2099 lines
94 KiB
Python
2099 lines
94 KiB
Python
|
# coding=utf-8
|
||
|
# Copyright 2022 Meta Platforms authors and The HuggingFace Team. All rights reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
""" PyTorch FLAVA model."""
|
||
|
|
||
|
import collections
|
||
|
import math
|
||
|
from collections import OrderedDict
|
||
|
from dataclasses import dataclass
|
||
|
from typing import Any, Dict, List, Optional, Set, Tuple, Union
|
||
|
|
||
|
import torch
|
||
|
import torch.utils.checkpoint
|
||
|
from torch import nn
|
||
|
|
||
|
from ...activations import ACT2FN
|
||
|
from ...modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling
|
||
|
from ...modeling_utils import PreTrainedModel, find_pruneable_heads_and_indices, prune_linear_layer
|
||
|
from ...utils import (
|
||
|
ModelOutput,
|
||
|
add_code_sample_docstrings,
|
||
|
add_start_docstrings,
|
||
|
add_start_docstrings_to_model_forward,
|
||
|
logging,
|
||
|
replace_return_docstrings,
|
||
|
)
|
||
|
from .configuration_flava import (
|
||
|
FlavaConfig,
|
||
|
FlavaImageCodebookConfig,
|
||
|
FlavaImageConfig,
|
||
|
FlavaMultimodalConfig,
|
||
|
FlavaTextConfig,
|
||
|
)
|
||
|
|
||
|
|
||
|
logger = logging.get_logger(__name__)
|
||
|
|
||
|
_CHECKPOINT_FOR_DOC = "facebook/flava-full"
|
||
|
|
||
|
# Codebook docstring
|
||
|
_CHECKPOINT_FOR_CODEBOOK_DOC = "facebook/flava-image-codebook"
|
||
|
_CONFIG_CLASS_FOR_IMAGE_MODEL_DOC = "FlavaImageConfig"
|
||
|
_CONFIG_CLASS_FOR_TEXT_MODEL_DOC = "FlavaTextConfig"
|
||
|
_CONFIG_CLASS_FOR_MULTIMODAL_MODEL_DOC = "FlavaMultimodalConfig"
|
||
|
_EXPECTED_IMAGE_OUTPUT_SHAPE = [1, 197, 768]
|
||
|
|
||
|
from ..deprecated._archive_maps import FLAVA_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
|
||
|
|
||
|
|
||
|
FLAVA_CODEBOOK_PRETRAINED_MODEL_ARCHIVE_LIST = ["facebook/flava-image-codebook"]
|
||
|
LOGIT_SCALE_CLAMP_MIN = 0
|
||
|
LOGIT_SCALE_CLAMP_MAX = 4.6052
|
||
|
|
||
|
FlavaPossibleConfigs = Union[FlavaTextConfig, FlavaImageConfig, FlavaMultimodalConfig]
|
||
|
|
||
|
|
||
|
@dataclass
|
||
|
class FlavaModelOutput(ModelOutput):
|
||
|
"""
|
||
|
Output from FlavaModel containing embeddings and outputs from individual encoders.
|
||
|
|
||
|
Note that `image_embeddings` and `text_embeddigns` returned are similar to pooled output returned from a
|
||
|
transformer. If you want embeddings for contrastive loss or retrieval use a FLAVA model's `image_projection` and
|
||
|
`text_projection` layers on `image_embeddings` and `text_embeddings` respectively.
|
||
|
|
||
|
Args:
|
||
|
image_embeddings (`torch.FloatTensor` of shape `(batch_size, output_dim)`, *optional*, returned when `pixel_values` are present):
|
||
|
The image embeddings which are basically the pooled output of [`FlavaImageModel`].
|
||
|
image_output (`BaseModelOutputWithPooling`, *optional*, returned when `pixel_values` are present):
|
||
|
The output of the [`FlavaImageModel`].
|
||
|
text_embeddings (`torch.FloatTensor` of shape `(batch_size, output_dim)`, *optional*, returned when `input_ids` are present):
|
||
|
The text embeddings which are basically the pooled output of [`FlavaTextModel`].
|
||
|
text_output (`BaseModelOutputWithPooling`, *optional*, returned when `input_ids` are present):
|
||
|
The output of the [`FlavaTextModel`].
|
||
|
multimodal_embeddings (`torch.FloatTensor` of shape `(batch_size, output_dim)`, *optional*, returned when `input_ids` and `pixel_values` are present and `skip_multimodal_encoder` is `None` or `False`):
|
||
|
The multimodal embeddings which are basically the pooled output of [`FlavaTextModel`].
|
||
|
multimodal_output (`BaseModelOutputWithPooling`, returned when `input_ids` and `pixel_values` are present and `skip_multimodal_encoder` is `None` or `False`):
|
||
|
The output of the [`FlavaMultimodalModel`].
|
||
|
"""
|
||
|
|
||
|
image_embeddings: Optional[torch.FloatTensor] = None
|
||
|
image_output: Optional[BaseModelOutputWithPooling] = None
|
||
|
text_embeddings: Optional[torch.FloatTensor] = None
|
||
|
text_output: Optional[BaseModelOutputWithPooling] = None
|
||
|
multimodal_embeddings: Optional[torch.FloatTensor] = None
|
||
|
multimodal_output: Optional[BaseModelOutputWithPooling] = None
|
||
|
|
||
|
def to_tuple(self) -> Tuple[Any]:
|
||
|
return tuple(
|
||
|
self[k] if k not in ["text_output", "image_output", "multimodal_output"] else getattr(self, k).to_tuple()
|
||
|
for k in self.keys()
|
||
|
)
|
||
|
|
||
|
|
||
|
@dataclass
|
||
|
class FlavaLosses(ModelOutput):
|
||
|
"""Class representing pretraining losses from FLAVA model
|
||
|
|
||
|
Args:
|
||
|
mim (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `mim_labels` and `pixel_values` are present, `input_ids_masked` is absent and `mim_weight` > 0.:
|
||
|
Masked Image Modeling loss as used in BeIT calculated only for unimodal image data.
|
||
|
mlm (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `mlm_labels` and `input_ids_masked` are present, `pixel_values` is absent and `mlm_weight` > 0.:
|
||
|
Masked Language Modeling loss as used in BERT calculated only for unimodal text data.
|
||
|
itm (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `itm_labels`, `input_ids_masked`, `pixel_values` are present and `itm_weight` > 0.:
|
||
|
Image Text Matching (ITM) loss calculated for paired image-text data. Note that ITM loss is calculated on
|
||
|
masked pairs in FLAVA.
|
||
|
global_contrastive (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `input_ids` and `pixel_values` are present and `global_contrastive_weight` > 0.:
|
||
|
Contrastive loss for image-text similarity similar to CLIP but calculated globally for paired image-text
|
||
|
data. This is calculated on unmasked images and texts.
|
||
|
mmm_image (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `mim_labels`, `pixel_values` and `input_ids_masked` are present and `mmm_image_weight` > 0.:
|
||
|
Masked Multimodal Modeling loss's image component calculated on paired image-text data.
