ai-content-maker/.venv/Lib/site-packages/transformers/models/flava/configuration_flava.py

765 lines
36 KiB
Python
Raw Permalink Normal View History

2024-05-03 04:18:51 +03:00
# coding=utf-8
# Copyright 2022 Meta Platforms authors and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" FLAVA model configurations"""
import os
from typing import Any, Dict, Union
from ...configuration_utils import PretrainedConfig
from ...utils import logging
logger = logging.get_logger(__name__)
from ..deprecated._archive_maps import FLAVA_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
class FlavaImageConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`FlavaImageModel`]. It is used to instantiate an
FLAVA model according to the specified arguments, defining the model architecture.
Instantiating a configuration with the defaults will yield a similar configuration to that of the FLAVA
[facebook/flava-full](https://huggingface.co/facebook/flava-full) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
hidden_size (`int`, *optional*, defaults to 768):
Dimensionality of the encoder layers and the pooler layer.
num_hidden_layers (`int`, *optional*, defaults to 12):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
intermediate_size (`int`, *optional*, defaults to 3072):
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"selu"` and `"gelu_new"` are supported.
hidden_dropout_prob (`float`, *optional*, defaults to 0.0):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
The epsilon used by the layer normalization layers.
image_size (`int`, *optional*, defaults to 224):
The size (resolution) of each image.
patch_size (`int`, *optional*, defaults to 16):
The size (resolution) of each patch.
num_channels (`int`, *optional*, defaults to 3):
The number of input channels.
qkv_bias (`bool`, *optional*, defaults to `True`):
Whether to add a bias to the queries, keys and values.
mask_token (`bool`, *optional*, defaults to `True`):
Whether to use a mask token or not. Used in MIM (Masked Image Modeling) loss for FLAVA.
vocab_size (`int`, *optional*, defaults to 8192):
Vocabulary size of the [`FlavaImageCodebook`] used in conjunction with [`FlavaImageModel`] for MIM (Masked
Image Modeling) loss for FLAVA.
Example:
```python
>>> from transformers import FlavaImageConfig, FlavaImageModel
>>> # Initializing a FlavaImageModel with style configuration
>>> configuration = FlavaImageConfig()
>>> # Initializing a FlavaImageModel model (with random weights) from the style configuration
>>> model = FlavaImageModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "flava_image_model"
def __init__(
self,
hidden_size: int = 768,
num_hidden_layers: int = 12,
num_attention_heads: int = 12,
intermediate_size: int = 3072,
hidden_act: int = "gelu",
hidden_dropout_prob: float = 0.0,
attention_probs_dropout_prob: float = 0.0,
initializer_range: float = 0.02,
layer_norm_eps: float = 1e-12,
image_size: int = 224,
patch_size: int = 16,
num_channels: int = 3,
qkv_bias: bool = True,
mask_token: bool = True,
vocab_size: int = 8192,
**kwargs,
):
super().__init__(**kwargs)
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
self.image_size = image_size
self.patch_size = patch_size
self.num_channels = num_channels
self.qkv_bias = qkv_bias
self.mask_token = mask_token
self.vocab_size = vocab_size
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
cls._set_token_in_kwargs(kwargs)
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
# get the image config dict if we are loading from FlavaConfig
if config_dict.get("model_type") == "flava":
config_dict = config_dict["image_config"]
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
logger.warning(
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
)
return cls.from_dict(config_dict, **kwargs)
class FlavaTextConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`FlavaTextModel`]. It is used to instantiate an
FLAVA model according to the specified arguments, defining the model architecture.
Instantiating a configuration with the defaults will yield a similar configuration to that of the FLAVA
[facebook/flava-full](https://huggingface.co/facebook/flava-full) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 30522):
Vocabulary size of the BERT model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`FlavaTextModel`].
type_vocab_size (`int`, *optional*, defaults to 2):
The vocabulary size of the `token_type_ids` passed when calling [`FlavaTextModel`]. Note that even though
text encoder allows `token_type_ids`'s value as 2, for text-only pretraining and fine-tuning, only 1 is
used similar to RoBERTa.
max_position_embeddings (`int`, *optional*, defaults to 512):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048). For VL, max_length passed to model is 77.
position_embedding_type (`str`, *optional*, defaults to `"absolute"`):
Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For
positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to
[Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155).
