.options());
|
||
|
at::Tensor max_vals_scatter = at::zeros({batch_size, 32, num_block}, index_vals.options());
|
||
|
|
||
|
dim3 threads(256);
|
||
|
dim3 blocks(batch_size);
|
||
|
int shared_mem = A_num_block * 32 * sizeof(float);
|
||
|
|
||
|
index_max_cuda_kernel<<<blocks, threads, shared_mem>>>(
|
||
|
index_vals.data_ptr<float>(),
|
||
|
indices.data_ptr<int>(),
|
||
|
max_vals.data_ptr<float>(),
|
||
|
max_vals_scatter.data_ptr<float>(),
|
||
|
batch_size,
|
||
|
A_num_block,
|
||
|
B_num_block,
|
||
|
num_block
|
||
|
);
|
||
|
|
||
|
return {max_vals, max_vals_scatter};
|
||
|
}
|
||
|
|
||
|
at::Tensor mm_to_sparse_kernel(
|
||
|
at::Tensor dense_A, // [batch_size, A_num_block, dim, 32]
|
||
|
at::Tensor dense_B, // [batch_size, B_num_block, dim, 32]
|
||
|
at::Tensor indices // [batch_size, num_block]
|
||
|
) {
|
||
|
int batch_size = dense_A.size(0);
|
||
|
int A_num_block = dense_A.size(1);
|
||
|
int B_num_block = dense_B.size(1);
|
||
|
int dim = dense_A.size(2);
|
||
|
int num_block = indices.size(1);
|
||
|
|
||
|
at::Tensor sparse_C = at::zeros({batch_size, num_block, 32, 32}, dense_A.options());
|
||
|
|
||
|
dim3 threads(64, 4);
|
||
|
dim3 blocks(num_block / 4, batch_size);
|
||
|
|
||
|
mm_to_sparse_cuda_kernel<<<blocks, threads>>>(
|
||
|
dense_A.data_ptr<float>(),
|
||
|
dense_B.data_ptr<float>(),
|
||
|
indices.data_ptr<int>(),
|
||
|
sparse_C.data_ptr<float>(),
|
||
|
batch_size,
|
||
|
A_num_block,
|
||
|
B_num_block,
|
||
|
dim,
|
||
|
num_block
|
||
|
);
|
||
|
|
||
|
return sparse_C;
|
||
|
}
|
||
|
|
||
|
at::Tensor sparse_dense_mm_kernel(
|
||
|
at::Tensor sparse_A, // [batch_size, num_block, 32, 32]
|
||
|
at::Tensor indices, // [batch_size, num_block]
|
||
|
at::Tensor dense_B, // [batch_size, B_num_block, dim, 32]
|
||
|
int A_num_block
|
||
|
) {
|
||
|
int batch_size = sparse_A.size(0);
|
||
|
int num_block = sparse_A.size(1);
|
||
|
int B_num_block = dense_B.size(1);
|
||
|
int dim = dense_B.size(2);
|
||
|
|
||
|
at::Tensor dense_C = at::zeros({batch_size, A_num_block, dim, 32}, dense_B.options());
|
||
|
|
||
|
dim3 threads(128, 2);
|
||
|
dim3 blocks(num_block / 2, batch_size);
|
||
|
|
||
|
sparse_dense_mm_cuda_kernel<<<blocks, threads>>>(
|
||
|
sparse_A.data_ptr<float>(),
|
||
|
indices.data_ptr<int>(),
|
||
|
dense_B.data_ptr<float>(),
|
||
|
dense_C.data_ptr<float>(),
|
||
|
batch_size,
|
||
|
A_num_block,
|
||
|
B_num_block,
|
||
|
dim,
|
||
|
num_block
|
||
|
);
|
||
|
|
||
|
return dense_C;
|
||
|
}
|
||
|
|
||
|
at::Tensor reduce_sum_kernel(
|
||
|
at::Tensor sparse_A, // [batch_size, num_block, 32, 32]
|
||
|
at::Tensor indices, // [batch_size, num_block]
|
||
|
int A_num_block,
|
||
|
int B_num_block
|
||
|
) {
|
||
|
int batch_size = sparse_A.size(0);
|
||
|
int num_block = sparse_A.size(1);
|
||
|
|
||
|
at::Tensor dense_C = at::zeros({batch_size, A_num_block, 32}, sparse_A.options());
|
||
|
|
||
|
dim3 threads(32, 4);
|
||
|
dim3 blocks(num_block / 4, batch_size);
|
||
|
|
||
|
reduce_sum_cuda_kernel<<<blocks, threads>>>(
|
||
|
sparse_A.data_ptr<float>(),
|
||
|
indices.data_ptr<int>(),
|
||
|
dense_C.data_ptr<float>(),
|
||
|
batch_size,
|
||
|
A_num_block,
|
||
|
B_num_block,
|
||
|
num_block
|
||
|
);
|
||
|
|
||
|
return dense_C;
|
||
|
}
|
||
|
|
||
|
at::Tensor scatter_kernel(
|
||
|
at::Tensor dense_A, // [batch_size, A_num_block, 32]
|
||
|
at::Tensor indices, // [batch_size, num_block]
|
||
|
int B_num_block
|
||
|
) {
|
||
|
int batch_size = dense_A.size(0);
|
||
|
int A_num_block = dense_A.size(1);
|
||
|
int num_block = indices.size(1);
|
||
|
|
||
|
at::Tensor sparse_C = at::zeros({batch_size, num_block, 32, 32}, dense_A.options());
|
||
|
|
||
|
dim3 threads(32, 4);
|
||
|
dim3 blocks(num_block / 4, batch_size);
|
||
|
|
||
|
scatter_cuda_kernel<<<blocks, threads>>>(
|
||
|
dense_A.data_ptr<float>(),
|
||
|
indices.data_ptr<int>(),
|
||
|
sparse_C.data_ptr<float>(),
|
||
|
batch_size,
|
||
|
A_num_block,
|
||
|
B_num_block,
|
||
|
num_block
|
||
|
);
|
||
|
|
||
|
return sparse_C;
|
||
|
}
|