|
||
|
mmm_text (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `mlm_labels`, `pixel_values` and `input_ids_masked` are present and `mmm_text_weight` > 0.:
|
||
|
Masked Multimodal Modeling loss's text component calculated on paired image-text data.
|
||
|
"""
|
||
|
|
||
|
mim: Optional[torch.FloatTensor] = None
|
||
|
mlm: Optional[torch.FloatTensor] = None
|
||
|
itm: Optional[torch.FloatTensor] = None
|
||
|
global_contrastive: Optional[torch.FloatTensor] = None
|
||
|
mmm_image: Optional[torch.FloatTensor] = None
|
||
|
mmm_text: Optional[torch.FloatTensor] = None
|
||
|
|
||
|
def all_none(self) -> bool:
|
||
|
all_none = True
|
||
|
for v in self.values():
|
||
|
if v is not None:
|
||
|
all_none = False
|
||
|
break
|
||
|
return all_none
|
||
|
|
||
|
|
||
|
@dataclass
|
||
|
class FlavaForPreTrainingOutput(ModelOutput):
|
||
|
"""
|
||
|
Output from FlavaForPreTraining containing embeddings, and outputs from individual encoders.
|
||
|
|
||
|
Note that `image_embeddings` and `text_embeddings` returned are similar to pooled output returned from a
|
||
|
transformer. If you want embeddings for contrastive loss or retrieval use a FLAVA model's `image_projection` and
|
||
|
`text_projection` layers on `image_embeddings` and `text_embeddings` respectively.
|
||
|
|
||
|
Args:
|
||
|
loss (`torch.FloatTensor`, *optional*, returned when `return_loss` is True):
|
||
|
Total loss calculated for this model.
|
||
|
loss_info (`FlavaLosses`):
|
||
|
Detailed info for FLAVA Pretraining losses. Check `FlavaLosses` class description for the information on
|
||
|
the keys.
|
||
|
image_embeddings (`torch.FloatTensor` of shape `(batch_size, output_dim)`, *optional*, returned when `pixel_values` are present):
|
||
|
The image embeddings which are basically the pooled output of [`FlavaImageModel`].
|
||
|
image_output (`BaseModelOutputWithPooling`, *optional*, returned when `pixel_values` are present):
|
||
|
The output of the [`FlavaImageModel`].
|
||
|
text_embeddings (`torch.FloatTensor` of shape `(batch_size, output_dim)`, *optional*, returned when `input_ids` are present):
|
||
|
The text embeddings which are basically the pooled output of [`FlavaTextModel`].
|
||
|
text_output (`BaseModelOutputWithPooling`, *optional*, returned when `input_ids` are present):
|
||
|
The output of the [`FlavaTextModel`].
|
||
|
multimodal_embeddings (`torch.FloatTensor` of shape `(batch_size, output_dim)`, *optional*, returned when `input_ids` and `pixel_values` are present and `skip_unmasked_multimodal_encoder` is `None` or `False`):
|
||
|
The multimodal embeddings which are basically the pooled output of [`FlavaTextModel`].
|
||
|
multimodal_output (`BaseModelOutputWithPooling`, returned when `input_ids` and `pixel_values` are present and `skip_unmasked_multimodal_encoder` is `None` or `False`):
|
||
|
The output of the [`FlavaMultimodalModel`].
|
||
|
|
||
|
image_masked_embeddings (`torch.FloatTensor` of shape `(batch_size, output_dim)`, *optional*, returned when `pixel_values` are present):
|
||
|
The image embeddings which are basically the pooled output of [`FlavaImageModel`]. Uses `bool_masked_pos`
|
||
|
to create masked images.
|
||
|
image_masked_output (`BaseModelOutputWithPooling`, *optional*, returned when `pixel_values` are present):
|
||
|
The output of the [`FlavaImageModel`]. Uses `bool_masked_pos` to create masked images.
|
||
|
text_masked_embeddings (`torch.FloatTensor` of shape `(batch_size, output_dim)`, *optional*, returned when `input_ids_masked` are present):
|
||
|
The text embeddings which are basically the pooled output of [`FlavaTextModel`].
|
||
|
text_masked_output (`BaseModelOutputWithPooling`, *optional*, returned when `input_ids_masked` are present):
|
||
|
The output of the [`FlavaTextModel`].
|
||
|
multimodal_masked_embeddings (`torch.FloatTensor` of shape `(batch_size, output_dim)`, *optional*, returned when `input_ids` and `pixel_values` are present):
|
||
|
The multimodal embeddings which are basically the pooled output of [`FlavaTextModel`].
|
||
|
multimodal_masked_output (`BaseModelOutputWithPooling`, returned when `input_ids_masked` and `pixel_values` are present):
|
||
|
The output of the [`FlavaMultimodalModel`].
|
||
|
|
||
|
mim_logits (`torch.FloatTensor` of shape `(batch_size, num_image_patches, image_vocab_size)` or of shape `(total_masked_patches, image_vocab_size)` , *optional*, returned when `pixel_values` are present and `input_ids_masked` are not):
|
||
|
The logits for MIM unimodal loss. Uses `book_masked_pos` to get masked patches. The flattened output is
|
||
|
returned when `bool_masked_pos` has some of the patches masked.
|
||
|
mlm_logits (`torch.FloatTensor` of shape `(batch_size, text_seq_length, text_vocab_size)` or of shape `(total_masked_seq_length, text_vocab_size)`, *optional*, returned when `input_ids_masked` are present and `pixel_values` are not):
|
||
|
The logits for MLM unimodal loss. The flattened output is returned when `input_ids_masked` has some of
|
||
|
the tokens masked.
|
||
|
itm_logits (`torch.FloatTensor` of shape `(batch_size, 2)`, *optional*, returned when `input_ids_masked` and `pixel_values` are present):
|
||
|
The logits for ITM loss. Note that ITM loss is calculated on masked pairs in FLAVA.
|
||
|
mmm_image_logits (`torch.FloatTensor` of shape `(batch_size, num_image_patches, image_vocab_size)` or of shape`(total_masked_patches, image_vocab_size)`, *optional*, returned when `pixel_values` and `input_ids_masked` are present):
|
||
|
The logits for MMM image multimodal loss. Uses `book_masked_pos` to get masked patches. The flattened
|
||
|
output is returned when `bool_masked_pos` has some of the patches masked.
|
||
|
mmm_text_logits (`torch.FloatTensor` of shape `(batch_size, text_seq_length, text_vocab_size)` or of shape `(`(total_masked_seq_length, text_vocab_size)`), *optional*, returned when `pixel_values` and `input_ids_masked` are present):
|
||
|
The logits for MMM text multimodal loss. The flattened output is returned when `input_ids_masked` has
|
||
|
some of the tokens masked.
|
||
|
contrastive_logits_per_image (`torch.FloatTensor` of shape `(image_batch_size, text_batch_size)`):
|
||
|
The scaled dot product scores between `image_embeddings` and `text_embeddings` but passed through FLAVA's
|
||
|
`image_projection` and `text_projection` layers respectively. This represents the image-text similarity
|
||
|
scores. This is calculated on unmasked images and texts.
