366 lines
16 KiB
Python
366 lines
16 KiB
Python
|
# coding=utf-8
|
||
|
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
""" Blip model configuration"""
|
||
|
|
||
|
import os
|
||
|
from typing import Union
|
||
|
|
||
|
from ...configuration_utils import PretrainedConfig
|
||
|
from ...utils import logging
|
||
|
|
||
|
|
||
|
logger = logging.get_logger(__name__)
|
||
|
|
||
|
|
||
|
from ..deprecated._archive_maps import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
|
||
|
|
||
|
|
||
|
class BlipTextConfig(PretrainedConfig):
|
||
|
r"""
|
||
|
This is the configuration class to store the configuration of a [`BlipTextModel`]. It is used to instantiate a BLIP
|
||
|
text model according to the specified arguments, defining the model architecture. Instantiating a configuration
|
||
|
with the defaults will yield a similar configuration to that of the `BlipText` used by the [base
|
||
|
architectures](https://huggingface.co/Salesforce/blip-vqa-base).
|
||
|
|
||
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
||
|
documentation from [`PretrainedConfig`] for more information.
|
||
|
|
||
|
|
||
|
Args:
|
||
|
vocab_size (`int`, *optional*, defaults to 30524):
|
||
|
Vocabulary size of the `Blip` text model. Defines the number of different tokens that can be represented by
|
||
|
the `inputs_ids` passed when calling [`BlipModel`].
|
||
|
hidden_size (`int`, *optional*, defaults to 768):
|
||
|
Dimensionality of the encoder layers and the pooler layer.
|
||
|
encoder_hidden_size (`int`, *optional*, defaults to 768):
|
||
|
Dimensionality of the encoder layers from the vision model.
|
||
|
intermediate_size (`int`, *optional*, defaults to 3072):
|
||
|
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
|
||
|
num_hidden_layers (`int`, *optional*, defaults to 12):
|
||
|
Number of hidden layers in the Transformer encoder.
|
||
|
num_attention_heads (`int`, *optional*, defaults to 8):
|
||
|
Number of attention heads for each attention layer in the Transformer encoder.
|
||
|
max_position_embeddings (`int`, *optional*, defaults to 512):
|
||
|
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
||
|
just in case (e.g., 512 or 1024 or 2048).
|
||
|
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
|
||
|
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
||
|
`"relu"`, `"selu"` and `"gelu_new"` ``"gelu"` are supported.
|
||
|
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
|
||
|
The epsilon used by the layer normalization layers.
|
||
|
hidden_dropout_prob (`float`, *optional*, defaults to 0.0):
|
||
|
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
||
|
attention_dropout (`float`, *optional*, defaults to 0.0):
|
||
|
The dropout ratio for the attention probabilities.
|
||
|
initializer_range (`float`, *optional*, defaults to 0.02):
|
||
|
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
||
|
bos_token_id (`int`, *optional*, defaults to 30522):
|
||
|
The id of the `beginning-of-sequence` token.
|
||
|
eos_token_id (`int`, *optional*, defaults to 2):
|
||
|
The id of the `end-of-sequence` token.
|
||
|
pad_token_id (`int`, *optional*, defaults to 0):
|
||
|
The id of the `padding` token.
|
||
|
sep_token_id (`int`, *optional*, defaults to 102):
|
||
|
The id of the `separator` token.
|
||
|
is_decoder (`bool`, *optional*, defaults to `True`):
|
||
|
Whether the model is used as a decoder.
|
||
|
use_cache (`bool`, *optional*, defaults to `True`):
|
||
|
Whether or not the model should return the last key/values attentions (not used by all models).
|
||
|
label_smoothing (float, *optional*):
|
||
|
A float in [0.0, 1.0]. Specifies the amount of smoothing when computing the loss, where 0.0 means no smoothing. The targets
|
||
|
become a mixture of the original ground truth and a uniform distribution as described in
|
||
|
`Rethinking the Inception Architecture for Computer Vision <https://arxiv.org/abs/1512.00567>`__. Default: :math:`0.0`.
