232 lines
11 KiB
Python
232 lines
11 KiB
Python
|
# coding=utf-8
|
||
|
# Copyright Microsoft Research and The HuggingFace Inc. team. All rights reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
""" BEiT model configuration"""
|
||
|
from collections import OrderedDict
|
||
|
from typing import Mapping
|
||
|
|
||
|
from packaging import version
|
||
|
|
||
|
from ...configuration_utils import PretrainedConfig
|
||
|
from ...onnx import OnnxConfig
|
||
|
from ...utils import logging
|
||
|
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
|
||
|
|
||
|
|
||
|
logger = logging.get_logger(__name__)
|
||
|
|
||
|
|
||
|
from ..deprecated._archive_maps import BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
|
||
|
|
||
|
|
||
|
class BeitConfig(BackboneConfigMixin, PretrainedConfig):
|
||
|
r"""
|
||
|
This is the configuration class to store the configuration of a [`BeitModel`]. It is used to instantiate an BEiT
|
||
|
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
||
|
defaults will yield a similar configuration to that of the BEiT
|
||
|
[microsoft/beit-base-patch16-224-pt22k](https://huggingface.co/microsoft/beit-base-patch16-224-pt22k) architecture.
|
||
|
|
||
|
Args:
|
||
|
vocab_size (`int`, *optional*, defaults to 8192):
|
||
|
Vocabulary size of the BEiT model. Defines the number of different image tokens that can be used during
|
||
|
pre-training.
|
||
|
hidden_size (`int`, *optional*, defaults to 768):
|
||
|
Dimensionality of the encoder layers and the pooler layer.
|
||
|
num_hidden_layers (`int`, *optional*, defaults to 12):
|
||
|
Number of hidden layers in the Transformer encoder.
|
||
|
num_attention_heads (`int`, *optional*, defaults to 12):
|
||
|
Number of attention heads for each attention layer in the Transformer encoder.
|
||
|
intermediate_size (`int`, *optional*, defaults to 3072):
|
||
|
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
|
||
|
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
|
||
|
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
||
|
`"relu"`, `"selu"` and `"gelu_new"` are supported.
|
||
|
hidden_dropout_prob (`float`, *optional*, defaults to 0.0):
|
||
|
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
||
|
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0):
|
||
|
The dropout ratio for the attention probabilities.
|
||
|
initializer_range (`float`, *optional*, defaults to 0.02):
|
||
|
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
||
|
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
|
||
|
The epsilon used by the layer normalization layers.
|
||
|
image_size (`int`, *optional*, defaults to 224):
|
||
|
The size (resolution) of each image.
|
||
|
patch_size (`int`, *optional*, defaults to 16):
|
||
|
The size (resolution) of each patch.
|
||
|
num_channels (`int`, *optional*, defaults to 3):
|
||
|
The number of input channels.
|
||
|
use_mask_token (`bool`, *optional*, defaults to `False`):
|
||
|
Whether to use a mask token for masked image modeling.
|
||
|
use_absolute_position_embeddings (`bool`, *optional*, defaults to `False`):
|
||
|
Whether to use BERT-style absolute position embeddings.
|
||
|
use_relative_position_bias (`bool`, *optional*, defaults to `False`):
|
||
|
Whether to use T5-style relative position embeddings in the self-attention layers.
|
||
|
use_shared_relative_position_bias (`bool`, *optional*, defaults to `False`):
|
||
|
Whether to use the same relative position embeddings across all self-attention layers of the Transformer.
|
||
|
layer_scale_init_value (`float`, *optional*, defaults to 0.1):
|
||
|
Scale to use in the self-attention layers. 0.1 for base, 1e-5 for large. Set 0 to disable layer scale.
|
||
|
drop_path_rate (`float`, *optional*, defaults to 0.1):
|
||
|
Stochastic depth rate per sample (when applied in the main path of residual layers).
|
||
|
use_mean_pooling (`bool`, *optional*, defaults to `True`):
|
||
|
Whether to mean pool the final hidden states of the patches instead of using the final hidden state of the
|
||
|
CLS token, before applying the classification head.