For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models
with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658).
hidden_size (`int`, *optional*, defaults to 768):
Dimensionality of the encoder layers and the pooler layer.
num_hidden_layers (`int`, *optional*, defaults to 12):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
intermediate_size (`int`, *optional*, defaults to 3072):
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"selu"` and `"gelu_new"` are supported.
hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout ratio for the attention probabilities.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
The epsilon used by the layer normalization layers.
image_size (`int`, *optional*, defaults to 224):
The size (resolution) of each image.
patch_size (`int`, *optional*, defaults to 16):
The size (resolution) of each patch.
num_channels (`int`, *optional*, defaults to 3):
The number of input channels.
qkv_bias (`bool`, *optional*, defaults to `True`):
Whether to add a bias to the queries, keys and values.
Example:
```python
>>> from transformers import FlavaTextConfig, FlavaTextModel
>>> # Initializing a FlavaTextModel with style configuration
>>> configuration = FlavaTextConfig()
>>> # Initializing a FlavaTextModel model (with random weights) from the style configuration
>>> model = FlavaTextModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "flava_text_model"
def __init__(
self,
vocab_size: int = 30522,
type_vocab_size: int = 2,
max_position_embeddings: int = 512,
position_embedding_type: str = "absolute",
hidden_size: int = 768,
num_hidden_layers: int = 12,
num_attention_heads: int = 12,
intermediate_size: int = 3072,
hidden_act: str = "gelu",
hidden_dropout_prob: float = 0.0,
attention_probs_dropout_prob: float = 0.0,
initializer_range: float = 0.02,
layer_norm_eps: float = 1e-12,
pad_token_id: int = 0,
qkv_bias: bool = True,
**kwargs,
):
super().__init__(**kwargs)
self.vocab_size = vocab_size
self.type_vocab_size = type_vocab_size
self.max_position_embeddings = max_position_embeddings
self.position_embedding_type = position_embedding_type
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
self.qkv_bias = qkv_bias
self.pad_token_id = pad_token_id
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
cls._set_token_in_kwargs(kwargs)
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
# get the text config dict if we are loading from FlavaConfig
if config_dict.get("model_type") == "flava":
config_dict = config_dict["text_config"]
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
logger.warning(
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
)
return cls.from_dict(config_dict, **kwargs)
class FlavaMultimodalConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`FlavaMultimodalModel`]. It is used to instantiate
an FLAVA model according to the specified arguments, defining the model architecture.
Instantiating a configuration with the defaults will yield a similar configuration to that of the FLAVA
[facebook/flava-full](https://huggingface.co/facebook/flava-full) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
hidden_size (`int`, *optional*, defaults to 768):
Dimensionality of the encoder layers and the pooler layer.
num_hidden_layers (`int`, *optional*, defaults to 6):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
intermediate_size (`int`, *optional*, defaults to 3072):
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"selu"` and `"gelu_new"` are supported.
hidden_dropout_prob (`float`, *optional*, defaults to 0.0):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
The epsilon used by the layer normalization layers.
qkv_bias (`bool`, *optional*, defaults to `True`):
Whether to add a bias to the queries, keys and values.
use_cls_token (`bool`, *optional*, defaults to `True`):
Whether to use an extra CLS token for multimodal settings. Usually needed by the FLAVA model.
Example:
```python
>>> from transformers import FlavaMultimodalConfig, FlavaMultimodalModel
>>> # Initializing a FlavaMultimodalModel with style configuration
>>> configuration = FlavaMultimodalConfig()
>>> # Initializing a FlavaMultimodalModel model (with random weights) from the style configuration
>>> model = FlavaMultimodalModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "flava_multimodal_model"
def __init__(
self,
hidden_size: int = 768,
num_hidden_layers: int = 6,
num_attention_heads: int = 12,
intermediate_size: int = 3072,
hidden_act: int = "gelu",
hidden_dropout_prob: int = 0.0,
attention_probs_dropout_prob: int = 0.0,
initializer_range: float = 0.02,
layer_norm_eps: float = 1e-12,
qkv_bias: bool = True,
use_cls_token: bool = True,
**kwargs,
):
super().__init__(**kwargs)
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
self.qkv_bias = qkv_bias
self.use_cls_token = use_cls_token
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
cls._set_token_in_kwargs(kwargs)
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
# get the multimodal config dict if we are loading from FlavaConfig
if config_dict.get("model_type") == "flava":
config_dict = config_dict["multimodal_config"]
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
logger.warning(
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
)
return cls.from_dict(config_dict, **kwargs)
class FlavaImageCodebookConfig(PretrainedConfig):
model_type = "flava_image_codebook"
r"""
[`FlavaImageCodebookConfig`] is the configuration class to store the configuration of a [`FlavaImageCodebook`]. It
is used to instantiate an FLAVA model according to the specified arguments, defining the model architecture.