|
||
|
|
||
|
Example:
|
||
|
|
||
|
```python
|
||
|
>>> from transformers import BlipTextConfig, BlipTextModel
|
||
|
|
||
|
>>> # Initializing a BlipTextConfig with Salesforce/blip-vqa-base style configuration
|
||
|
>>> configuration = BlipTextConfig()
|
||
|
|
||
|
>>> # Initializing a BlipTextModel (with random weights) from the Salesforce/blip-vqa-base style configuration
|
||
|
>>> model = BlipTextModel(configuration)
|
||
|
|
||
|
>>> # Accessing the model configuration
|
||
|
>>> configuration = model.config
|
||
|
```"""
|
||
|
|
||
|
model_type = "blip_text_model"
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
vocab_size=30524,
|
||
|
hidden_size=768,
|
||
|
encoder_hidden_size=768,
|
||
|
intermediate_size=3072,
|
||
|
projection_dim=768,
|
||
|
num_hidden_layers=12,
|
||
|
num_attention_heads=8,
|
||
|
max_position_embeddings=512,
|
||
|
hidden_act="gelu",
|
||
|
layer_norm_eps=1e-12,
|
||
|
hidden_dropout_prob=0.0,
|
||
|
attention_probs_dropout_prob=0.0,
|
||
|
initializer_range=0.02,
|
||
|
bos_token_id=30522,
|
||
|
eos_token_id=2,
|
||
|
pad_token_id=0,
|
||
|
sep_token_id=102,
|
||
|
is_decoder=True,
|
||
|
use_cache=True,
|
||
|
label_smoothing=0.0,
|
||
|
**kwargs,
|
||
|
):
|
||
|
super().__init__(
|
||
|
pad_token_id=pad_token_id,
|
||
|
bos_token_id=bos_token_id,
|
||
|
eos_token_id=eos_token_id,
|
||
|
sep_token_id=sep_token_id,
|
||
|
**kwargs,
|
||
|
)
|
||
|
|
||
|
self.vocab_size = vocab_size
|
||
|
self.hidden_size = hidden_size
|
||
|
self.encoder_hidden_size = encoder_hidden_size
|
||
|
self.intermediate_size = intermediate_size
|
||
|
self.projection_dim = projection_dim
|
||
|
self.hidden_dropout_prob = hidden_dropout_prob
|
||
|
self.num_hidden_layers = num_hidden_layers
|
||
|
self.num_attention_heads = num_attention_heads
|
||
|
self.max_position_embeddings = max_position_embeddings
|
||
|
self.layer_norm_eps = layer_norm_eps
|
||
|
self.hidden_act = hidden_act
|
||
|
self.initializer_range = initializer_range
|
||
|
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
||
|
self.is_decoder = is_decoder
|
||
|
self.use_cache = use_cache
|
||
|
self.label_smoothing = label_smoothing
|
||
|
|
||
|
@classmethod
|
||
|
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
|
||
|
cls._set_token_in_kwargs(kwargs)
|
||
|
|
||
|
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
|
||
|
|
||
|
# get the text config dict if we are loading from BlipConfig
|
||
|
if config_dict.get("model_type") == "blip":
|
||
|
config_dict = config_dict["text_config"]
|
||
|
|
||
|
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
|
||
|
logger.warning(
|
||
|
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
|
||
|
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
|
||
|
)
|
||
|
|
||
|
return cls.from_dict(config_dict, **kwargs)
|
||
|
|
||
|
|
||
|
class BlipVisionConfig(PretrainedConfig):
|
||
|
r"""
|
||
|
This is the configuration class to store the configuration of a [`BlipVisionModel`]. It is used to instantiate a
|
||
|
BLIP vision model according to the specified arguments, defining the model architecture. Instantiating a
|
||
|
configuration defaults will yield a similar configuration to that of the Blip-base
|
||
|
[Salesforce/blip-vqa-base](https://huggingface.co/Salesforce/blip-vqa-base) architecture.
|
||
|
|
||
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
||
|
documentation from [`PretrainedConfig`] for more information.
|
||
|
|
||
|
|
||
|
Args:
|
||
|
hidden_size (`int`, *optional*, defaults to 768):
|
||
|
Dimensionality of the encoder layers and the pooler layer.
|
||
|
intermediate_size (`int`, *optional*, defaults to 3072):
|
||
|
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
|
||
|
num_hidden_layers (`int`, *optional*, defaults to 12):
|
||
|
Number of hidden layers in the Transformer encoder.