|
||
|
pool_scales (`Tuple[int]`, *optional*, defaults to `[1, 2, 3, 6]`):
|
||
|
Pooling scales used in Pooling Pyramid Module applied on the last feature map.
|
||
|
use_auxiliary_head (`bool`, *optional*, defaults to `True`):
|
||
|
Whether to use an auxiliary head during training.
|
||
|
auxiliary_loss_weight (`float`, *optional*, defaults to 0.4):
|
||
|
Weight of the cross-entropy loss of the auxiliary head.
|
||
|
auxiliary_channels (`int`, *optional*, defaults to 256):
|
||
|
Number of channels to use in the auxiliary head.
|
||
|
auxiliary_num_convs (`int`, *optional*, defaults to 1):
|
||
|
Number of convolutional layers to use in the auxiliary head.
|
||
|
auxiliary_concat_input (`bool`, *optional*, defaults to `False`):
|
||
|
Whether to concatenate the output of the auxiliary head with the input before the classification layer.
|
||
|
semantic_loss_ignore_index (`int`, *optional*, defaults to 255):
|
||
|
The index that is ignored by the loss function of the semantic segmentation model.
|
||
|
out_features (`List[str]`, *optional*):
|
||
|
If used as backbone, list of features to output. Can be any of `"stem"`, `"stage1"`, `"stage2"`, etc.
|
||
|
(depending on how many stages the model has). If unset and `out_indices` is set, will default to the
|
||
|
corresponding stages. If unset and `out_indices` is unset, will default to the last stage. Must be in the
|
||
|
same order as defined in the `stage_names` attribute.
|
||
|
out_indices (`List[int]`, *optional*):
|
||
|
If used as backbone, list of indices of features to output. Can be any of 0, 1, 2, etc. (depending on how
|
||
|
many stages the model has). If unset and `out_features` is set, will default to the corresponding stages.
|
||
|
If unset and `out_features` is unset, will default to the last stage. Must be in the
|
||
|
same order as defined in the `stage_names` attribute.
|
||
|
add_fpn (`bool`, *optional*, defaults to `False`):
|
||
|
Whether to add a FPN as part of the backbone. Only relevant for [`BeitBackbone`].
|
||
|
reshape_hidden_states (`bool`, *optional*, defaults to `True`):
|
||
|
Whether to reshape the feature maps to 4D tensors of shape `(batch_size, hidden_size, height, width)` in
|
||
|
case the model is used as backbone. If `False`, the feature maps will be 3D tensors of shape `(batch_size,
|
||
|
seq_len, hidden_size)`. Only relevant for [`BeitBackbone`].
|
||
|
|
||
|
Example:
|
||
|
|
||
|
```python
|
||
|
>>> from transformers import BeitConfig, BeitModel
|
||
|
|
||
|
>>> # Initializing a BEiT beit-base-patch16-224-pt22k style configuration
|
||
|
>>> configuration = BeitConfig()
|
||
|
|
||
|
>>> # Initializing a model (with random weights) from the beit-base-patch16-224-pt22k style configuration
|
||
|
>>> model = BeitModel(configuration)
|
||
|
|
||
|
>>> # Accessing the model configuration
|
||
|
>>> configuration = model.config
|
||
|
```"""
|
||
|
|
||
|
model_type = "beit"
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
vocab_size=8192,
|
||
|
hidden_size=768,
|
||
|
num_hidden_layers=12,
|
||
|
num_attention_heads=12,
|
||
|
intermediate_size=3072,
|
||
|
hidden_act="gelu",
|
||
|
hidden_dropout_prob=0.0,
|
||
|
attention_probs_dropout_prob=0.0,
|
||
|
initializer_range=0.02,
|
||
|
layer_norm_eps=1e-12,
|
||
|
image_size=224,
|
||
|
patch_size=16,
|
||
|
num_channels=3,
|
||
|
use_mask_token=False,
|