Instantiating a configuration with the defaults will yield a similar configuration to that of the FLAVA
[facebook/flava-image-codebook](https://huggingface.co/facebook/flava-image-codebook) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
num_groups (`int`, defaults to 4):
Number of groups to be created. This parameter as of now doesn't affect the model and is used for some
internal calculation and estimations.
input_channels (`int`, defaults to 3):
Number of channels in the image to be passed.
num_blocks_per_group (`int`, defaults to 2):
Number of conv-based blocks per group.
hidden_size (`int`, defaults to 256):
Size of hidden dim for the blocks.
vocab_size (`int`, defaults to 8192):
Size of the output vocabulary for the codebook.
freeze (`bool`, defaults to `True`):
Whether to freeze the weights of the model.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
kwargs (*optional*):
Dictionary of keyword arguments.
Example:
```python
>>> from transformers import FlavaImageCodebookConfig, FlavaImageCodebook
>>> # Initializing a FlavaImageCodebook with style configuration
>>> configuration = FlavaImageCodebookConfig()
>>> # Initializing a FlavaImageCodebook model (with random weights) from the style configuration
>>> model = FlavaImageCodebook(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```
"""
def __init__(
self,
num_groups: int = 4,
input_channels: int = 3,
num_blocks_per_group: int = 2,
hidden_size: int = 256,
vocab_size: int = 8192,
freeze: int = True,
initializer_range: float = 0.02,
**kwargs,
):
super().__init__(**kwargs)
self.num_groups = num_groups
self.input_channels = input_channels
self.num_blocks_per_group = num_blocks_per_group
self.hidden_size = hidden_size
self.vocab_size = vocab_size
self.freeze = freeze
self.initializer_range = initializer_range
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
cls._set_token_in_kwargs(kwargs)
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
# get the image codebook config dict if we are loading from FlavaConfig
if config_dict.get("model_type") == "flava":
config_dict = config_dict["image_codebook_config"]
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
logger.warning(
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
)
return cls.from_dict(config_dict, **kwargs)
class FlavaConfig(PretrainedConfig):
r"""
[`FlavaConfig`] is the configuration class to store the configuration of a [`FlavaModel`]. It is used to
instantiate FLAVA model according to the specified arguments, defining the text model, image model, image codebook
and multimodal model configs. Instantiating a configuration with the defaults will yield a similar configuration to
that of the FLAVA [facebook/flava-full](https://huggingface.co/facebook/flava-full) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
text_config (`dict`, *optional*):
Dictionary of configuration options used to initialize [`FlavaTextConfig`].
image_config (`dict`, *optional*):
Dictionary of configuration options used to initialize [`FlavaImageConfig`].
multimodal_config (`dict`, *optional*):
Dictionary of configuration options used to initialize [`FlavaMultimodalConfig`].
hidden_size (`int`, *optional*, defaults to 768):
Dimensionality of the encoder layers and the pooler layer.
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
The epsilon used by the layer normalization layers.
projection_dim (`int`, *optional*, defaults to 512):
Dimentionality of text and image projection layers.
logit_scale_init_value (`float`, *optional*, defaults to 2.6592):
The inital value of the *logit_scale* paramter. Default is used as per the original FLAVA/CLIP
implementation.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
ce_ignore_index (`int`, *optional*, defaults to -100):
Cross entropy index to ignore.
mim_weight (`float`, *optional*, defaults to 1.0):
Weight to be assigned to MIM (Masked Image Modeling) unimodal loss
mlm_weight (`float`, *optional*, defaults to 1.0):
Weight to be assigned to MLM (Masked Language Modeling) unimodal loss
global_contrastive_weight (`float`, *optional*, defaults to 1.0):
Weight to be assigned to global contrastive cross-alignment loss.
itm_weight (`float`, *optional*, defaults to 1.0):
Weight to be assigned to image-text matching multimodal loss.
mmm_image_weight (`float`, *optional*, defaults to 1.0):
Weight to be assigned to MMM loss's image part.
mmm_text_weight (`float`, *optional*, defaults to 1.0):
Weight to be assigned to MMM loss's text part.
global_backprop_contrastive (`bool`, *optional*, defaults to `True`):
Whether to use global backpropgation through all workers in contrastive loss.
skip_unmasked_multimodal_encoder (`bool`, *optional*, defaults to `True`):
Whether to skip running unmasked multimodal encoder whose outputs are not used by FLAVA losses.
return_loss (`bool`, *optional*, defaults to `True`):
Whether to return loss or not
kwargs (*optional*):
Dictionary of keyword arguments.