|
||
|
contrastive_logits_per_text (`torch.FloatTensor` of shape `(text_batch_size, image_batch_size)`):
|
||
|
The scaled dot product scores between `text_embeddings` and `image_embeddings` but passed through FLAVA's
|
||
|
`text_projection` and `image_projection` layers respectively. This is calculated on unmasked images and
|
||
|
texts.
|
||
|
"""
|
||
|
|
||
|
loss: Optional[torch.FloatTensor] = None
|
||
|
loss_info: FlavaLosses = None
|
||
|
image_embeddings: Optional[torch.FloatTensor] = None
|
||
|
image_output: Optional[BaseModelOutputWithPooling] = None
|
||
|
text_embeddings: Optional[torch.FloatTensor] = None
|
||
|
text_output: Optional[BaseModelOutputWithPooling] = None
|
||
|
multimodal_embeddings: Optional[torch.FloatTensor] = None
|
||
|
multimodal_output: Optional[BaseModelOutputWithPooling] = None
|
||
|
image_masked_embeddings: Optional[torch.FloatTensor] = None
|
||
|
image_masked_output: Optional[BaseModelOutputWithPooling] = None
|
||
|
text_masked_embeddings: Optional[torch.FloatTensor] = None
|
||
|
text_masked_output: Optional[BaseModelOutputWithPooling] = None
|
||
|
multimodal_masked_embeddings: Optional[torch.FloatTensor] = None
|
||
|
multimodal_masked_output: Optional[BaseModelOutputWithPooling] = None
|
||
|
mim_logits: Optional[torch.FloatTensor] = None
|
||
|
mlm_logits: Optional[torch.FloatTensor] = None
|
||
|
itm_logits: Optional[torch.FloatTensor] = None
|
||
|
contrastive_logits_per_image: Optional[torch.FloatTensor] = None
|
||
|
contrastive_logits_per_text: Optional[torch.FloatTensor] = None
|
||
|
mmm_image_logits: Optional[torch.FloatTensor] = None
|
||
|
mmm_text_logits: Optional[torch.FloatTensor] = None
|
||
|
|
||
|
def to_tuple(self) -> Tuple[Any]:
|
||
|
transformer_outputs = [
|
||
|
"text_output",
|
||
|
"image_output",
|
||
|
"multimodal_output",
|
||
|
"text_masked_output",
|
||
|
"image_masked_output",
|
||
|
"multimodal_masked_output",
|
||
|
]
|
||
|
return tuple(self[k] if k not in transformer_outputs else getattr(self, k).to_tuple() for k in self.keys())
|
||
|
|
||
|
|
||
|
# Based on timm implementation, which can be found here:
|
||
|
# https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/image_transformer.py
|
||
|
class FlavaImageEmbeddings(nn.Module):
|
||
|
"""
|
||
|
Construct the CLS token, position and patch embeddings. Optionally, also the mask token.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, config: FlavaImageConfig, use_mask_token: bool = False) -> None:
|
||
|
super().__init__()
|
||
|
|
||
|
use_mask_token = use_mask_token or config.mask_token
|
||
|
self.cls_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size))
|
||
|
self.mask_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size)) if use_mask_token else None
|
||
|
self.patch_embeddings = PatchEmbeddings(
|
||
|
image_size=config.image_size,
|
||
|
patch_size=config.patch_size,
|
||
|
num_channels=config.num_channels,
|
||
|
embed_dim=config.hidden_size,
|
||
|
)
|
||
|
num_patches = self.patch_embeddings.num_patches
|
||
|
self.position_embeddings = nn.Parameter(torch.zeros(1, num_patches + 1, config.hidden_size))
|
||
|
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
||
|
self.config = config
|
||
|
|
||
|
def interpolate_pos_encoding(self, embeddings: torch.Tensor, height: int, width: int) -> torch.Tensor:
|
||
|
"""
|
||
|
This method allows to interpolate the pre-trained position encodings, to be able to use the model on higher
|
||
|
resolution images.
|
||
|
|
||
|
Source:
|
||
|
https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/image_transformer.py#L174
|
||
|
"""
|
||
|
|
||
|
npatch = embeddings.shape[1] - 1
|
||
|
num_pos = self.position_embeddings.shape[1] - 1
|
||
|
if npatch == num_pos and height == width:
|
||
|
return self.position_embeddings
|
||
|
class_pos_embed = self.position_embeddings[:, 0]
|
||
|
patch_pos_embed = self.position_embeddings[:, 1:]
|
||
|
dim = embeddings.shape[-1]
|
||
|
num_h_patches = height // self.config.patch_size
|
||
|
num_w_patches = width // self.config.patch_size
|
||
|
# we add a small number to avoid floating point error in the interpolation
|
||
|
# see discussion at https://github.com/facebookresearch/dino/issues/8
|
||
|
num_h_patches, num_w_patches = num_h_patches + 0.1, num_w_patches + 0.1
|
||
|
patch_pos_embed = nn.functional.interpolate(
|
||
|
patch_pos_embed.reshape(1, int(math.sqrt(num_pos)), int(math.sqrt(num_pos)), dim).permute(0, 3, 1, 2),
|
||
|
scale_factor=(num_h_patches / math.sqrt(num_pos), num_w_patches / math.sqrt(num_pos)),
|
||
|
mode="bicubic",
|
||
|
align_corners=False,
|
||
|
)
|
||
|
if int(num_h_patches) != patch_pos_embed.shape[-2] or int(num_w_patches) != patch_pos_embed.shape[-1]:
|
||
|
raise ValueError(
|
||
|
f"Number of patches for images ({int(num_h_patches), int(num_w_patches)}) don't match the "
|
||
|
f"shape of position embedding ({patch_pos_embed.shape[-2], patch_pos_embed.shape[-1]})"
|
||
|
)
|
||
|
patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim)
|
||
|
return torch.cat((class_pos_embed.unsqueeze(0), patch_pos_embed), dim=1)
|
||
|
|
||
|
def forward(
|
||
|
self,
|
||
|
pixel_values: torch.Tensor,
|
||
|
bool_masked_pos: Optional[torch.BoolTensor] = None,
|
||
|
interpolate_pos_encoding: bool = False,
|
||
|
) -> torch.Tensor:
|
||
|
batch_size, num_channels, height, width = pixel_values.shape
|
||
|
embeddings = self.patch_embeddings(pixel_values, interpolate_pos_encoding=interpolate_pos_encoding)
|
||
|
|
||
|
batch_size, seq_len, _ = embeddings.size()
|
||
|
if bool_masked_pos is not None:
|
||
|
mask_tokens = self.mask_token.expand(batch_size, seq_len, -1)
|
||
|
# B X H X W = B X HW
|
||
|
if bool_masked_pos.dim() == 3:
|
||
|
bool_masked_pos = bool_masked_pos.view(bool_masked_pos.size(0), -1)
|
||
|
# replace the masked visual tokens by mask_tokens
|
||
|
mask = bool_masked_pos.unsqueeze(-1).type_as(mask_tokens)
|
||
|
embeddings = embeddings * (1.0 - mask) + mask_tokens * mask
|
||
|
|
||
|
# add the [CLS] token to the embedded patch tokens
|
||
|
cls_tokens = self.cls_token.expand(batch_size, -1, -1)
|
||
|
embeddings = torch.cat((cls_tokens, embeddings), dim=1)
|
||
|
|
||
|
# add positional encoding to each token
|
||
|
if interpolate_pos_encoding:
|
||
|
embeddings = embeddings + self.interpolate_pos_encoding(embeddings, height, width)
|
||
|
else:
|
||
|
embeddings = embeddings + self.position_embeddings
|
||
|
|
||
|
embeddings = self.dropout(embeddings)
|
||
|
|
||
|
return embeddings
|
||
|
|
||
|
|
||
|
# Based on timm implementation, which can be found here:
|
||
|
# https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/image_transformer.py
|
||
|
class PatchEmbeddings(nn.Module):
|
||
|
"""
|
||
|
Image to Patch Embedding.
