1434 lines
60 KiB
Python
1434 lines
60 KiB
Python
|
# coding=utf-8
|
||
|
# Copyright 2022 The Salesforce Team Authors and The HuggingFace Team. All rights reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
""" PyTorch BLIP model."""
|
||
|
|
||
|
import warnings
|
||
|
from dataclasses import dataclass
|
||
|
from typing import Any, Optional, Tuple, Union
|
||
|
|
||
|
import torch
|
||
|
import torch.utils.checkpoint
|
||
|
from torch import nn
|
||
|
from torch.nn.functional import normalize
|
||
|
|
||
|
from ...activations import ACT2FN
|
||
|
from ...modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling
|
||
|
from ...modeling_utils import PreTrainedModel
|
||
|
from ...utils import (
|
||
|
ModelOutput,
|
||
|
add_start_docstrings,
|
||
|
add_start_docstrings_to_model_forward,
|
||
|
logging,
|
||
|
replace_return_docstrings,
|
||
|
)
|
||
|
from .configuration_blip import BlipConfig, BlipTextConfig, BlipVisionConfig
|
||
|
from .modeling_blip_text import BlipTextLMHeadModel, BlipTextModel
|
||
|
|
||
|
|
||
|
logger = logging.get_logger(__name__)
|
||
|
|
||
|
_CHECKPOINT_FOR_DOC = "Salesforce/blip-vqa-base"
|
||
|
|
||
|
|
||
|
from ..deprecated._archive_maps import BLIP_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
|
||
|
|
||
|
|
||
|
# Copied from transformers.models.clip.modeling_clip.contrastive_loss
|
||
|
def contrastive_loss(logits: torch.Tensor) -> torch.Tensor:
|
||
|
return nn.functional.cross_entropy(logits, torch.arange(len(logits), device=logits.device))
|
||
|
|
||
|
|
||
|
# Copied from transformers.models.clip.modeling_clip.clip_loss with clip->blip
|
||
|
def blip_loss(similarity: torch.Tensor) -> torch.Tensor:
|
||
|
caption_loss = contrastive_loss(similarity)
|
||
|
image_loss = contrastive_loss(similarity.t())
|
||
|
return (caption_loss + image_loss) / 2.0
|
||
|
|
||
|
|
||
|
@dataclass
|
||
|
class BlipForConditionalGenerationModelOutput(ModelOutput):
|
||
|
"""
|
||
|
Adapted from the base class for vision model's outputs that also contains image embeddings of the pooling of the
|
||
|
last hidden states. This class also adds the loss term from the text decoder.
|
||
|
|
||
|
Args:
|
||
|
loss (`torch.FloatTensor`, *optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`):
|
||
|
Languge modeling loss from the text decoder.
|
||
|
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`, *optional*):
|
||
|
Prediction scores of the language modeling head of the text decoder model.
|
||
|
image_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)`, *optional*):
|
||
|
The image embeddings obtained after applying the Vision Transformer model to the input image.
|
||
|
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
||
|
Sequence of hidden-states at the output of the last layer of the model.
|
||
|
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True`):
|
||
|
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
||
|
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
|
||
|
|
||
|
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
|
||
|
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed):
|
||
|
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
||
|
sequence_length)`.
|
||
|
|
||
|
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
||
|
heads.
|
||
|
"""
|
||
|
|
||
|
loss: Optional[Tuple[torch.FloatTensor]] = None
|
||
|
logits: Optional[Tuple[torch.FloatTensor]] = None
|
||
|
image_embeds: Optional[torch.FloatTensor] = None
|
||
|
last_hidden_state: torch.FloatTensor = None
|
||
|
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
|
||
|
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
|
||
|
|
||
|
@property
|
||
|
def decoder_logits(self):
|
||
|
warnings.warn(
|
||
|
"`decoder_logits` attribute is deprecated and will be removed in version 5 of Transformers."
|
||
|
" Please use the `logits` attribute to retrieve the final output instead.",
|
||
|
FutureWarning,
|
||
|
)
|
||
|
return self.logits
|
||
|
|
||
|
|
||
|
@dataclass
|
||
|
class BlipTextVisionModelOutput(ModelOutput):
|
||
|
"""
|
||
|
Adapted from the base class for vision model's outputs that also contains image embeddings of the pooling of the
|
||
|
last hidden states. This class also adds the loss term from the text decoder.
|
||
|
|
||
|
Args:
|
||
|
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
|
||
|
Languge modeling loss from the text decoder.
|
||
|
image_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`):
|
||
|
The image embeddings obtained by applying the projection layer to the pooler_output.
|
||
|
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
||
|
Sequence of hidden-states at the output of the last layer of the model.
|
||
|
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
||
|
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
||
|
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
|
||
|
|
||
|
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
|
||
|
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
||
|
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
||
|
sequence_length)`.
|
||
|
|
||
|
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
||
|
heads.
|
||
|
"""
|
||
|
|
||
|
loss: Optional[torch.FloatTensor] = None
|
||
|
image_embeds: Optional[torch.FloatTensor] = None
|
||
|
last_hidden_state: torch.FloatTensor = None
|
||
|
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
|
||
|
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
|
||
|
|
||
|
|
||
|
@dataclass
|
||
|
class BlipImageTextMatchingModelOutput(ModelOutput):
|
||
|
"""
|
||
|
Adapted from the base class for vision model's outputs that also contains image embeddings of the pooling of the
|
||
|
last hidden states. This class also adds the loss term from the text decoder as well as the image-text similarity
|
||
|
scores.
|
||
|
|
||
|
Args:
|
||
|
itm_score (`torch.FloatTensor`):
|
||
|
The image-text similarity scores.
|
||
|
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
|
||
|
Languge modeling loss from the text decoder.
|
||
|
image_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`):
|
||
|
The image embeddings obtained by applying the projection layer to the pooler_output.
|
||
|
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
||
|
Sequence of hidden-states at the output of the last layer of the model.
|
||
|
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
||
|
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
||
|
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
|
||
|
|
||
|
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
|
||
|
vision_pooler_output (`torch.FloatTensor` of shape `(batch_size, hidden_size)`, *optional*):
|
||
|
Last layer hidden-state of the vision of the vision-only branch of the model.
|
||
|
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
||
|
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
||
|
sequence_length)`.
|
||
|
|
||
|
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
||
|
heads.
|
||
|
question_embeds (`torch.FloatTensor`):
|
||
|
The question embeddings obtained by the text projection layer.
|
||
|
"""
|
||
|
|
||
|
itm_score: Optional[torch.FloatTensor] = None
|
||
|
loss: Optional[torch.FloatTensor] = None
|
||
|
image_embeds: Optional[torch.FloatTensor] = None
|
||
|
last_hidden_state: torch.FloatTensor = None
|
||
|
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
|
||
|
vision_pooler_output: Optional[torch.FloatTensor] = None
|
||
|
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
|
||
|
question_embeds: Optional[Tuple[torch.FloatTensor]] = None
|
||
|
|
||
|
|
||
|
@dataclass
|
||
|
class BlipOutput(ModelOutput):
|
||
|
"""
|
||
|
Args:
|
||
|
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `return_loss` is `True`):
|
||
|
Contrastive loss for image-text similarity.
|
||
|
logits_per_image:(`torch.FloatTensor` of shape `(image_batch_size, text_batch_size)`):
|
||
|
The scaled dot product scores between `image_embeds` and `text_embeds`. This represents the image-text
|
||
|
similarity scores.
|
||
|
logits_per_text:(`torch.FloatTensor` of shape `(text_batch_size, image_batch_size)`):
|
||
|
The scaled dot product scores between `text_embeds` and `image_embeds`. This represents the text-image
|
||
|
similarity scores.