||
|
use_absolute_position_embeddings=False,
|
||
|
use_relative_position_bias=False,
|
||
|
use_shared_relative_position_bias=False,
|
||
|
layer_scale_init_value=0.1,
|
||
|
drop_path_rate=0.1,
|
||
|
use_mean_pooling=True,
|
||
|
pool_scales=[1, 2, 3, 6],
|
||
|
use_auxiliary_head=True,
|
||
|
auxiliary_loss_weight=0.4,
|
||
|
auxiliary_channels=256,
|
||
|
auxiliary_num_convs=1,
|
||
|
auxiliary_concat_input=False,
|
||
|
semantic_loss_ignore_index=255,
|
||
|
out_features=None,
|
||
|
out_indices=None,
|
||
|
add_fpn=False,
|
||
|
reshape_hidden_states=True,
|
||
|
**kwargs,
|
||
|
):
|
||
|
super().__init__(**kwargs)
|
||
|
|
||
|
self.vocab_size = vocab_size
|
||
|
self.hidden_size = hidden_size
|
||
|
self.num_hidden_layers = num_hidden_layers
|
||
|
self.num_attention_heads = num_attention_heads
|
||
|
self.intermediate_size = intermediate_size
|
||
|
self.hidden_act = hidden_act
|
||
|
self.hidden_dropout_prob = hidden_dropout_prob
|
||
|
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
||
|
self.initializer_range = initializer_range
|
||
|
self.layer_norm_eps = layer_norm_eps
|
||
|
|
||
|
self.image_size = image_size
|
||
|
self.patch_size = patch_size
|
||
|
self.num_channels = num_channels
|
||
|
self.use_mask_token = use_mask_token
|
||
|
self.use_absolute_position_embeddings = use_absolute_position_embeddings
|
||
|
self.use_relative_position_bias = use_relative_position_bias
|
||
|
self.use_shared_relative_position_bias = use_shared_relative_position_bias
|
||
|
self.layer_scale_init_value = layer_scale_init_value
|
||
|
self.drop_path_rate = drop_path_rate
|
||
|
self.use_mean_pooling = use_mean_pooling
|
||
|
# decode head attributes (semantic segmentation)
|
||
|
self.pool_scales = pool_scales
|
||
|
# auxiliary head attributes (semantic segmentation)
|
||
|
self.use_auxiliary_head = use_auxiliary_head
|
||
|
self.auxiliary_loss_weight = auxiliary_loss_weight
|
||
|
self.auxiliary_channels = auxiliary_channels
|
||
|
self.auxiliary_num_convs = auxiliary_num_convs
|
||
|
self.auxiliary_concat_input = auxiliary_concat_input
|
||
|
self.semantic_loss_ignore_index = semantic_loss_ignore_index
|
||
|
|
||
|
# handle backwards compatibility
|
||
|
if "segmentation_indices" in kwargs:
|
||
|
logger.warning(
|
||
|
"The `segmentation_indices` argument is deprecated and will be removed in a future version, use `out_indices` instead.",
|
||
|
FutureWarning,
|
||
|
)
|
||
|
out_indices = kwargs.pop("segmentation_indices")
|
||
|
|
||
|
# backbone attributes
|
||
|
self.stage_names = ["stem"] + [f"stage{idx}" for idx in range(1, self.num_hidden_layers + 1)]
|
||
|
self._out_features, self._out_indices = get_aligned_output_features_output_indices(
|
||
|
out_features=out_features, out_indices=out_indices, stage_names=self.stage_names
|
||
|
)
|
||
|
self.add_fpn = add_fpn
|
||
|
self.reshape_hidden_states = reshape_hidden_states
|
||
|
|
||
|
|
||
|
# Copied from transformers.models.vit.configuration_vit.ViTOnnxConfig
|
||
|
class BeitOnnxConfig(OnnxConfig):
|
||
|
torch_onnx_minimum_version = version.parse("1.11")
|
||
|
|
||
|
@property
|
||
|
def inputs(self) -> Mapping[str, Mapping[int, str]]:
|
||
|
return OrderedDict(
|
||
|
[
|
||
|
("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
|
||
|
]
|
||
|
)
|
||
|
|
||
|
@property
|
||
|
def atol_for_validation(self) -> float:
|
||
|
return 1e-4
|