|
||
|
"""
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
image_size: int = 224,
|
||
|
patch_size: Union[int, Tuple[int, int]] = 16,
|
||
|
num_channels: int = 3,
|
||
|
embed_dim: int = 768,
|
||
|
):
|
||
|
super().__init__()
|
||
|
if not isinstance(image_size, collections.abc.Iterable):
|
||
|
image_size = (image_size, image_size)
|
||
|
if not isinstance(patch_size, collections.abc.Iterable):
|
||
|
patch_size = (patch_size, patch_size)
|
||
|
num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
|
||
|
self.image_size = image_size
|
||
|
self.patch_size = patch_size
|
||
|
self.num_patches = num_patches
|
||
|
|
||
|
self.projection = nn.Conv2d(num_channels, embed_dim, kernel_size=patch_size, stride=patch_size)
|
||
|
|
||
|
def forward(self, pixel_values: torch.Tensor, interpolate_pos_encoding: bool = False) -> torch.Tensor:
|
||
|
batch_size, num_channels, height, width = pixel_values.shape
|
||
|
if not interpolate_pos_encoding:
|
||
|
if height != self.image_size[0] or width != self.image_size[1]:
|
||
|
raise ValueError(
|
||
|
f"Input image size ({height}*{width}) doesn't match model"
|
||
|
f" ({self.image_size[0]}*{self.image_size[1]})."
|
||
|
)
|
||
|
x = self.projection(pixel_values).flatten(2).transpose(1, 2)
|
||
|
return x
|
||
|
|
||
|
|
||
|
class FlavaTextEmbeddings(nn.Module):
|
||
|
"""Construct the embeddings from word, position and token_type embeddings."""
|
||
|
|
||
|
def __init__(self, config):
|
||
|
super().__init__()
|
||
|
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
|
||
|
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
|
||
|
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
|
||
|
|
||
|
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
|
||
|
# any TensorFlow checkpoint file
|
||
|
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
||
|
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
||
|
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
|
||
|
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
|
||
|
self.register_buffer(
|
||
|
"position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
|
||
|
)
|
||
|
self.register_buffer(
|
||
|
"token_type_ids", torch.zeros(self.position_ids.size(), dtype=torch.long), persistent=False
|
||
|
)
|
||
|
|
||
|
def forward(
|
||
|
self,
|
||
|
input_ids: Optional[torch.Tensor] = None,
|
||
|
token_type_ids: Optional[torch.Tensor] = None,
|
||
|
position_ids: Optional[torch.Tensor] = None,
|
||
|
):
|
||
|
input_shape = input_ids.size()
|
||
|
seq_length = input_shape[1]
|
||
|
|
||
|
if position_ids is None:
|
||
|
position_ids = self.position_ids[:, :seq_length]
|
||
|
|
||
|
# Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs
|
||
|
# when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves
|
||
|
# issue #5664
|
||
|
if token_type_ids is None:
|
||
|
if hasattr(self, "token_type_ids"):
|
||
|
buffered_token_type_ids = self.token_type_ids[:, :seq_length]
|
||
|
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length)
|
||
|
token_type_ids = buffered_token_type_ids_expanded
|
||
|
else:
|
||
|
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
|
||
|
|
||
|
inputs_embeds = self.word_embeddings(input_ids)
|
||
|
token_type_embeddings = self.token_type_embeddings(token_type_ids)
|
||
|
|
||
|
embeddings = inputs_embeds + token_type_embeddings
|
||
|
if self.position_embedding_type == "absolute":
|
||
|
position_embeddings = self.position_embeddings(position_ids)
|
||
|
embeddings += position_embeddings
|
||
|
embeddings = self.LayerNorm(embeddings)
|
||
|
embeddings = self.dropout(embeddings)
|
||
|
return embeddings
|
||
|
|
||
|
|
||
|
class FlavaSelfAttention(nn.Module):
|
||
|
def __init__(self, config: FlavaPossibleConfigs) -> None:
|
||
|
super().__init__()
|
||
|
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
|
||
|
raise ValueError(
|
||
|
f"The hidden size {config.hidden_size,} is not a multiple of the number of attention "
|
||
|
f"heads {config.num_attention_heads}."
|
||
|
)
|
||
|
|
||
|
self.num_attention_heads = config.num_attention_heads
|
||
|
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
|
||
|
self.all_head_size = self.num_attention_heads * self.attention_head_size
|
||
|
|
||
|
self.query = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias)
|
||
|
self.key = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias)
|
||
|
self.value = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias)
|
||
|
|
||
|
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
|
||
|
|
||
|
def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor:
|
||
|
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
|
||
|
x = x.view(*new_x_shape)
|
||
|
return x.permute(0, 2, 1, 3)
|
||
|
|
||
|
def forward(
|
||
|
self,
|
||
|
hidden_states: torch.Tensor,
|
||
|
attention_mask: Optional[torch.Tensor] = None,
|
||
|
head_mask: Optional[torch.Tensor] = None,
|
||
|
output_attentions: bool = False,
|
||
|
) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]:
|
||
|
mixed_query_layer = self.query(hidden_states)
|
||
|
|
||
|
key_layer = self.transpose_for_scores(self.key(hidden_states))
|
||
|
value_layer = self.transpose_for_scores(self.value(hidden_states))
|
||
|
query_layer = self.transpose_for_scores(mixed_query_layer)
|
||
|
|
||
|
# Take the dot product between "query" and "key" to get the raw attention scores.
|
||
|
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
|
||
|
|
||
|
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
|
||
|
if attention_mask is not None:
|
||
|
# Apply the attention mask is (precomputed for all layers in BertModel forward() function)
|
||
|
attention_scores = attention_scores + attention_mask
|
||
|
|
||
|
# Normalize the attention scores to probabilities.
|
||
|
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
|
||
|
# Normalize the attention scores to probabilities.
|
||
|
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
|
||
|
|
||
|
# This is actually dropping out entire tokens to attend to, which might
|
||
|
# seem a bit unusual, but is taken from the original Transformer paper.
|
||
|
attention_probs = self.dropout(attention_probs)
|
||
|
|
||
|
# Mask heads if we want to
|
||
|
if head_mask is not None:
|
||
|
attention_probs = attention_probs * head_mask
|
||
|
|
||
|
context_layer = torch.matmul(attention_probs, value_layer)
|
||
|
|
||
|
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
|
||
|
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
|
||
|
context_layer = context_layer.view(*new_context_layer_shape)
|
||
|
|
||
|
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
|
||
|
|
||
|
return outputs
|
||
|
|
||
|
|
||
|
class FlavaSelfOutput(nn.Module):
|
||
|
"""
|
||
|
The residual connection is defined in FlavaLayer (same as ViTLayer) instead of here (as is the case with other
|
||
|
models), due to the layernorm applied before each block.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, config: FlavaPossibleConfigs) -> None:
|
||
|
super().__init__()
|
||
|
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
||
|
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
||
|
|
||
|
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
|
||
|
hidden_states = self.dense(hidden_states)
|
||
|
hidden_states = self.dropout(hidden_states)
|
||
|
|
||
|
return hidden_states
|
||
|
|
||
|
|
||
|
class FlavaAttention(nn.Module):
|
||
|
def __init__(self, config: FlavaPossibleConfigs) -> None:
|
||
|
super().__init__()
|
||
|
self.attention = FlavaSelfAttention(config)
|
||
|
self.output = FlavaSelfOutput(config)
|
||
|
self.pruned_heads = set()
|
||
|
|
||
|
def prune_heads(self, heads: Set[int]) -> None:
|
||
|
if len(heads) == 0:
|
||
|
return
|
||
|
heads, index = find_pruneable_heads_and_indices(
|
||
|
heads, self.attention.num_attention_heads, self.attention.attention_head_size, self.pruned_heads
|
||
|
)
|
||
|
|
||
|
# Prune linear layers
|
||
|
self.attention.query = prune_linear_layer(self.attention.query, index)
|
||
|
self.attention.key = prune_linear_layer(self.attention.key, index)
|
||
|
self.attention.value = prune_linear_layer(self.attention.value, index)
|
||
|
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
|
||
|
|
||
|
# Update hyper params and store pruned heads
|
||
|
self.attention.num_attention_heads = self.attention.num_attention_heads - len(heads)
|
||
|
self.attention.all_head_size = self.attention.attention_head_size * self.attention.num_attention_heads
|
||
|
self.pruned_heads = self.pruned_heads.union(heads)
|
||
|
|
||
|
def forward(
|
||
|
self,
|
||
|
hidden_states: torch.Tensor,
|
||
|
attention_mask: Optional[torch.Tensor] = None,
|
||
|
head_mask: Optional[torch.Tensor] = None,
|
||
|
output_attentions: bool = False,
|
||
|
) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]:
|
||
|
self_outputs = self.attention(
|
||
|
hidden_states, attention_mask=attention_mask, head_mask=head_mask, output_attentions=output_attentions
|
||
|
)
|
||
|
|
||
|
attention_output = self.output(self_outputs[0], hidden_states)
|
||
|
|
||
|
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
|
||
|
return outputs
|
||
|
|
||
|
|
||
|
class FlavaIntermediate(nn.Module):
|
||
|
def __init__(self, config: FlavaPossibleConfigs) -> None:
|
||
|
super().__init__()
|
||
|
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
|
||
|
if isinstance(config.hidden_act, str):
|
||
|
self.intermediate_act_fn = ACT2FN[config.hidden_act]
|
||
|
else:
|
||
|
self.intermediate_act_fn = config.hidden_act
|
||
|
|
||
|
# Copied from transformers.models.vit.modeling_vit.ViTIntermediate.forward
|
||
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
||
|
hidden_states = self.dense(hidden_states)
|
||
|
hidden_states = self.intermediate_act_fn(hidden_states)
|
||
|
|
||
|
return hidden_states
|
||
|
|
||
|
|
||
|
class FlavaOutput(nn.Module):
|
||
|
def __init__(self, config: FlavaPossibleConfigs) -> None:
|
||
|
super().__init__()
|
||
|
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
|
||
|
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
||
|
|
||
|
# Copied from transformers.models.vit.modeling_vit.ViTOutput.forward
|
||
|
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
|
||
|
hidden_states = self.dense(hidden_states)
|
||
|
hidden_states = self.dropout(hidden_states)
|
||
|
|
||
|
hidden_states = hidden_states + input_tensor
|
||
|
|
||
|
return hidden_states
|
||
|
|
||
|
|
||
|
class FlavaLayer(nn.Module):
|
||
|
"""This corresponds to the Block class in the timm implementation."""
|
||
|
|
||
|
def __init__(self, config: FlavaPossibleConfigs) -> None:
|
||
|
super().__init__()
|
||
|
self.chunk_size_feed_forward = config.chunk_size_feed_forward
|
||
|
self.seq_len_dim = 1
|
||
|
self.attention = FlavaAttention(config)
|
||
|
self.intermediate = FlavaIntermediate(config)
|
||
|
self.output = FlavaOutput(config)
|
||
|
|
||
|
# TODO: Check fp32 layer norm possiblity
|
||
|
self.layernorm_before = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
||
|
self.layernorm_after = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
||
|
|
||
|
def forward(
|
||
|
self,
|
||
|
hidden_states: torch.Tensor,
|
||
|
attention_mask: Optional[torch.Tensor] = None,
|
||
|
head_mask: Optional[torch.Tensor] = None,
|
||
|
output_attentions: bool = False,
|
||
|
) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]:
|
||
|
self_attention_outputs = self.attention(
|
||
|
self.layernorm_before(hidden_states), # in ViT, layernorm is applied before self-attention
|
||
|
attention_mask=attention_mask,
|
||
|
head_mask=head_mask,
|
||
|
output_attentions=output_attentions,
|
||
|
)
|
||
|
attention_output = self_attention_outputs[0]
|
||
|
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
|
||
|
|
||
|