|
||
|
text_embeds(`torch.FloatTensor` of shape `(batch_size, output_dim`):
|
||
|
The text embeddings obtained by applying the projection layer to the pooled output of [`BlipTextModel`].
|
||
|
image_embeds(`torch.FloatTensor` of shape `(batch_size, output_dim`):
|
||
|
The image embeddings obtained by applying the projection layer to the pooled output of [`BlipVisionModel`].
|
||
|
text_model_output(`BaseModelOutputWithPooling`):
|
||
|
The output of the [`BlipTextModel`].
|
||
|
vision_model_output(`BaseModelOutputWithPooling`):
|
||
|
The output of the [`BlipVisionModel`].
|
||
|
"""
|
||
|
|
||
|
loss: Optional[torch.FloatTensor] = None
|
||
|
logits_per_image: torch.FloatTensor = None
|
||
|
logits_per_text: torch.FloatTensor = None
|
||
|
text_embeds: torch.FloatTensor = None
|
||
|
image_embeds: torch.FloatTensor = None
|
||
|
text_model_output: BaseModelOutputWithPooling = None
|
||
|
vision_model_output: BaseModelOutputWithPooling = None
|
||
|
|
||
|
def to_tuple(self) -> Tuple[Any]:
|
||
|
return tuple(
|
||
|
self[k] if k not in ["text_model_output", "vision_model_output"] else getattr(self, k).to_tuple()
|
||
|
for k in self.keys()
|
||
|
)
|
||
|
|
||
|
|
||
|
class BlipVisionEmbeddings(nn.Module):
|
||
|
def __init__(self, config: BlipVisionConfig):
|
||
|
super().__init__()
|
||
|
self.config = config
|
||
|
self.embed_dim = config.hidden_size
|
||
|
self.image_size = config.image_size
|
||
|
self.patch_size = config.patch_size
|
||
|
|
||
|
self.class_embedding = nn.Parameter(torch.randn(1, 1, self.embed_dim))
|
||
|
|
||
|
self.patch_embedding = nn.Conv2d(
|
||
|
in_channels=3, out_channels=self.embed_dim, kernel_size=self.patch_size, stride=self.patch_size
|
||
|
)
|
||
|
|
||
|
self.num_patches = (self.image_size // self.patch_size) ** 2
|
||
|
self.num_positions = self.num_patches + 1
|
||
|
|
||
|
self.position_embedding = nn.Parameter(torch.randn(1, self.num_positions, self.embed_dim))
|
||
|
|
||
|
def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
|
||
|
batch_size = pixel_values.shape[0]
|
||
|
target_dtype = self.patch_embedding.weight.dtype
|
||
|
patch_embeds = self.patch_embedding(pixel_values.to(dtype=target_dtype)) # shape = [*, width, grid, grid]
|
||
|
patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
|
||
|
|
||
|
class_embeds = self.class_embedding.expand(batch_size, 1, -1).to(target_dtype)
|
||
|
embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
|
||
|
embeddings = embeddings + self.position_embedding[:, : embeddings.size(1), :].to(target_dtype)
|
||
|
return embeddings
|
||
|
|
||
|
|
||
|
# Copied from transformers.models.clip.modeling_clip.CLIPTextEmbeddings with CLIP->Blip
|
||
|
class BlipTextEmbeddings(nn.Module):
|
||
|
def __init__(self, config: BlipTextConfig):
|
||
|
super().__init__()
|
||
|
embed_dim = config.hidden_size
|
||
|
|
||
|
self.token_embedding = nn.Embedding(config.vocab_size, embed_dim)
|
||
|
self.position_embedding = nn.Embedding(config.max_position_embeddings, embed_dim)
|
||
|
|
||
|
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
|
||
|
self.register_buffer(
|
||
|
"position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
|
||
|
)
|
||
|
|
||
|
def forward(
|
||
|
self,
|
||
|
input_ids: Optional[torch.LongTensor] = None,
|
||
|
position_ids: Optional[torch.LongTensor] = None,
|
||
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
||
|
) -> torch.Tensor:
|
||
|
seq_length = input_ids.shape[-1] if input_ids is not None else inputs_embeds.shape[-2]
|
||
|
|
||
|
if position_ids is None:
|
||
|
position_ids = self.position_ids[:, :seq_length]
|
||
|
|
||
|
if inputs_embeds is None:
|
||
|
inputs_embeds = self.token_embedding(input_ids)
|
||
|
|
||
|
position_embeddings = self.position_embedding(position_ids)
|
||
|
embeddings = inputs_embeds + position_embeddings
|
||
|
|
||
|
return embeddings
|
||
|
|
||
|
|
||
|
class BlipAttention(nn.Module):
|
||
|
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
||
|
|
||
|
def __init__(self, config):
|
||
|
super().__init__()
|
||
|
self.config = config
|
||
|
self.embed_dim = config.hidden_size
|
||
|
self.num_heads = config.num_attention_heads
|
||
|
self.head_dim = self.embed_dim // self.num_heads
|
||
|
if self.head_dim * self.num_heads != self.embed_dim:
|
||
|
raise ValueError(
|
||
|
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
|
||
|
f" {self.num_heads})."
|
||
|
)
|
||
|
self.scale = self.head_dim**-0.5
|
||
|
self.dropout = nn.Dropout(config.attention_dropout)
|
||
|
|
||
|
self.qkv = nn.Linear(self.embed_dim, 3 * self.embed_dim)
|
||
|
|
||
|
self.projection = nn.Linear(self.embed_dim, self.embed_dim)
|
||
|
|
||
|
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
||
|
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
|
||
|
|
||
|
def forward(
|
||
|
self,
|
||
|
hidden_states: torch.Tensor,
|
||
|
head_mask: Optional[torch.Tensor] = None,
|
||
|
output_attentions: Optional[bool] = False,
|
||
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
||
|
"""Input shape: Batch x Time x Channel"""
|
||
|
|
||
|
bsz, tgt_len, embed_dim = hidden_states.size()
|
||
|
|
||
|
mixed_qkv = (
|
||
|
self.qkv(hidden_states)
|
||
|
.reshape(bsz, tgt_len, 3, self.num_heads, embed_dim // self.num_heads)
|
||
|
.permute(2, 0, 3, 1, 4)
|
||
|
)
|
||
|
query_states, key_states, value_states = mixed_qkv[0], mixed_qkv[1], mixed_qkv[2]
|
||
|
|
||
|
# Take the dot product between "query" and "key" to get the raw attention scores.
|
||
|
attention_scores = torch.matmul(query_states, key_states.transpose(-1, -2))