Example:
```python
>>> from transformers import FlavaConfig, FlavaModel, FlavaForPreTraining
>>> # Initializing a FlavaConfig with style configuration
>>> configuration = FlavaConfig()
>>> # Initializing a FlavaModel and FlavaForPreTraining model (with random weights) from the style configuration
>>> model = FlavaModel(configuration)
>>> model_pre = FlavaForPreTraining(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
>>> configuration_pre = model_pre.config
```
"""
model_type = "flava"
def __init__(
self,
image_config: Dict[str, Any] = None,
text_config: Dict[str, Any] = None,
multimodal_config: Dict[str, Any] = None,
image_codebook_config: Dict[str, Any] = None,
hidden_size: int = 768,
layer_norm_eps: float = 1e-12,
projection_dim: int = 768,
init_codebook: bool = True,
logit_scale_init_value: float = 2.6592,
initializer_range: float = 0.02,
ce_ignore_index: int = -100,
mim_weight: float = 1.0,
mlm_weight: float = 1.0,
global_contrastive_weight: float = 1.0,
itm_weight: float = 1.0,
mmm_image_weight: float = 1.0,
mmm_text_weight: float = 1.0,
global_backprop_contrastive: bool = True,
skip_unmasked_multimodal_encoder: bool = True,
return_loss: bool = True,
**kwargs,
):
# If `_config_dict` exist, we use them for the backward compatibility.
# We pop out these 2 attributes before calling `super().__init__` to avoid them being saved (which causes a lot
# of confusion!).
text_config_dict = kwargs.pop("text_config_dict", None)
image_config_dict = kwargs.pop("image_config_dict", None)
multimodal_config_dict = kwargs.pop("multimodal_config_dict", None)
image_codebook_config_dict = kwargs.pop("image_codebook_config_dict", None)
super().__init__(**kwargs)
# Instead of simply assigning `[text|vision]_config_dict` to `[text|vision]_config`, we use the values in
# `[text|vision]_config_dict` to update the values in `[text|vision]_config`. The values should be same in most
# cases, but we don't want to break anything regarding `_config_dict` that existed before commit `8827e1b2`.
if text_config_dict is not None:
if text_config is None:
text_config = {}
# This is the complete result when using `text_config_dict`.
_text_config_dict = FlavaTextConfig(**text_config_dict).to_dict()
# Give a warning if the values exist in both `_text_config_dict` and `text_config` but being different.
for key, value in _text_config_dict.items():
if key in text_config and value != text_config[key] and key not in ["transformers_version"]:
# If specified in `text_config_dict`
if key in text_config_dict:
message = (
f"`{key}` is found in both `text_config_dict` and `text_config` but with different values. "
f'The value `text_config_dict["{key}"]` will be used instead.'
)
# If inferred from default argument values (just to be super careful)
else:
message = (
f"`text_config_dict` is provided which will be used to initialize `FlavaTextConfig`. The "
f'value `text_config["{key}"]` will be overriden.'
)
logger.info(message)
# Update all values in `text_config` with the ones in `_text_config_dict`.
text_config.update(_text_config_dict)
if image_config_dict is not None:
if image_config is None:
image_config = {}
# This is the complete result when using `image_config_dict`.
_image_config_dict = FlavaImageConfig(**image_config_dict).to_dict()
# convert keys to string instead of integer
if "id2label" in _image_config_dict:
_image_config_dict["id2label"] = {
str(key): value for key, value in _image_config_dict["id2label"].items()
}
# Give a warning if the values exist in both `_image_config_dict` and `image_config` but being different.
for key, value in _image_config_dict.items():
if key in image_config and value != image_config[key] and key not in ["transformers_version"]:
# If specified in `image_config_dict`
if key in image_config_dict:
message = (
f"`{key}` is found in both `image_config_dict` and `image_config` but with different "
f'values. The value `image_config_dict["{key}"]` will be used instead.'
)
# If inferred from default argument values (just to be super careful)
else:
message = (
f"`image_config_dict` is provided which will be used to initialize `FlavaImageConfig`. "
f'The value `image_config["{key}"]` will be overriden.'
