144 lines
5.2 KiB
Python
144 lines
5.2 KiB
Python
|
# coding=utf-8
|
||
|
# Copyright 2022 Meta and The HuggingFace Inc. team. All rights reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
"""Tokenization classes for ESM."""
|
||
|
import os
|
||
|
from typing import List, Optional
|
||
|
|
||
|
from ...tokenization_utils import PreTrainedTokenizer
|
||
|
from ...utils import logging
|
||
|
|
||
|
|
||
|
logger = logging.get_logger(__name__)
|
||
|
|
||
|
VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt"}
|
||
|
|
||
|
|
||
|
def load_vocab_file(vocab_file):
|
||
|
with open(vocab_file, "r") as f:
|
||
|
lines = f.read().splitlines()
|
||
|
return [l.strip() for l in lines]
|
||
|
|
||
|
|
||
|
class EsmTokenizer(PreTrainedTokenizer):
|
||
|
"""
|
||
|
Constructs an ESM tokenizer.
|
||
|
"""
|
||
|
|
||
|
vocab_files_names = VOCAB_FILES_NAMES
|
||
|
model_input_names = ["input_ids", "attention_mask"]
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
vocab_file,
|
||
|
unk_token="<unk>",
|
||
|
cls_token="<cls>",
|
||
|
pad_token="<pad>",
|
||
|
mask_token="<mask>",
|
||
|
eos_token="<eos>",
|
||
|
**kwargs,
|
||
|
):
|
||
|
self.all_tokens = load_vocab_file(vocab_file)
|
||
|
self._id_to_token = dict(enumerate(self.all_tokens))
|
||
|
self._token_to_id = {tok: ind for ind, tok in enumerate(self.all_tokens)}
|
||
|
super().__init__(
|
||
|
unk_token=unk_token,
|
||
|
cls_token=cls_token,
|
||
|
pad_token=pad_token,
|
||
|
mask_token=mask_token,
|
||
|
eos_token=eos_token,
|
||
|
**kwargs,
|
||
|
)
|
||
|
|
||
|
# TODO, all the tokens are added? But they are also part of the vocab... bit strange.
|
||
|
# none of them are special, but they all need special splitting.
|
||
|
|
||
|
self.unique_no_split_tokens = self.all_tokens
|
||
|
self._update_trie(self.unique_no_split_tokens)
|
||
|
|
||
|
def _convert_id_to_token(self, index: int) -> str:
|
||
|
return self._id_to_token.get(index, self.unk_token)
|
||
|
|
||
|
def _convert_token_to_id(self, token: str) -> int:
|
||
|
return self._token_to_id.get(token, self._token_to_id.get(self.unk_token))
|
||
|
|
||
|
def _tokenize(self, text, **kwargs):
|
||
|
return text.split()
|
||
|
|
||
|
def get_vocab(self):
|
||
|
base_vocab = self._token_to_id.copy()
|
||
|
base_vocab.update(self.added_tokens_encoder)
|
||
|
return base_vocab
|
||
|
|
||
|
def token_to_id(self, token: str) -> int:
|
||
|
return self._token_to_id.get(token, self._token_to_id.get(self.unk_token))
|
||
|
|
||
|
def id_to_token(self, index: int) -> str:
|
||
|
return self._id_to_token.get(index, self.unk_token)
|
||
|
|
||
|
def build_inputs_with_special_tokens(
|
||
|
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
||
|
) -> List[int]:
|
||
|
cls = [self.cls_token_id]
|
||
|
sep = [self.eos_token_id] # No sep token in ESM vocabulary
|
||
|
if token_ids_1 is None:
|
||
|
if self.eos_token_id is None:
|
||
|
return cls + token_ids_0
|
||
|
else:
|
||
|
return cls + token_ids_0 + sep
|
||
|
elif self.eos_token_id is None:
|
||
|
raise ValueError("Cannot tokenize multiple sequences when EOS token is not set!")
|
||
|
return cls + token_ids_0 + sep + token_ids_1 + sep # Multiple inputs always have an EOS token
|
||
|
|
||
|
def get_special_tokens_mask(
|
||
|
self, token_ids_0: List, token_ids_1: Optional[List] = None, already_has_special_tokens: bool = False
|
||
|
) -> List[int]:
|
||
|
"""
|
||
|
Retrieves sequence ids from a token list that has no special tokens added. This method is called when adding
|
||
|
special tokens using the tokenizer `prepare_for_model` or `encode_plus` methods.
|
||
|
|
||
|
Args:
|
||
|
token_ids_0 (`List[int]`):
|
||
|
List of ids of the first sequence.
|
||
|
token_ids_1 (`List[int]`, *optional*):
|
||
|
List of ids of the second sequence.
|
||
|
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
|
||
|
Whether or not the token list is already formatted with special tokens for the model.
|
||
|
|
||
|
Returns:
|
||
|
A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
||
|
"""
|
||
|
if already_has_special_tokens:
|
||
|
if token_ids_1 is not None:
|
||
|
raise ValueError(
|
||
|
"You should not supply a second sequence if the provided sequence of "
|
||
|
"ids is already formatted with special tokens for the model."
|
||
|
)
|
||
|
|
||
|
return [1 if token in self.all_special_ids else 0 for token in token_ids_0]
|
||
|
mask = [1] + ([0] * len(token_ids_0)) + [1]
|
||
|
if token_ids_1 is not None:
|
||
|
mask += [0] * len(token_ids_1) + [1]
|
||
|
return mask
|
||
|
|
||
|
def save_vocabulary(self, save_directory, filename_prefix):
|
||
|
vocab_file = os.path.join(save_directory, (filename_prefix + "-" if filename_prefix else "") + "vocab.txt")
|
||
|
with open(vocab_file, "w") as f:
|
||
|
f.write("\n".join(self.all_tokens))
|
||
|
return (vocab_file,)
|
||
|
|
||
|
@property
|
||
|
def vocab_size(self) -> int:
|
||
|
return len(self.all_tokens)
|