|
||
|
|
||
|
attention_scores = attention_scores * self.scale
|
||
|
|
||
|
# Normalize the attention scores to probabilities.
|
||
|
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
|
||
|
|
||
|
# This is actually dropping out entire tokens to attend to, which might
|
||
|
# seem a bit unusual, but is taken from the original Transformer paper.
|
||
|
attention_probs = self.dropout(attention_probs)
|
||
|
|
||
|
# Mask heads if we want to
|
||
|
if head_mask is not None:
|
||
|
attention_probs = attention_probs * head_mask
|
||
|
|
||
|
context_layer = torch.matmul(attention_probs, value_states).permute(0, 2, 1, 3)
|
||
|
|
||
|
new_context_layer_shape = context_layer.size()[:-2] + (self.embed_dim,)
|
||
|
context_layer = context_layer.reshape(new_context_layer_shape)
|
||
|
|
||
|
output = self.projection(context_layer)
|
||
|
|
||
|
outputs = (output, attention_probs) if output_attentions else (output, None)
|
||
|
|
||
|
return outputs
|
||
|
|
||
|
|
||
|
# Copied from transformers.models.clip.modeling_clip.CLIPMLP with CLIP->Blip
|
||
|
class BlipMLP(nn.Module):
|
||
|
def __init__(self, config):
|
||
|
super().__init__()
|
||
|
self.config = config
|
||
|
self.activation_fn = ACT2FN[config.hidden_act]
|
||
|
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
|
||
|
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
|
||
|
|
||
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
||
|
hidden_states = self.fc1(hidden_states)
|
||
|
hidden_states = self.activation_fn(hidden_states)
|
||
|
hidden_states = self.fc2(hidden_states)
|
||
|
return hidden_states
|
||
|
|
||
|
|
||
|
class BlipEncoderLayer(nn.Module):
|
||
|
def __init__(self, config: BlipConfig):
|
||
|
super().__init__()
|
||
|
self.embed_dim = config.hidden_size
|
||
|
self.self_attn = BlipAttention(config)
|
||
|
self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
|
||
|
self.mlp = BlipMLP(config)
|
||
|
self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
|
||
|
|
||
|
def forward(
|
||
|
self,
|
||
|
hidden_states: torch.Tensor,
|
||
|
attention_mask: torch.Tensor,
|
||
|
output_attentions: Optional[bool] = False,
|
||
|
) -> Tuple[torch.FloatTensor]:
|
||
|
"""
|
||
|
Args:
|
||
|
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
||
|
attention_mask (`torch.FloatTensor`): attention mask of size
|
||
|
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
|
||
|
`(config.encoder_attention_heads,)`.
|
||
|
output_attentions (`bool`, *optional*):
|
||
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
||
|
returned tensors for more detail.
|
||
|
"""
|
||
|
residual = hidden_states
|
||
|
|
||
|
hidden_states = self.layer_norm1(hidden_states)
|
||
|
hidden_states, attn_weights = self.self_attn(
|
||
|
hidden_states=hidden_states,
|
||
|
head_mask=attention_mask,
|
||
|
output_attentions=output_attentions,
|
||
|
)
|
||
|
hidden_states = hidden_states + residual
|
||
|
residual = hidden_states
|
||
|
hidden_states = self.layer_norm2(hidden_states)
|
||
|
hidden_states = self.mlp(hidden_states)
|
||
|
|
||
|
hidden_states = hidden_states + residual
|
||
|
|
||
|
outputs = (hidden_states,)
|
||
|
|
||
|
if output_attentions:
|
||
|
outputs += (attn_weights,)
|
||
|
|
||
|
return outputs
|
||
|
|
||
|
|
||
|
class BlipPreTrainedModel(PreTrainedModel):
|
||
|
"""
|
||
|
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
||
|
models.
|
||
|
"""
|
||
|
|
||
|
config_class = BlipConfig
|
||
|
base_model_prefix = "blip"
|
||
|
supports_gradient_checkpointing = True
|
||
|
|
||
|
def _init_weights(self, module):
|
||
|
"""Initialize the weights"""
|
||
|
factor = self.config.initializer_range
|
||
|
if isinstance(module, nn.Conv2d) or isinstance(module, nn.Embedding) or isinstance(module, nn.Linear):
|
||
|
module.weight.data.normal_(mean=0.0, std=factor)
|
||
|
if hasattr(module, "bias") and module.bias is not None:
|
||
|
module.bias.data.zero_()
|
||
|
|
||
|
if isinstance(module, BlipVisionEmbeddings):
|
||
|
if hasattr(self.config, "vision_config"):
|
||
|
factor = self.config.vision_config.initializer_range
|
||
|
nn.init.trunc_normal_(
|
||
|
module.position_embedding,
|
||
|
mean=0.0,
|
||
|
std=factor,
|
||
|
)
|
||
|
|
||
|
nn.init.trunc_normal_(
|
||
|
module.class_embedding,
|
||
|
mean=0.0,
|
||
|
std=factor,
|
||
|
)
|
||
|
|
||
|
elif isinstance(module, nn.LayerNorm):
|
||
|
module.bias.data.zero_()
|
||
|
module.weight.data.fill_(1.0)
|
||
|
elif isinstance(module, nn.Linear) and module.bias is not None:
|
||
|
module.bias.data.zero_()
|
||
|
|
||
|
|
||
|
BLIP_START_DOCSTRING = r"""
|
||
|
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
||
|
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
||
|
etc.)
|
||
|
|
||
|
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
||
|
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
||
|
and behavior.
|
||
|
|
||
|
Parameters:
|
||
|
config ([`BlipConfig`]): Model configuration class with all the parameters of the model.
|
||
|
Initializing with a config file does not load the weights associated with the model, only the
|
||
|
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
||
|
"""
|
||
|
|
||
|
BLIP_TEXT_INPUTS_DOCSTRING = r"""
|
||
|
Args:
|
||
|
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
||
|
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
||
|
it.
|
||
|
|
||
|
Indices can be obtained using [`AutoProcessor`]. See [`BlipProcessor.__call__`] for details.
|
||
|
|
||
|
[What are input IDs?](../glossary#input-ids)
|
||
|
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
||
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
||
|
|
||
|
- 1 for tokens that are **not masked**,
|
||
|
- 0 for tokens that are **masked**.
|
||
|
|
||
|
[What are attention masks?](../glossary#attention-mask)
|
||
|
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
||
|
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
||
|
config.max_position_embeddings - 1]`.
|
||
|
|
||
|
[What are position IDs?](../glossary#position-ids)
|
||
|
output_attentions (`bool`, *optional*):
|
||
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
||
|
tensors for more detail.
|
||
|
output_hidden_states (`bool`, *optional*):
|
||
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
||
|
more detail.
|
||
|
return_dict (`bool`, *optional*):
|
||
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
||
|
"""
|
||
|
|
||
|
BLIP_VISION_INPUTS_DOCSTRING = r"""
|
||
|
Args:
|
||
|
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
||
|
Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using
|
||
|
[`BlipImageProcessor`]. See [`BlipImageProcessor.__call__`] for details.
|
||
|
output_attentions (`bool`, *optional*):
|
||
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
||
|
tensors for more detail.
|
||
|
output_hidden_states (`bool`, *optional*):
|
||
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
||
|
more detail.
|
||
|
return_dict (`bool`, *optional*):
|
||
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
||
|
"""
|
||
|
|
||
|
BLIP_INPUTS_DOCSTRING = r"""
|
||
|
Args:
|
||
|
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
||
|
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
||
|
it.
|
||
|
|
||
|
Indices can be obtained using [`AutoProcessor`]. See [`BlipProcessor.__call__`] for details.
|
||
|
|
||
|
[What are input IDs?](../glossary#input-ids)
|
||
|
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
||
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
||
|
|
||
|
- 1 for tokens that are **not masked**,
|
||
|
- 0 for tokens that are **masked**.
|
||
|
|
||
|
[What are attention masks?](../glossary#attention-mask)
|
||
|
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
||
|
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
||
|
config.max_position_embeddings - 1]`.
|
||
|
|
||
|
[What are position IDs?](../glossary#position-ids)
|
||
|
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
||
|
Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using
|
||
|
[`BlipImageProcessor`]. See [`BlipImageProcessor.__call__`] for details.
|
||
|
return_loss (`bool`, *optional*):
|
||
|
Whether or not to return the contrastive loss.
|
||
|
output_attentions (`bool`, *optional*):
|
||
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
||
|
tensors for more detail.
|
||
|
output_hidden_states (`bool`, *optional*):
|
||
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
||
|
more detail.
|
||
|
return_dict (`bool`, *optional*):
|
||
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
||
|
"""
|
||
|
|
||
|
|
||
|
class BlipEncoder(nn.Module):
|
||
|
"""
|
||
|
Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
|
||
|
[`BlipEncoderLayer`].