# first residual connection
|
||
|
hidden_states = attention_output + hidden_states
|
||
|
|
||
|
# in ViT, layernorm is also applied after self-attention
|
||
|
layer_output = self.layernorm_after(hidden_states)
|
||
|
layer_output = self.intermediate(layer_output)
|
||
|
|
||
|
# second residual connection is done here
|
||
|
layer_output = self.output(layer_output, hidden_states)
|
||
|
|
||
|
outputs = (layer_output,) + outputs
|
||
|
|
||
|
return outputs
|
||
|
|
||
|
|
||
|
class FlavaEncoder(nn.Module):
|
||
|
def __init__(self, config: FlavaConfig) -> None:
|
||
|
super().__init__()
|
||
|
self.config = config
|
||
|
self.layer = nn.ModuleList([FlavaLayer(config) for _ in range(config.num_hidden_layers)])
|
||
|
self.gradient_checkpointing = False
|
||
|
|
||
|
def forward(
|
||
|
self,
|
||
|
hidden_states: torch.Tensor,
|
||
|
attention_mask: Optional[torch.Tensor] = None,
|
||
|
head_mask: Optional[torch.Tensor] = None,
|
||
|
output_attentions: bool = False,
|
||
|
output_hidden_states: bool = False,
|
||
|
return_dict: bool = True,
|
||
|
) -> Union[tuple, BaseModelOutput]:
|
||
|
all_hidden_states = () if output_hidden_states else None
|
||
|
all_self_attentions = () if output_attentions else None
|
||
|
|
||
|
for i, layer_module in enumerate(self.layer):
|
||
|
if output_hidden_states:
|
||
|
all_hidden_states = all_hidden_states + (hidden_states,)
|
||
|
|
||
|
layer_head_mask = head_mask[i] if head_mask is not None else None
|
||
|
|
||
|
if self.gradient_checkpointing and self.training:
|
||
|
layer_outputs = self._gradient_checkpointing_func(
|
||
|
layer_module.__call__,
|
||
|
hidden_states,
|
||
|
attention_mask,
|
||
|
layer_head_mask,
|
||
|
output_attentions,
|
||
|
)
|
||
|
else:
|
||
|
layer_outputs = layer_module(hidden_states, attention_mask, layer_head_mask, output_attentions)
|
||
|
|
||
|
hidden_states = layer_outputs[0]
|
||
|
|
||
|
if output_attentions:
|
||
|
all_self_attentions = all_self_attentions + (layer_outputs[1],)
|
||
|
|
||
|
if output_hidden_states:
|
||
|
all_hidden_states = all_hidden_states + (hidden_states,)
|
||
|
|
||
|
if not return_dict:
|
||
|
return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None)
|
||
|
return BaseModelOutput(
|
||
|
last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attentions
|
||
|
)
|
||
|
|
||
|
|
||
|
class FlavaPooler(nn.Module):
|
||
|
def __init__(self, config: FlavaPossibleConfigs):
|
||
|
super().__init__()
|
||
|
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
||
|
self.activation = nn.Tanh()
|
||
|
|
||
|
def forward(self, hidden_states: torch.Tensor):
|
||
|
# We "pool" the model by simply taking the hidden state corresponding
|
||
|
# to the first token.
|
||
|
first_token_tensor = hidden_states[:, 0]
|
||
|
pooled_output = self.dense(first_token_tensor)
|
||
|
pooled_output = self.activation(pooled_output)
|
||
|
return pooled_output
|
||
|
|
||
|
|
||
|
FLAVA_START_DOCSTRING = r"""
|
||
|
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it
|
||
|
as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
|
||
|
behavior.
|
||
|
|
||
|
Parameters:
|
||
|
config ([`{config}`]): Model configuration class with all the parameters of the model.
|
||
|
Initializing with a config file does not load the weights associated with the model, only the
|
||
|
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
||
|
"""
|
||
|
|
||
|
FLAVA_INPUTS_DOCSTRING_COMMON = r"""
|
||
|
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
|
||
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
||
|
- 1 for tokens that are **not masked**,
|
||
|
- 0 for tokens that are **masked**.
|
||
|
[What are attention masks?](../glossary#attention-mask)
|
||
|
|
||
|
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
|
||
|
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
|
||
|
|
||
|
- 1 indicates the head is **not masked**,
|
||
|
- 0 indicates the head is **masked**.
|
||
|
|
||
|
output_attentions (`bool`, *optional*):
|
||
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
||
|
tensors for more detail.
|
||
|
output_hidden_states (`bool`, *optional*):
|
||
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
||
|
more detail.
|
||
|
|
||
|
return_dict (`bool`, *optional*):
|
||
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
||
|
"""
|
||
|
|
||
|
FLAVA_IMAGE_INPUTS_DOCSTRING_BASE = r"""
|
||
|
Args:
|
||
|
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
||
|
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
|
||
|
[`FlavaImageProcessor.__call__`] for details.
|
||
|
|
||
|
bool_masked_pos (`torch.BoolTensor` of shape `(batch_size, image_num_patches)`):
|
||
|
Boolean masked positions. Indicates which patches are masked (1) and which aren't (0).
|
||
|
|
||
|
interpolate_pos_encoding (`bool`, *optional*):
|
||
|
Whether to interpolate the pre-trained position encodings.
|
||
|
"""
|
||
|
|
||
|
FLAVA_IMAGE_INPUTS_DOCSTRING = FLAVA_IMAGE_INPUTS_DOCSTRING_BASE + FLAVA_INPUTS_DOCSTRING_COMMON
|
||
|
|
||
|
FLAVA_TEXT_INPUTS_DOCSTRING_BASE = r"""
|
||
|
Args:
|
||
|
input_ids (`torch.LongTensor` of shape `({0})`):
|
||
|
Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See
|
||
|
[`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input
|
||
|
IDs?](../glossary#input-ids)
|
||
|
|
||
|
token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
|
||
|
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
|
||
|
1]`:
|
||
|
- 0 corresponds to a *sentence A* token,
|
||
|
- 1 corresponds to a *sentence B* token.
|
||
|
[What are token type IDs?](../glossary#token-type-ids)
|
||
|
"""
|
||
|
|
||
|
FLAVA_TEXT_INPUTS_DOCSTRING = FLAVA_TEXT_INPUTS_DOCSTRING_BASE + FLAVA_INPUTS_DOCSTRING_COMMON
|
||
|
|
||
|
FLAVA_MULTIMODAL_INPUTS_DOCSTRING = (
|
||
|
r"""
|
||
|
Args:
|
||
|
hidden_states (`torch.FloatTensor` of shape `(batch_size, image_num_patches + text_seq_len, hidden_size)`):
|
||
|
The concatenated hidden states of unimodal encoders.
|
||
|
"""
|
||
|
+ FLAVA_INPUTS_DOCSTRING_COMMON
|
||
|
)
|
||
|
|
||
|
FLAVA_MODEL_INPUTS_DOCSTRING_BASE = r"""
|
||
|
Args:
|
||
|
skip_multimodal_encoder (*bool*, *optional*):
|
||
|
Skip any calculations for multimodal encoder. Useful if multimodal encoding is not going to be used.