)
logger.info(message)
# Update all values in `image_config` with the ones in `_image_config_dict`.
image_config.update(_image_config_dict)
if multimodal_config_dict is not None:
if multimodal_config is None:
multimodal_config = {}
# This is the complete result when using `multimodal_config_dict`.
_multimodal_config_dict = FlavaMultimodalConfig(**multimodal_config_dict).to_dict()
# Give a warning if the values exist in both `_multimodal_config_dict` and `multimodal_config` but being
# different.
for key, value in _multimodal_config_dict.items():
if (
key in multimodal_config
and value != multimodal_config[key]
and key not in ["transformers_version"]
):
# If specified in `multimodal_config_dict`
if key in multimodal_config_dict:
message = (
f"`{key}` is found in both `multimodal_config_dict` and `multimodal_config` but with "
f'different values. The value `multimodal_config_dict["{key}"]` will be used instead.'
)
# If inferred from default argument values (just to be super careful)
else:
message = (
f"`multimodal_config_dict` is provided which will be used to initialize "
f'`FlavaMultimodalConfig`. The value `multimodal_config["{key}"]` will be overriden.'
)
logger.info(message)
# Update all values in `multimodal_config` with the ones in `_multimodal_config_dict`.
multimodal_config.update(_multimodal_config_dict)
if image_codebook_config_dict is not None:
if image_codebook_config is None:
image_codebook_config = {}
# This is the complete result when using `image_codebook_config_dict`.
_image_codebook_config_dict = FlavaImageCodebookConfig(**image_codebook_config_dict).to_dict()
# Give a warning if the values exist in both `_image_codebook_config_dict` and `image_codebook_config` but
# being different.
for key, value in _image_codebook_config_dict.items():
if (
key in image_codebook_config
and value != image_codebook_config[key]
and key not in ["transformers_version"]
):
# If specified in `image_codebook_config_dict`
if key in image_codebook_config_dict:
message = (
f"`{key}` is found in both `image_codebook_config_dict` and `image_codebook_config` but "
f'with different values. The value `image_codebook_config_dict["{key}"]` will be used '
"instead."
)
# If inferred from default argument values (just to be super careful)
else:
message = (
f"`image_codebook_config_dict` is provided which will be used to initialize "
f'`FlavaImageCodebookConfig`. The value `image_codebook_config["{key}"]` will be overriden.'
)
logger.info(message)
# Update all values in `image_codebook_config` with the ones in `_image_codebook_config_dict`.
image_codebook_config.update(_image_codebook_config_dict)
if image_config is None:
image_config = {}
logger.info("`image_config` is `None`. initializing the `FlavaImageConfig` with default values.")
if text_config is None:
text_config = {}
logger.info("`text_config` is `None`. Initializing the `FlavaTextConfig` with default values.")
if multimodal_config is None:
multimodal_config = {}
logger.info("`multimodal_config` is `None`. initializing the `FlavaMultimodalConfig` with default values.")
if image_codebook_config is None:
image_codebook_config = {}
logger.info(
"`image_codebook_config` is `None`. initializing the `FlavaImageCodebookConfig` with default values."
)
self.image_config = FlavaImageConfig(**image_config)
self.text_config = FlavaTextConfig(**text_config)
self.multimodal_config = FlavaMultimodalConfig(**multimodal_config)
self.image_codebook_config = FlavaImageCodebookConfig(**image_codebook_config)
self.projection_dim = projection_dim
self.init_codebook = init_codebook
self.hidden_size = hidden_size
self.layer_norm_eps = layer_norm_eps
self.initializer_range = initializer_range
self.logit_scale_init_value = logit_scale_init_value
self.initializer_factor = 1.0
self.ce_ignore_index = ce_ignore_index
self.mim_weight = mim_weight
self.mlm_weight = mlm_weight
self.global_contrastive_weight = global_contrastive_weight
self.itm_weight = itm_weight
self.mmm_image_weight = mmm_image_weight
self.mmm_text_weight = mmm_text_weight
self.global_backprop_contrastive = global_backprop_contrastive
self.skip_unmasked_multimodal_encoder = skip_unmasked_multimodal_encoder
self.return_loss = return_loss
@classmethod
def from_configs(
cls,
image_config: FlavaImageConfig,
text_config: FlavaTextConfig,
multimodal_config: FlavaMultimodalConfig,
image_codebook_config: FlavaImageCodebookConfig,
**kwargs,
):
r"""
Instantiate a [`FlavaConfig`] (or a derived class) from flava text model configuration, flava image model
configuration, flava multimodal model and flava codebook model configuration.
Returns:
[`FlavaConfig`]: An instance of a configuration object
"""
return cls(
image_config=image_config.to_dict(),
text_config=text_config.to_dict(),
multimodal_config=multimodal_config.to_dict(),
image_codebook_config=image_codebook_config.to_dict(),
**kwargs,
)