|
||
|
|
||
|
Args:
|
||
|
config (`BlipConfig`):
|
||
|
The corresponding vision configuration for the `BlipEncoder`.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, config: BlipConfig):
|
||
|
super().__init__()
|
||
|
self.config = config
|
||
|
self.layers = nn.ModuleList([BlipEncoderLayer(config) for _ in range(config.num_hidden_layers)])
|
||
|
self.gradient_checkpointing = False
|
||
|
|
||
|
def forward(
|
||
|
self,
|
||
|
inputs_embeds,
|
||
|
attention_mask: Optional[torch.Tensor] = None,
|
||
|
output_attentions: Optional[bool] = None,
|
||
|
output_hidden_states: Optional[bool] = None,
|
||
|
return_dict: Optional[bool] = None,
|
||
|
) -> Union[Tuple, BaseModelOutput]:
|
||
|
r"""
|
||
|
Args:
|
||
|
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
||
|
Embedded representation of the inputs. Should be float, not int tokens.
|
||
|
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
||
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
||
|
|
||
|
- 1 for tokens that are **not masked**,
|
||
|
- 0 for tokens that are **masked**.
|
||
|
|
||
|
[What are attention masks?](../glossary#attention-mask)
|
||
|
output_attentions (`bool`, *optional*):
|
||
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
||
|
returned tensors for more detail.
|
||
|
output_hidden_states (`bool`, *optional*):
|
||
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
|
||
|
for more detail.
|
||
|
return_dict (`bool`, *optional*):
|
||
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
||
|
"""
|
||
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||
|
output_hidden_states = (
|
||
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||
|
)
|
||
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||
|
|
||
|
encoder_states = () if output_hidden_states else None
|
||
|
all_attentions = () if output_attentions else None
|
||
|
|
||
|
hidden_states = inputs_embeds
|
||
|
for idx, encoder_layer in enumerate(self.layers):
|
||
|
if output_hidden_states:
|
||
|
encoder_states = encoder_states + (hidden_states,)
|
||
|
if self.gradient_checkpointing and self.training:
|
||
|
layer_outputs = self._gradient_checkpointing_func(
|
||
|
encoder_layer.__call__,
|
||
|
hidden_states,
|
||
|
attention_mask,
|
||
|
output_attentions,
|
||
|
)
|
||
|
else:
|
||
|
layer_outputs = encoder_layer(
|
||
|
hidden_states,
|
||
|
attention_mask,
|
||
|
output_attentions=output_attentions,
|
||
|
)
|
||
|
|
||
|
hidden_states = layer_outputs[0]
|
||
|
|
||
|
if output_attentions:
|
||
|
all_attentions = all_attentions + (layer_outputs[1],)
|
||
|
|
||
|
if output_hidden_states:
|
||
|
encoder_states = encoder_states + (hidden_states,)
|
||
|
|
||
|
if not return_dict:
|
||
|
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
|
||
|
return BaseModelOutput(
|
||
|
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
|
||
|
)
|
||
|
|
||
|
|
||
|
class BlipVisionModel(BlipPreTrainedModel):
|
||
|
main_input_name = "pixel_values"
|
||
|
config_class = BlipVisionConfig
|
||
|
|
||
|
def __init__(self, config: BlipVisionConfig):
|
||
|
super().__init__(config)
|
||
|
self.config = config
|
||
|
embed_dim = config.hidden_size
|
||
|
|
||
|
self.embeddings = BlipVisionEmbeddings(config)
|
||
|
self.encoder = BlipEncoder(config)
|
||
|
self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
|
||
|
|
||
|
self.post_init()
|
||
|
|
||
|
@add_start_docstrings_to_model_forward(BLIP_VISION_INPUTS_DOCSTRING)
|
||
|
@replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=BlipVisionConfig)
|
||
|
def forward(
|
||
|
self,
|
||
|
pixel_values: Optional[torch.FloatTensor] = None,
|
||
|
output_attentions: Optional[bool] = None,
|
||
|
output_hidden_states: Optional[bool] = None,
|
||
|
return_dict: Optional[bool] = None,
|
||
|
) -> Union[Tuple, BaseModelOutputWithPooling]:
|
||
|
r"""
|
||
|
Returns:
|
||
|
|
||
|
"""
|
||
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||
|
output_hidden_states = (
|
||
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||
|
)
|
||
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||
|
|
||
|
if pixel_values is None:
|
||
|
raise ValueError("You have to specify pixel_values")
|
||
|
|
||
|
hidden_states = self.embeddings(pixel_values)
|
||
|
|
||
|
encoder_outputs = self.encoder(
|
||
|
inputs_embeds=hidden_states,
|
||
|
output_attentions=output_attentions,
|
||
|
output_hidden_states=output_hidden_states,
|
||
|
return_dict=return_dict,
|
||
|
)
|
||
|
|
||
|
last_hidden_state = encoder_outputs[0]
|
||
|
last_hidden_state = self.post_layernorm(last_hidden_state)
|
||
|
|
||
|
pooled_output = last_hidden_state[:, 0, :]
|
||
|
pooled_output = self.post_layernorm(pooled_output)
|
||
|
|
||
|
if not return_dict:
|
||
|
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
|
||
|
|
||
|
return BaseModelOutputWithPooling(
|
||
|
last_hidden_state=last_hidden_state,
|
||
|
pooler_output=pooled_output,
|
||
|
hidden_states=encoder_outputs.hidden_states,
|
||
|
attentions=encoder_outputs.attentions,
|
||
|
)
|
||
|
|
||
|
def get_input_embeddings(self):
|
||
|
return self.embeddings
|
||
|
|
||
|
|
||
|
@add_start_docstrings(BLIP_START_DOCSTRING)
|
||
|
class BlipModel(BlipPreTrainedModel):
|
||
|
config_class = BlipConfig
|
||
|
|
||
|
def __init__(self, config: BlipConfig):
|
||
|
super().__init__(config)
|
||
|
|
||
|
if not isinstance(config.text_config, BlipTextConfig):
|
||
|
raise ValueError(
|
||
|
"config.text_config is expected to be of type BlipTextConfig but is of type"
|
||
|
f" {type(config.text_config)}."
|
||
|
)
|
||
|
|
||
|
if not isinstance(config.vision_config, BlipVisionConfig):
|
||
|
raise ValueError(
|
||
|
"config.vision_config is expected to be of type BlipVisionConfig but is of type"
|
||
|
f" {type(config.vision_config)}."
|
||
|
)
|
||
|
|
||
|
text_config = config.text_config
|
||
|
vision_config = config.vision_config
|
||
|
|
||
|
self.projection_dim = config.projection_dim
|
||
|
self.text_embed_dim = text_config.hidden_size
|
||
|
self.vision_embed_dim = vision_config.hidden_size
|
||
|
|
||
|
self.text_model = BlipTextModel(text_config)
|
||
|
self.vision_model = BlipVisionModel(vision_config)
|
||
|
|
||
|
self.visual_projection = nn.Linear(self.vision_embed_dim, self.projection_dim, bias=False)
|
||
|
self.text_projection = nn.Linear(self.text_embed_dim, self.projection_dim, bias=False)
|
||
|
self.logit_scale = nn.Parameter(torch.tensor(self.config.logit_scale_init_value))
|
||
|
|
||
|
# Initialize weights and apply final processing
|
||
|
self.post_init()
|
||
|
|
||
|
@add_start_docstrings_to_model_forward(BLIP_TEXT_INPUTS_DOCSTRING)
|
||
|
def get_text_features(
|
||
|
self,
|
||
|
input_ids: Optional[torch.Tensor] = None,
|
||
|
attention_mask: Optional[torch.Tensor] = None,
|
||
|
position_ids: Optional[torch.Tensor] = None,
|
||
|
return_dict: Optional[bool] = None,
|
||
|
) -> torch.FloatTensor:
|
||
|
r"""
|
||
|
Returns:
|
||
|
text_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The text embeddings obtained by
|
||
|
applying the projection layer to the pooled output of [`BlipTextModel`].