|
||
|
"""
|
||
|
|
||
|
FLAVA_MODEL_INPUTS_DOCSTRING = (
|
||
|
FLAVA_IMAGE_INPUTS_DOCSTRING_BASE
|
||
|
+ FLAVA_TEXT_INPUTS_DOCSTRING_BASE
|
||
|
+ FLAVA_INPUTS_DOCSTRING_COMMON
|
||
|
+ FLAVA_MODEL_INPUTS_DOCSTRING_BASE
|
||
|
)
|
||
|
|
||
|
|
||
|
FLAVA_PRETRAINING_INPUTS_DOCSTRING = (
|
||
|
r"""
|
||
|
Args:
|
||
|
input_ids_masked (`torch.LongTensor` of shape `({0})`):
|
||
|
Indices of input sequence tokens in the vocabulary. These ones are the masked version of the original task
|
||
|
to be used with MLM. Indices can be obtained using [`AutoTokenizer`] along with
|
||
|
[`DataCollatorForMaskedLanguageModeling`]. See [`PreTrainedTokenizer.encode`] and
|
||
|
[`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids)
|
||
|
|
||
|
"""
|
||
|
+ FLAVA_TEXT_INPUTS_DOCSTRING_BASE
|
||
|
+ FLAVA_IMAGE_INPUTS_DOCSTRING_BASE
|
||
|
+ r"""
|
||
|
image_attention_mask (`torch.FloatTensor` of shape `({1})`, *optional*):
|
||
|
Mask to avoid performing attention on padding token indices specifically for images. Mask values selected
|
||
|
in `[0, 1]`:
|
||
|
- 1 for tokens that are **not masked**,
|
||
|
- 0 for tokens that are **masked**.
|
||
|
[What are attention masks?](../glossary#attention-mask)
|
||
|
|
||
|
skip_unmasked_multimodal_encoder (*bool*, *optional*):
|
||
|
Skip any calculations for multimodal encoder for unmasked inputs. FLAVA pretraining doesn't need unmasked
|
||
|
multimodal embeddings or outputs as of now.
|
||
|
|
||
|
mlm_labels (`torch.LongTensor` of shape `(batch_size, text_seq_len)`, *optional*):
|
||
|
Labels for computing the left-to-right language and multimodal masked modeling loss (next word prediction).
|
||
|
Indices should be in `[-100, 0, ..., text_config.vocab_size - 1]` (see `input_ids` docstring). Tokens with
|
||
|
indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0,
|
||
|
..., text_config.vocab_size - 1]`.
|
||
|
|
||
|
mim_labels (`torch.LongTensor` of shape `(batch_size, image_num_patches)`, *optional*):
|
||
|
Labels for computing the image and multimodal masked modeling loss. Indices should be in `[-100, 0, ...,
|
||
|
image_config.vocab_size - 1]`. Tokens with indices set to `-100` are ignored (masked), the loss is only
|
||
|
computed for the tokens with labels in `[0, ..., image_config.vocab_size - 1]`. If not passed, they are
|
||
|
generated automatically using the image codebook assigned to the model. By default, it uses
|
||
|
[`FlavaImageCodebook`]. See [`FlavaImageCodebook`] to understand how to generate mim_labels.
|
||
|
|
||
|
itm_labels (`torch.LongTensor` of shape `(batch_size, 1)`, *optional*):
|
||
|
Labels for computing the image-text matching loss. 0 means the pairs don't match and 1 means they match.
|
||
|
The pairs with 0 will be skipped for calculation of MMM and global contrastive losses as well.
|
||
|
|
||
|
return_loss (`bool`, *optional*, default to None):
|
||
|
Whether to return calculated loss or not.
|
||
|
"""
|
||
|
+ FLAVA_INPUTS_DOCSTRING_COMMON
|
||
|
)
|
||
|
|
||
|
FLAVA_PRETRAINING_START_DOCSTRING_EXTRA = r"""
|
||
|
Parameters:
|
||
|
image_codebook ([`nn.Module`]): If passed, the image codebook will be set to this. Otherwise. it will
|
||
|
be initialized using the image_codebook_config defined in the config first as the first parameter.
|
||
|
"""
|
||
|
|
||
|
|
||
|
class FlavaPreTrainedModel(PreTrainedModel):
|
||
|
"""
|
||
|
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
||
|
models.
|
||
|
"""
|
||
|
|
||
|
config_class = FlavaConfig
|
||
|
base_model_prefix = "flava"
|
||
|
supports_gradient_checkpointing = True
|
||
|
|
||
|
def _init_weights(self, module: Union[nn.Linear, nn.Conv2d, nn.LayerNorm]) -> None:
|
||
|
"""Initialize the weights"""
|
||
|
if isinstance(module, (nn.Linear, nn.Conv2d)):
|
||
|
# Slightly different from the TF version which uses truncated_normal for initialization
|
||
|
# cf https://github.com/pytorch/pytorch/pull/5617
|
||
|
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
||
|
if module.bias is not None:
|
||
|
module.bias.data.zero_()
|
||
|
elif isinstance(module, nn.Embedding):
|
||
|
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
||
|
if module.padding_idx is not None:
|
||
|
module.weight.data[module.padding_idx].zero_()
|
||
|
elif isinstance(module, nn.LayerNorm):
|
||
|
module.bias.data.zero_()
|
||
|
module.weight.data.fill_(1.0)
|
||
|
|
||
|
|
||
|
@add_start_docstrings(
|
||
|
"The bare FLAVA Image Model transformer outputting raw hidden-states without any specific head on top.",
|
||
|
FLAVA_START_DOCSTRING.format(config="FlavaImageConfig"),
|
||
|
)
|
||
|
class FlavaImageModel(FlavaPreTrainedModel):