|
||
|
num_attention_heads (`int`, *optional*, defaults to 12):
|
||
|
Number of attention heads for each attention layer in the Transformer encoder.
|
||
|
image_size (`int`, *optional*, defaults to 384):
|
||
|
The size (resolution) of each image.
|
||
|
patch_size (`int`, *optional*, defaults to 16):
|
||
|
The size (resolution) of each patch.
|
||
|
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
|
||
|
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
||
|
`"relu"`, `"selu"` and `"gelu_new"` ``"gelu"` are supported.
|
||
|
layer_norm_eps (`float`, *optional*, defaults to 1e-5):
|
||
|
The epsilon used by the layer normalization layers.
|
||
|
attention_dropout (`float`, *optional*, defaults to 0.0):
|
||
|
The dropout ratio for the attention probabilities.
|
||
|
initializer_range (`float`, *optional*, defaults to 1e-10):
|
||
|
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
||
|
|
||
|
Example:
|
||
|
|
||
|
```python
|
||
|
>>> from transformers import BlipVisionConfig, BlipVisionModel
|
||
|
|
||
|
>>> # Initializing a BlipVisionConfig with Salesforce/blip-vqa-base style configuration
|
||
|
>>> configuration = BlipVisionConfig()
|
||
|
|
||
|
>>> # Initializing a BlipVisionModel (with random weights) from the Salesforce/blip-vqa-base style configuration
|
||
|
>>> model = BlipVisionModel(configuration)
|
||
|
|
||
|
>>> # Accessing the model configuration
|
||
|
>>> configuration = model.config
|
||
|
```"""
|
||
|
|
||
|
model_type = "blip_vision_model"
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
hidden_size=768,
|
||
|
intermediate_size=3072,
|
||
|
projection_dim=512,
|
||
|
num_hidden_layers=12,
|
||
|
num_attention_heads=12,
|
||
|
image_size=384,
|
||
|
patch_size=16,
|
||
|
hidden_act="gelu",
|
||
|
layer_norm_eps=1e-5,
|
||
|
attention_dropout=0.0,
|
||
|
initializer_range=1e-10,
|
||
|
**kwargs,
|
||
|
):
|
||
|
super().__init__(**kwargs)
|
||
|
|
||
|
self.hidden_size = hidden_size
|
||
|
self.intermediate_size = intermediate_size
|
||
|
self.projection_dim = projection_dim
|
||
|
self.num_hidden_layers = num_hidden_layers
|
||
|
self.num_attention_heads = num_attention_heads
|
||
|
self.patch_size = patch_size
|
||
|
self.image_size = image_size
|
||
|
self.initializer_range = initializer_range
|
||
|
self.attention_dropout = attention_dropout
|
||
|
self.layer_norm_eps = layer_norm_eps
|
||
|
self.hidden_act = hidden_act
|
||
|
|
||
|
@classmethod
|
||
|
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
|
||
|
cls._set_token_in_kwargs(kwargs)
|
||
|
|
||
|
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
|
||
|
|
||
|
# get the vision config dict if we are loading from BlipConfig
|
||
|
if config_dict.get("model_type") == "blip":
|
||
|
config_dict = config_dict["vision_config"]
|
||
|
|
||
|
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
|
||
|
logger.warning(
|
||
|
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
|
||
|
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
|
||
|
)
|
||
|
|
||
|
return cls.from_dict(config_dict, **kwargs)
|
||
|
|
||
|
|
||
|
class BlipConfig(PretrainedConfig):
|
||
|
r"""
|
||
|
[`BlipConfig`] is the configuration class to store the configuration of a [`BlipModel`]. It is used to instantiate
|
||
|
a BLIP model according to the specified arguments, defining the text model and vision model configs. Instantiating
|
||
|
a configuration with the defaults will yield a similar configuration to that of the BLIP-base
|
||
|
[Salesforce/blip-vqa-base](https://huggingface.co/Salesforce/blip-vqa-base) architecture.
|
||
|
|
||
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
||
|
documentation from [`PretrainedConfig`] for more information.
|
||
|
|
||
|
Args:
|
||
|
text_config (`dict`, *optional*):
|
||
|
Dictionary of configuration options used to initialize [`BlipTextConfig`].