|
||
|
|
||
|
Examples:
|
||
|
|
||
|
```python
|
||
|
>>> from transformers import AutoProcessor, BlipModel
|
||
|
|
||
|
>>> model = BlipModel.from_pretrained("Salesforce/blip-image-captioning-base")
|
||
|
>>> processor = AutoProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
|
||
|
|
||
|
>>> inputs = processor(text=["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="pt")
|
||
|
>>> text_features = model.get_text_features(**inputs)
|
||
|
```"""
|
||
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||
|
|
||
|
text_outputs = self.text_model(
|
||
|
input_ids=input_ids,
|
||
|
attention_mask=attention_mask,
|
||
|
position_ids=position_ids,
|
||
|
return_dict=return_dict,
|
||
|
)
|
||
|
|
||
|
pooled_output = text_outputs[1]
|
||
|
text_features = self.text_projection(pooled_output)
|
||
|
|
||
|
return text_features
|
||
|
|
||
|
@add_start_docstrings_to_model_forward(BLIP_VISION_INPUTS_DOCSTRING)
|
||
|
def get_image_features(
|
||
|
self,
|
||
|
pixel_values: Optional[torch.FloatTensor] = None,
|
||
|
return_dict: Optional[bool] = None,
|
||
|
) -> torch.FloatTensor:
|
||
|
r"""
|
||
|
Returns:
|
||
|
image_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The image embeddings obtained by
|
||
|
applying the projection layer to the pooled output of [`BlipVisionModel`].
|
||
|
|
||
|
Examples:
|
||
|
|
||
|
```python
|
||
|
>>> from PIL import Image
|
||
|
>>> import requests
|
||
|
>>> from transformers import AutoProcessor, BlipModel
|
||
|
|
||
|
>>> model = BlipModel.from_pretrained("Salesforce/blip-image-captioning-base")
|
||
|
>>> processor = AutoProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
|
||
|
|
||
|
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
||
|
>>> image = Image.open(requests.get(url, stream=True).raw)
|
||
|
|
||
|
>>> inputs = processor(images=image, return_tensors="pt")
|
||
|
|
||
|
>>> image_features = model.get_image_features(**inputs)
|
||
|
```"""
|
||
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||
|
|
||
|
vision_outputs = self.vision_model(pixel_values=pixel_values, return_dict=return_dict)
|
||
|
|
||
|
pooled_output = vision_outputs[1] # pooled_output
|
||
|
image_features = self.visual_projection(pooled_output)
|
||
|
|
||
|
return image_features
|
||
|
|
||
|
@add_start_docstrings_to_model_forward(BLIP_INPUTS_DOCSTRING)
|
||
|
@replace_return_docstrings(output_type=BlipOutput, config_class=BlipConfig)
|
||
|
def forward(
|
||
|
self,
|
||
|
input_ids: Optional[torch.LongTensor] = None,
|
||
|
pixel_values: Optional[torch.FloatTensor] = None,
|
||
|
attention_mask: Optional[torch.Tensor] = None,
|
||
|
position_ids: Optional[torch.LongTensor] = None,
|
||
|
return_loss: Optional[bool] = None,
|
||
|
output_attentions: Optional[bool] = None,
|
||
|
output_hidden_states: Optional[bool] = None,
|
||
|
return_dict: Optional[bool] = None,
|
||
|
) -> Union[Tuple, BlipOutput]:
|
||
|
r"""
|
||
|
Returns:
|
||
|
|
||
|
Examples:
|
||
|
|
||
|
```python
|
||
|
>>> from PIL import Image
|
||
|
>>> import requests
|
||
|
>>> from transformers import AutoProcessor, BlipModel
|
||
|
|
||
|
>>> model = BlipModel.from_pretrained("Salesforce/blip-image-captioning-base")
|
||
|
>>> processor = AutoProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
|
||
|
|
||
|
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
||
|
>>> image = Image.open(requests.get(url, stream=True).raw)
|
||
|
|
||
|
>>> inputs = processor(
|
||
|
... text=["a photo of a cat", "a photo of a dog"], images=image, return_tensors="pt", padding=True
|
||
|
... )
|
||
|
|
||
|
>>> outputs = model(**inputs)
|
||
|
>>> logits_per_image = outputs.logits_per_image # this is the image-text similarity score
|
||
|
>>> probs = logits_per_image.softmax(dim=1) # we can take the softmax to get the label probabilities
|
||
|
```"""
|
||
|
# Use BLIP model's config for some fields (if specified) instead of those of vision & text components.
|
||
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||
|
output_hidden_states = (
|
||
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||
|
)
|
||
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||
|
|
||
|
vision_outputs = self.vision_model(
|
||
|
pixel_values=pixel_values,
|
||
|
output_attentions=output_attentions,
|
||
|
output_hidden_states=output_hidden_states,
|
||
|
return_dict=return_dict,
|
||
|
)
|
||
|
|
||
|
text_outputs = self.text_model(
|
||
|
input_ids=input_ids,
|
||
|
attention_mask=attention_mask,
|
||
|
position_ids=position_ids,
|
||
|
output_attentions=output_attentions,
|
||
|
output_hidden_states=output_hidden_states,
|
||
|
return_dict=return_dict,
|
||
|
)
|
||
|
|
||
|
image_embeds = vision_outputs[1]
|
||
|
image_embeds = self.visual_projection(image_embeds)
|
||
|
|
||
|
text_embeds = text_outputs[1]
|
||
|
text_embeds = self.text_projection(text_embeds)
|
||
|
|
||
|
# normalized features
|
||
|
image_embeds = image_embeds / image_embeds.norm(p=2, dim=-1, keepdim=True)
|
||
|
text_embeds = text_embeds / text_embeds.norm(p=2, dim=-1, keepdim=True)
|
||
|
|
||
|
# cosine similarity as logits
|
||
|
logit_scale = self.logit_scale.exp()
|
||
|
logits_per_text = torch.matmul(text_embeds, image_embeds.t()) * logit_scale
|
||
|
logits_per_image = logits_per_text.t()
|
||
|
|
||
|
loss = None
|
||
|
if return_loss:
|
||
|
loss = blip_loss(logits_per_text)
|
||
|
|
||
|
if not return_dict:
|
||
|
output = (logits_per_image, logits_per_text, text_embeds, image_embeds, text_outputs, vision_outputs)
|
||
|
return ((loss,) + output) if loss is not None else output
|
||
|
|
||
|
return BlipOutput(
|
||
|
loss=loss,
|
||
|
logits_per_image=logits_per_image,
|
||
|
logits_per_text=logits_per_text,
|
||
|
text_embeds=text_embeds,
|
||
|
image_embeds=image_embeds,
|
||
|
text_model_output=text_outputs,
|
||
|
vision_model_output=vision_outputs,
|
||
|
)
|
||
|
|
||
|
|
||
|
@add_start_docstrings(
|
||
|
"""
|
||
|
BLIP Model for image captioning. The model consists of a vision encoder and a text decoder. One can optionally pass
|
||
|
`input_ids` to the model, which serve as a text prompt, to make the text decoder continue the prompt. Otherwise,
|
||
|
the decoder starts generating text from the [BOS] (beginning-of-sequence) token. will start generating the caption
|
||
|
from the text input. If no text input is provided, the decoder will start with the [BOS] token only.
|
||
|
""",
|
||
|
BLIP_START_DOCSTRING,
|
||
|
)
|
||
|
class BlipForConditionalGeneration(BlipPreTrainedModel):
|
||
|
config_class = BlipConfig
|
||
|
_tied_weights_keys = ["text_decoder.cls.predictions.decoder.bias"]
|
||
|
main_input_name = "pixel_values"
|
||
|
|
||
|
def __init__(self, config: BlipConfig):
|
||
|
super().__init__(config)
|
||
|
|
||
|
self.vision_model = BlipVisionModel(config.vision_config)
|
||
|
|
||
|
self.text_decoder = BlipTextLMHeadModel(config.text_config)
|
||
|
|
||
|
self.decoder_input_ids = config.text_config.bos_token_id
|
||
|
self.decoder_pad_token_id = config.text_config.pad_token_id
|
||
|
|
||
|
# Initialize weights and apply final processing
|
||
|
self.post_init()
|
||
|
|
||
|
def get_input_embeddings(self) -> nn.Module:
|
||
|
return self.vision_model.embeddings.patch_embedding
|
||
|
|
||
|
@add_start_docstrings_to_model_forward(BLIP_VISION_INPUTS_DOCSTRING)
|
||
|
@replace_return_docstrings(output_type=BlipForConditionalGenerationModelOutput, config_class=BlipVisionConfig)
|
||
|
def forward(
|
||
|
self,
|
||
|
pixel_values: torch.FloatTensor,
|
||
|
input_ids: Optional[torch.LongTensor] = None,
|
||
|
attention_mask: Optional[torch.LongTensor] = None,
|
||
|
output_attentions: Optional[bool] = None,
|
||
|
output_hidden_states: Optional[bool] = None,
|
||
|
labels: Optional[torch.LongTensor] = None,
|
||
|
return_dict: Optional[bool] = None,
|
||
|
) -> Union[Tuple, BlipForConditionalGenerationModelOutput]:
|
||
|
r"""
|
||
|
Returns:
|
||
|
|
||
|
Examples:
|
||
|
|
||
|
```python
|
||
|
>>> from PIL import Image
|
||
|
>>> import requests
|
||
|
>>> from transformers import AutoProcessor, BlipForConditionalGeneration
|
||
|
|
||
|
>>> processor = AutoProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
|
||
|
>>> model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")
|
||
|
|
||
|
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
||
|
>>> image = Image.open(requests.get(url, stream=True).raw)
|
||
|
>>> text = "A picture of"
|
||
|
|
||
|
>>> inputs = processor(images=image, text=text, return_tensors="pt")
|
||
|
|
||
|
>>> outputs = model(**inputs)
|
||
|
```"""
|
||
|
|
||
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||
|
output_hidden_states = (
|
||
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||
|
)
|
||
|
|
||
|
vision_outputs = self.vision_model(
|
||
|
pixel_values=pixel_values,
|
||
|
output_attentions=output_attentions,
|
||
|
output_hidden_states=output_hidden_states,
|
||
|
return_dict=return_dict,
|
||
|
)
|
||
|
|
||
|
image_embeds = vision_outputs[0]
|
||
|
|
||
|
outputs = self.text_decoder(
|
||
|
input_ids=input_ids,
|
||
|
attention_mask=attention_mask,
|
||
|
encoder_hidden_states=image_embeds,
|
||
|
labels=labels,
|
||
|
return_dict=return_dict,
|
||
|
reduction="mean",
|
||
|
)
|
||
|
|
||
|
if not return_dict:
|
||
|
outputs = (outputs[0], outputs[1], image_embeds, vision_outputs[0]) + vision_outputs[2:]
|
||
|
return tuple(output for output in outputs if output is not None)
|
||
|
|
||
|
return BlipForConditionalGenerationModelOutput(
|
||
|
loss=outputs.loss,
|
||
|
logits=outputs.logits,
|
||
|
image_embeds=image_embeds,
|
||
|
last_hidden_state=vision_outputs.last_hidden_state,
|
||
|
hidden_states=vision_outputs.hidden_states,
|
||
|
attentions=vision_outputs.attentions,
|
||
|
)
|
||
|
|
||
|
@torch.no_grad()
|
||
|
def generate(
|
||
|
self,
|
||
|
pixel_values: torch.FloatTensor,
|
||
|
input_ids: Optional[torch.LongTensor] = None,
|
||
|
attention_mask: Optional[torch.LongTensor] = None,
|
||
|
**generate_kwargs,
|
||
|
) -> torch.LongTensor:
|
||
|
r"""
|
||
|
Overrides *generate* function to be able to use the model as a conditional generator
|
||
|
|
||
|
Parameters:
|
||
|
pixel_values (*torch.FloatTensor* of shape *(batch_size, num_channels, image_height, image_width)*:
|
||
|
Input image to be processed
|
||
|
input_ids (*torch.LongTensor* of shape *(batch_size, sequence_length)*, *optional*):
|
||
|
The sequence used as a prompt for the generation.
|
||
|
attention_mask (*torch.LongTensor* of shape *(batch_size, sequence_length)*, *optional*):
|
||
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
||
|
|
||
|
|
||
|
Examples:
|
||
|
```python
|
||
|
>>> from PIL import Image
|
||
|
>>> import requests
|
||
|
>>> from transformers import AutoProcessor, BlipForConditionalGeneration
|
||
|
|
||
|
>>> model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")
|
||
|
>>> processor = AutoProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
|
||
|
|
||
|
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
||
|
>>> image = Image.open(requests.get(url, stream=True).raw)
|
||
|
|
||
|
>>> inputs = processor(images=image, return_tensors="pt")
|
||
|
|
||
|
>>> outputs = model.generate(**inputs)
|
||
|
>>> print(processor.decode(outputs[0], skip_special_tokens=True))
|
||
|
two cats sleeping on a couch
|
||
|
```
|
||
|
"""
|
||
|
|
||
|
batch_size = pixel_values.shape[0]
|
||
|
vision_outputs = self.vision_model(pixel_values=pixel_values)
|
||
|
|
||
|
image_embeds = vision_outputs[0]
|
||
|
|
||
|
image_attention_mask = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(image_embeds.device)
|
||
|
|
||
|
if isinstance(input_ids, list):
|
||
|
input_ids = torch.LongTensor(input_ids)
|
||
|
elif input_ids is None:
|
||
|
input_ids = (
|
||
|
torch.LongTensor([[self.decoder_input_ids, self.config.text_config.eos_token_id]])
|
||
|
.repeat(batch_size, 1)
|
||
|
.to(image_embeds.device)
|
||
|
)
|
||
|
|
||
|
input_ids[:, 0] = self.config.text_config.bos_token_id
|
||
|
attention_mask = attention_mask[:, :-1] if attention_mask is not None else None
|
||
|
|
||
|
outputs = self.text_decoder.generate(
|
||
|
input_ids=input_ids[:, :-1],
|
||
|
eos_token_id=self.config.text_config.sep_token_id,
|
||
|
pad_token_id=self.config.text_config.pad_token_id,
|
||
|
attention_mask=attention_mask,
|
||
|
encoder_hidden_states=image_embeds,
|
||
|
encoder_attention_mask=image_attention_mask,
|
||
|
**generate_kwargs,
|
||
|
)
|
||
|
|
||
|
return outputs
|
||
|
|
||
|
|
||
|
@add_start_docstrings(
|
||
|
"""
|
||
|
BLIP Model for visual question answering. The model consists of a vision encoder, a text encoder as well as a text
|
||
|
decoder. The vision encoder will encode the input image, the text encoder will encode the input question together
|
||
|
with the encoding of the image, and the text decoder will output the answer to the question.