|
||
|
vision_config (`dict`, *optional*):
|
||
|
Dictionary of configuration options used to initialize [`BlipVisionConfig`].
|
||
|
projection_dim (`int`, *optional*, defaults to 512):
|
||
|
Dimentionality of text and vision projection layers.
|
||
|
logit_scale_init_value (`float`, *optional*, defaults to 2.6592):
|
||
|
The inital value of the *logit_scale* paramter. Default is used as per the original BLIP implementation.
|
||
|
image_text_hidden_size (`int`, *optional*, defaults to 256):
|
||
|
Dimentionality of the hidden state of the image-text fusion layer.
|
||
|
label_smoothing (float, optional, *optional*, defaults to 0.0):
|
||
|
A float in [0.0, 1.0]. Specifies the amount of smoothing when computing the loss, where 0.0 means no smoothing. The targets
|
||
|
become a mixture of the original ground truth and a uniform distribution as described in
|
||
|
`Rethinking the Inception Architecture for Computer Vision <https://arxiv.org/abs/1512.00567>`__. Default: :math:`0.0`.
|
||
|
kwargs (*optional*):
|
||
|
Dictionary of keyword arguments.
|
||
|
|
||
|
Example:
|
||
|
|
||
|
```python
|
||
|
>>> from transformers import BlipConfig, BlipModel
|
||
|
|
||
|
>>> # Initializing a BlipConfig with Salesforce/blip-vqa-base style configuration
|
||
|
>>> configuration = BlipConfig()
|
||
|
|
||
|
>>> # Initializing a BlipPModel (with random weights) from the Salesforce/blip-vqa-base style configuration
|
||
|
>>> model = BlipModel(configuration)
|
||
|
|
||
|
>>> # Accessing the model configuration
|
||
|
>>> configuration = model.config
|
||
|
|
||
|
>>> # We can also initialize a BlipConfig from a BlipTextConfig and a BlipVisionConfig
|
||
|
|
||
|
>>> # Initializing a BLIPText and BLIPVision configuration
|
||
|
>>> config_text = BlipTextConfig()
|
||
|
>>> config_vision = BlipVisionConfig()
|
||
|
|
||
|
>>> config = BlipConfig.from_text_vision_configs(config_text, config_vision)
|
||
|
```"""
|
||
|
|
||
|
model_type = "blip"
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
text_config=None,
|
||
|
vision_config=None,
|
||
|
projection_dim=512,
|
||
|
logit_scale_init_value=2.6592,
|
||
|
image_text_hidden_size=256,
|
||
|
label_smoothing=0.0,
|
||
|
**kwargs,
|
||
|
):
|
||
|
super().__init__(**kwargs)
|
||
|
|
||
|
if text_config is None:
|
||
|
text_config = {}
|
||
|
logger.info("`text_config` is `None`. Initializing the `BlipTextConfig` with default values.")
|
||
|
|
||
|
if vision_config is None:
|
||
|
vision_config = {}
|
||
|
logger.info("`vision_config` is `None`. Initializing the `BlipVisionConfig` with default values.")
|
||
|
|
||
|
self.text_config = BlipTextConfig(**text_config)
|
||
|
self.vision_config = BlipVisionConfig(**vision_config)
|
||
|
|
||
|
self.text_config.encoder_hidden_size = self.vision_config.hidden_size
|
||
|
|
||
|
self.projection_dim = projection_dim
|
||
|
self.logit_scale_init_value = logit_scale_init_value
|
||
|
self.initializer_factor = 1.0
|
||
|
self.initializer_range = 0.02
|
||
|
self.image_text_hidden_size = image_text_hidden_size
|
||
|
self.label_smoothing = label_smoothing
|
||
|
|
||
|
@classmethod
|
||
|
def from_text_vision_configs(cls, text_config: BlipTextConfig, vision_config: BlipVisionConfig, **kwargs):
|
||
|
r"""
|
||
|
Instantiate a [`BlipConfig`] (or a derived class) from blip text model configuration and blip vision model
|
||
|
configuration.
|
||
|
|
||
|
Returns:
|
||
|
[`BlipConfig`]: An instance of a configuration object
|
||
|
"""
|
||
|
|
||
|
return cls(text_config=text_config.to_dict(), vision_config=vision_config.to_dict(), **kwargs)
|