|
||
|
""",
|
||
|
BLIP_START_DOCSTRING,
|
||
|
)
|
||
|
class BlipForQuestionAnswering(BlipPreTrainedModel):
|
||
|
config_class = BlipConfig
|
||
|
_tied_weights_keys = ["text_decoder.cls.predictions.decoder.bias"]
|
||
|
|
||
|
def __init__(self, config: BlipConfig):
|
||
|
super().__init__(config)
|
||
|
|
||
|
self.vision_model = BlipVisionModel(config.vision_config)
|
||
|
|
||
|
self.text_encoder = BlipTextModel(config.text_config, add_pooling_layer=False)
|
||
|
|
||
|
self.text_decoder = BlipTextLMHeadModel(config.text_config)
|
||
|
|
||
|
self.decoder_pad_token_id = config.text_config.pad_token_id
|
||
|
self.decoder_start_token_id = config.text_config.bos_token_id
|
||
|
|
||
|
# Initialize weights and apply final processing
|
||
|
self.post_init()
|
||
|
|
||
|
def get_input_embeddings(self) -> nn.Module:
|
||
|
return self.vision_model.embeddings.patch_embedding
|
||
|
|
||
|
@add_start_docstrings_to_model_forward(BLIP_VISION_INPUTS_DOCSTRING)
|
||
|
@replace_return_docstrings(output_type=BlipTextVisionModelOutput, config_class=BlipVisionConfig)
|
||
|
def forward(
|
||
|
self,
|
||
|
input_ids: torch.LongTensor,
|
||
|
pixel_values: torch.FloatTensor,
|
||
|
decoder_input_ids: Optional[torch.LongTensor] = None,
|
||
|
decoder_attention_mask: Optional[torch.LongTensor] = None,
|
||
|
attention_mask: Optional[torch.LongTensor] = None,
|
||
|
output_attentions: Optional[bool] = None,
|
||
|
output_hidden_states: Optional[bool] = None,
|
||
|
labels: Optional[torch.LongTensor] = None,
|
||
|
return_dict: Optional[bool] = None,
|
||
|
) -> Union[Tuple, BlipTextVisionModelOutput]:
|
||
|
r"""
|
||
|
Returns:
|
||
|
|
||
|
Examples:
|
||
|
|
||
|
```python
|
||
|
>>> from PIL import Image
|
||
|
>>> import requests
|
||
|
>>> from transformers import AutoProcessor, BlipForQuestionAnswering
|
||
|
|
||
|
>>> model = BlipForQuestionAnswering.from_pretrained("Salesforce/blip-vqa-base")
|
||
|
>>> processor = AutoProcessor.from_pretrained("Salesforce/blip-vqa-base")
|
||
|
|
||
|
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
||
|
>>> image = Image.open(requests.get(url, stream=True).raw)
|
||
|
|
||
|
>>> # training
|
||
|
>>> text = "How many cats are in the picture?"
|
||
|
>>> label = "2"
|
||
|
>>> inputs = processor(images=image, text=text, return_tensors="pt")
|
||
|
>>> labels = processor(text=label, return_tensors="pt").input_ids
|
||
|
|
||
|
>>> inputs["labels"] = labels
|
||
|
>>> outputs = model(**inputs)
|
||
|
>>> loss = outputs.loss
|
||
|
>>> loss.backward()
|
||
|
|
||
|
>>> # inference
|
||
|
>>> text = "How many cats are in the picture?"
|
||
|
>>> inputs = processor(images=image, text=text, return_tensors="pt")
|
||
|
>>> outputs = model.generate(**inputs)
|
||
|
>>> print(processor.decode(outputs[0], skip_special_tokens=True))
|
||
|
2
|
||
|
```"""
|
||
|
if labels is None and decoder_input_ids is None:
|
||
|
raise ValueError(
|
||
|
"Either `decoder_input_ids` or `labels` should be passed when calling `forward` with"
|
||
|
" `BlipForQuestionAnswering`. if you are training the model make sure that `labels` is passed, if you"
|
||
|
" are using the model for inference make sure that `decoder_input_ids` is passed or call `generate`"
|
||
|
)
|
||
|
|
||
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||
|
output_hidden_states = (
|
||
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||
|
)
|
||
|
|
||
|
vision_outputs = self.vision_model(
|
||
|
pixel_values=pixel_values,
|
||
|
output_attentions=output_attentions,
|
||
|
output_hidden_states=output_hidden_states,
|
||
|
return_dict=return_dict,
|
||
|
)
|
||
|
|
||
|
image_embeds = vision_outputs[0]
|
||
|
image_attention_mask = torch.ones(image_embeds.size()[:-1], dtype=torch.long)
|
||
|
|
||
|
question_embeds = self.text_encoder(
|
||
|
input_ids=input_ids,
|
||
|
attention_mask=attention_mask,
|
||
|
encoder_hidden_states=image_embeds,
|
||
|
encoder_attention_mask=image_attention_mask,
|
||
|
return_dict=return_dict,
|
||
|
)
|
||
|
|
||
|
if labels is not None and decoder_input_ids is None:
|
||
|
# labels are already shifted right, see: https://github.com/huggingface/transformers/pull/23153
|
||
|
decoder_input_ids = labels
|
||
|
|
||
|
question_embeds = question_embeds[0] if not return_dict else question_embeds.last_hidden_state
|
||
|
|
||
|
answer_output = self.text_decoder(
|
||
|
input_ids=decoder_input_ids,
|
||
|
attention_mask=decoder_attention_mask,
|
||
|
encoder_hidden_states=question_embeds,
|
||
|
encoder_attention_mask=attention_mask,
|
||
|
labels=labels,
|
||
|
return_dict=return_dict,
|
||
|
reduction="mean",
|
||
|
)
|
||
|
|
||
|
if labels is not None:
|
||
|
decoder_loss = answer_output.loss.mean() if return_dict else answer_output[0].mean()
|
||
|
else:
|
||
|
decoder_loss = None
|
||
|
|
||
|
if not return_dict:
|
||
|
outputs = (decoder_loss, image_embeds, vision_outputs[0]) + vision_outputs[2:]
|
||
|
return tuple(output for output in outputs if output is not None)
|
||
|
|
||
|
return BlipTextVisionModelOutput(
|
||
|
loss=decoder_loss,
|
||
|
image_embeds=image_embeds,
|
||
|
last_hidden_state=vision_outputs.last_hidden_state,
|
||
|
hidden_states=vision_outputs.hidden_states,
|
||
|
attentions=vision_outputs.attentions,
|
||
|
)
|
||
|
|
||
|
@torch.no_grad()
|
||
|
def generate(
|
||
|
self,
|
||
|
input_ids: torch.LongTensor,
|
||
|
pixel_values: torch.FloatTensor,
|
||
|
attention_mask: Optional[torch.LongTensor] = None,
|
||
|
**generate_kwargs,
|
||
|
) -> torch.LongTensor:
|
||
|
r"""
|
||
|
Overrides *generate* function to be able to use the model as a conditional generator
|
||
|
|
||
|
Parameters:
|
||
|
input_ids (*torch.LongTensor* of shape *(batch_size, sequence_length)*):
|
||
|
The sequence used as a prompt for the generation.
|
||
|
pixel_values (*torch.FloatTensor* of shape *(batch_size, num_channels, image_height, image_width)*:
|
||
|
Input image to be processed
|
||
|
attention_mask (*torch.LongTensor* of shape *(batch_size, sequence_length)*, *optional*):
|
||
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`. `1` for
|
||
|
tokens that are NOT MASKED, `0` for MASKED tokens.
|
||
|
**generate_kwargs:
|
||
|
Additional arguments passed to the *generate* function of the decoder
|
||
|
|
||
|
|
||
|
Examples:
|
||
|
```python
|
||
|
>>> from PIL import Image
|
||
|
>>> import requests
|
||
|
>>> from transformers import AutoProcessor, BlipForQuestionAnswering
|
||
|
|
||
|
>>> model = BlipForQuestionAnswering.from_pretrained("Salesforce/blip-vqa-base")
|
||
|
>>> processor = AutoProcessor.from_pretrained("Salesforce/blip-vqa-base")
|
||
|
|
||
|
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
||
|
>>> image = Image.open(requests.get(url, stream=True).raw)
|
||
|
>>> text = "How many cats are in the picture?"
|
||
|
|
||
|
>>> inputs = processor(images=image, text=text, return_tensors="pt")
|
||
|
|
||
|
>>> outputs = model.generate(**inputs)
|
||
|
>>> print(processor.decode(outputs[0], skip_special_tokens=True))
|
||
|
2
|
||
|
```
|
||
|
"""
|
||
|
vision_outputs = self.vision_model(pixel_values=pixel_values)
|
||
|
|
||
|
image_embeds = vision_outputs[0]
|
||
|
|
||
|
image_attention_mask = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(image_embeds.device)
|
||
|
|
||
|
if isinstance(input_ids, list):
|
||
|
input_ids = torch.LongTensor(input_ids)
|
||
|
|
||
|
question_outputs = self.text_encoder(
|
||
|
input_ids=input_ids,
|
||
|
attention_mask=attention_mask,
|
||
|
encoder_hidden_states=image_embeds,
|
||
|
encoder_attention_mask=image_attention_mask,
|
||
|
return_dict=False,
|
||
|
)
|
||
|
|
||
|
question_embeds = question_outputs[0]
|
||
|
|
||
|
question_attention_mask = torch.ones(question_embeds.size()[:-1], dtype=torch.long).to(question_embeds.device)
|
||
|
|
||
|
bos_ids = torch.full(
|
||
|
(question_embeds.size(0), 1), fill_value=self.decoder_start_token_id, device=question_embeds.device
|
||
|
)
|
||
|
|
||
|
outputs = self.text_decoder.generate(
|
||
|
input_ids=bos_ids,
|
||
|
eos_token_id=self.config.text_config.sep_token_id,
|
||
|
pad_token_id=self.config.text_config.pad_token_id,
|
||
|
encoder_hidden_states=question_embeds,
|
||
|
encoder_attention_mask=question_attention_mask,
|
||
|
**generate_kwargs,
|
||
|
)
|
||
|
|
||
|
return outputs
|
||
|
|
||
|
|
||
|
@add_start_docstrings(
|
||
|
"""
|
||
|
BLIP Model with a vision and text projector, and a classification head on top. The model is used in the context of
|
||
|
image-text retrieval. Given an image and a text, the model returns the probability of the text being relevant to
|
||
|
the image.
|
||
|
""",
|
||
|
BLIP_START_DOCSTRING,
|
||
|
)
|
||
|
class BlipForImageTextRetrieval(BlipPreTrainedModel):
|
||
|
config_class = BlipConfig
|
||
|
|
||
|
def __init__(self, config: BlipConfig):
|
||
|
super().__init__(config)
|
||
|
|
||
|
self.vision_model = BlipVisionModel(config.vision_config)
|
||
|
|
||
|
self.text_encoder = BlipTextModel(config.text_config, add_pooling_layer=False)
|
||
|
|
||
|
# vision projection layer
|
||
|
self.vision_proj = nn.Linear(config.vision_config.hidden_size, config.image_text_hidden_size)
|
||
|
|
||
|
# text projection layer
|
||
|
self.text_proj = nn.Linear(config.text_config.hidden_size, config.image_text_hidden_size)
|
||
|
|
||
|
# image text matching head
|
||
|
self.itm_head = nn.Linear(config.text_config.hidden_size, 2)
|
||
|
|
||
|
self.decoder_pad_token_id = (
|
||
|
config.text_config.pad_token_id
|
||
|
if not hasattr(config, "decoder_pad_token_id")
|
||
|
else config.decoder_pad_token_id
|
||
|
)
|
||
|
self.decoder_start_token_id = (
|
||
|
config.text_config.bos_token_id
|
||
|
if not hasattr(config, "decoder_start_token_id")
|
||
|
else config.decoder_start_token_id
|
||
|
)
|
||
|
|
||
|
# Initialize weights and apply final processing
|
||
|
self.post_init()
|
||
|
|
||
|
def get_input_embeddings(self) -> nn.Module:
|
||
|
return self.vision_model.embeddings.patch_embedding
|
||
|
|
||
|
@add_start_docstrings_to_model_forward(BLIP_VISION_INPUTS_DOCSTRING)
|
||
|
@replace_return_docstrings(output_type=BlipTextVisionModelOutput, config_class=BlipVisionConfig)
|
||
|
def forward(
|
||
|
self,
|
||
|
input_ids: torch.LongTensor,
|
||
|
pixel_values: torch.FloatTensor,
|
||
|
use_itm_head: Optional[bool] = True,
|
||
|
attention_mask: Optional[torch.LongTensor] = None,
|
||
|
output_attentions: Optional[bool] = None,
|
||
|
output_hidden_states: Optional[bool] = None,
|
||
|
return_dict: Optional[bool] = None,
|
||
|
) -> Union[Tuple, BlipTextVisionModelOutput]:
|
||
|
r"""
|
||
|
Returns:
|
||
|
|
||
|
Examples:
|
||
|
|
||
|
```python
|
||
|
>>> from PIL import Image
|
||
|
>>> import requests
|
||
|
>>> from transformers import AutoProcessor, BlipForImageTextRetrieval
|
||
|
|
||
|
>>> model = BlipForImageTextRetrieval.from_pretrained("Salesforce/blip-itm-base-coco")
|
||
|
>>> processor = AutoProcessor.from_pretrained("Salesforce/blip-itm-base-coco")
|
||
|
|
||
|
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
||
|
>>> image = Image.open(requests.get(url, stream=True).raw)
|
||
|
>>> text = "an image of a cat"
|
||
|
|
||
|
>>> inputs = processor(images=image, text=text, return_tensors="pt")
|
||
|
>>> outputs = model(**inputs)
|
||
|
```
|
||
|
"""
|
||
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||
|
output_hidden_states = (
|
||
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||
|
)
|
||
|
|
||
|
vision_outputs = self.vision_model(
|
||
|
pixel_values=pixel_values,
|
||
|
output_attentions=output_attentions,
|
||
|
output_hidden_states=output_hidden_states,
|
||
|
return_dict=return_dict,
|
||
|
)
|
||
|
|
||
|
image_embeds = vision_outputs[0]
|
||
|
image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long)
|
||
|
|
||
|
if use_itm_head:
|
||
|
question_embeds = self.text_encoder(
|
||
|
input_ids=input_ids,
|
||
|
attention_mask=attention_mask,
|
||
|
encoder_hidden_states=image_embeds,
|
||
|
encoder_attention_mask=image_atts,
|
||
|
return_dict=return_dict,
|
||
|
)
|
||
|
question_embeds = question_embeds[0] if not return_dict else question_embeds.last_hidden_state
|
||
|
|
||
|
output = self.itm_head(question_embeds[:, 0, :])
|
||
|
else:
|
||
|
question_embeds = self.text_encoder(
|
||
|
input_ids=input_ids,
|
||
|
attention_mask=attention_mask,
|
||
|
return_dict=return_dict,
|
||
|
)
|
||
|
question_embeds = question_embeds[0] if not return_dict else question_embeds.last_hidden_state
|
||
|
|
||
|
image_feat = normalize(self.vision_proj(image_embeds[:, 0, :]), dim=-1)
|
||
|
text_feat = normalize(self.text_proj(question_embeds[:, 0, :]), dim=-1)
|
||
|
|
||
|
output = image_feat @ text_feat.t()
|
||
|
|
||
|
if not return_dict:
|
||
|
outputs = (output, vision_outputs[0]) + vision_outputs[2:] + (question_embeds,)
|
||
|
return tuple(output for output in outputs if output is not None)
|
||
|
|
||
|
return BlipImageTextMatchingModelOutput(
|
||
|
itm_score=output,
|
||
|
last_hidden_state=vision_outputs.last_hidden_state,
|
||
|
hidden_states=vision_outputs.hidden_states,
|
||
|
attentions=vision_outputs.attentions,
|
||
|
question_embeds=question_embeds,
|
||
|
)
|