|
||
|
config_class = FlavaImageConfig
|
||
|
# This override allows us to load FlavaImageModel from FlavaModel/FlavaForPreTraining checkpoints.
|
||
|
base_model_prefix = "flava.image_model"
|
||
|
main_input_name = "pixel_values"
|
||
|
|
||
|
def __init__(self, config: FlavaImageConfig, add_pooling_layer: bool = True):
|
||
|
super().__init__(config)
|
||
|
|
||
|
self.config = config
|
||
|
|
||
|
self.embeddings = FlavaImageEmbeddings(config)
|
||
|
self.encoder = FlavaEncoder(config)
|
||
|
|
||
|
self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
||
|
self.pooler = FlavaPooler(config) if add_pooling_layer else None
|
||
|
|
||
|
self.post_init()
|
||
|
|
||
|
def get_input_embeddings(self) -> nn.Module:
|
||
|
return self.embeddings.patch_embeddings
|
||
|
|
||
|
def set_input_embeddings(self, value: nn.Module):
|
||
|
self.embeddings.patch_embeddings = value
|
||
|
|
||
|
def _prune_heads(self, heads_to_prune: Dict[int, List[int]]) -> None:
|
||
|
"""
|
||
|
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
|
||
|
class PreTrainedModel
|
||
|
"""
|
||
|
for layer, heads in heads_to_prune.items():
|
||
|
self.encoder.layer[layer].attention.prune_heads(heads)
|
||
|
|
||
|
@add_start_docstrings_to_model_forward(FLAVA_IMAGE_INPUTS_DOCSTRING.format("batch_size, image_num_patches"))
|
||
|
@add_code_sample_docstrings(
|
||
|
checkpoint=_CHECKPOINT_FOR_DOC,
|
||
|
output_type=BaseModelOutputWithPooling,
|
||
|
config_class=_CONFIG_CLASS_FOR_IMAGE_MODEL_DOC,
|
||
|
modality="vision",
|
||
|
expected_output=_EXPECTED_IMAGE_OUTPUT_SHAPE,
|
||
|
)
|
||
|
def forward(
|
||
|
self,
|
||
|
pixel_values: Optional[torch.Tensor] = None,
|
||
|
bool_masked_pos: Optional[torch.BoolTensor] = None,
|
||
|
interpolate_pos_encoding: Optional[bool] = None,
|
||
|
attention_mask: Optional[torch.Tensor] = None,
|
||
|
head_mask: Optional[torch.Tensor] = None,
|
||
|
output_attentions: Optional[bool] = None,
|
||
|
output_hidden_states: Optional[bool] = None,
|
||
|
return_dict: Optional[bool] = None,
|
||
|
) -> Union[tuple, BaseModelOutputWithPooling]:
|
||
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||
|
output_hidden_states = (
|
||
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||
|
)
|
||
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||
|
|
||
|
if pixel_values is None:
|
||
|
raise ValueError("You have to specify pixel_values")
|
||
|
|
||
|
# Prepare head mask if needed
|
||
|
# 1.0 in head_mask indicate we keep the head
|
||
|
# attention_probs has shape bsz x n_heads x N x N
|
||
|
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
|
||
|
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
|
||
|
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
|
||
|
|
||
|
embedding_output = self.embeddings(
|
||
|
pixel_values, bool_masked_pos=bool_masked_pos, interpolate_pos_encoding=interpolate_pos_encoding
|
||
|
)
|
||
|
|
||
|
encoder_outputs = self.encoder(
|
||
|
embedding_output,
|
||
|
attention_mask=attention_mask,
|
||
|
head_mask=head_mask,
|
||
|
output_attentions=output_attentions,
|
||
|
output_hidden_states=output_hidden_states,
|
||
|
return_dict=return_dict,
|
||
|
)
|
||
|
sequence_output = encoder_outputs[0]
|
||
|
sequence_output = self.layernorm(sequence_output)
|
||
|
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
|
||
|
|
||
|
if not return_dict:
|
||
|
return (sequence_output, pooled_output) + encoder_outputs[1:]
|
||
|
|
||
|
return BaseModelOutputWithPooling(
|
||
|
last_hidden_state=sequence_output,
|
||
|
pooler_output=pooled_output,
|
||
|
hidden_states=encoder_outputs.hidden_states,
|
||
|
attentions=encoder_outputs.attentions,
|
||
|
)
|
||
|
|
||
|
|
||
|
@add_start_docstrings(
|
||
|
"The bare FLAVA Text Model transformer outputting raw hidden-states without any specific head on top.",
|
||
|
FLAVA_START_DOCSTRING.format(config="FlavaTextConfig"),
|
||
|
)
|
||
|
class FlavaTextModel(FlavaPreTrainedModel):
|
||
|
config_class = FlavaTextConfig
|
||
|
# This override allows us to load FlavaTextModel from FlavaModel/FlavaForPreTraining checkpoints.
|
||
|
base_model_prefix = "flava.text_model"
|
||
|
|
||
|
def __init__(self, config: FlavaTextConfig, add_pooling_layer: bool = True):
|
||
|
super().__init__(config)
|
||
|
self.config = config
|
||
|
|
||
|
self.embeddings = FlavaTextEmbeddings(config)
|
||
|
self.encoder = FlavaEncoder(config)
|
||
|
|
||
|
self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
||
|
self.pooler = FlavaPooler(config) if add_pooling_layer else None
|
||
|
|
||
|
self.post_init()
|
||
|
|
||
|
def get_input_embeddings(self) -> PatchEmbeddings:
|
||
|
return self.embeddings.word_embeddings
|
||
|
|
||
|
def set_input_embeddings(self, value: nn.Module):
|
||
|
self.embeddings.word_embeddings = value
|
||
|
|
||
|
def _prune_heads(self, heads_to_prune: Dict[int, List[int]]) -> None:
|
||
|
"""
|
||
|
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
|
||
|
class PreTrainedModel
|
||
|
"""
|
||
|
for layer, heads in heads_to_prune.items():
|
||
|
self.encoder.layer[layer].attention.prune_heads(heads)
|
||
|
|
||
|
@add_start_docstrings_to_model_forward(FLAVA_TEXT_INPUTS_DOCSTRING.format("batch_size, text_seq_length"))
|
||
|
@add_code_sample_docstrings(
|
||
|
checkpoint=_CHECKPOINT_FOR_DOC,
|
||
|
output_type=BaseModelOutputWithPooling,
|
||
|
config_class=_CONFIG_CLASS_FOR_TEXT_MODEL_DOC,
|
||
|
)
|
||
|
def forward(
|
||
|
self,
|
||
|
input_ids: Optional[torch.Tensor] = None,
|
||
|
attention_mask: Optional[torch.Tensor] = None,
|
||
|
token_type_ids: Optional[torch.Tensor] = None,
|
||
|
position_ids: Optional[torch.Tensor] = None,
|
||
|
head_mask: Optional[torch.Tensor] = None,
|
||
|
output_attentions: Optional[bool] = None,
|
||
|
output_hidden_states: Optional[bool] = None,
|
||
|
return_dict: Optional[bool] = None,
|
||
|
) -> Union[tuple, BaseModelOutputWithPooling]:
|
||
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||
|
output_hidden_states = (
|
||
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||
|
)
|
||
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||
|
|
||
|
if input_ids is None:
|
||
|
raise ValueError("You have to specify input_ids")
|
||
|
|
||
|
input_shape = input_ids.size()
|
||
|
|
||
|
if attention_mask is None:
|
||
|
attention_mask = torch.ones(input_shape, device=input_ids.device)
|
||
|
|
||
|
# Prepare head mask if needed
|
||
|
# 1.0 in head_mask indicate we keep the head
|
||
|
# attention_probs has shape bsz x n_heads x N x N
|
||
|
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
|
||
|
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
|
||
|
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
|
||
|
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(
|
||
|
attention_mask, input_shape, input_ids.device
|
||
|
)
|
||
|
|
||
|
embedding_output = self.embeddings(
|
||
|
input_ids=input_ids,
|
||
|
token_type_ids=token_type_ids,
|
||
|
position_ids=position_ids,
|
||
|
)
|
||
|
|
||
|
encoder_outputs = self.encoder(
|
||
|
embedding_output,
|
||
|
attention_mask=extended_attention_mask,
|
||
|
head_mask=head_mask,
|
||
|
output_attentions=output_attentions,
|
||
|
output_hidden_states=output_hidden_states,
|
||
|
return_dict=return_dict,
|
||
|
)
|
||
|
sequence_output = encoder_outputs[0]
|
||
|
sequence_output = self.layernorm(sequence_output)
|
||
|
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
|
||
|
|
||
|
if not return_dict:
|
||
|
return (sequence_output, pooled_output) + encoder_outputs[1:]
|
||
|
|
||
|
return BaseModelOutputWithPooling(
|
||
|
last_hidden_state=sequence_output,
|
||
|
pooler_output=pooled_output,
|
||
|
hidden_states=encoder_outputs.hidden_states,
|
||
|
attentions=encoder_outputs.attentions,
|
||
|
)
|
||
|
|
||
|
|
||
|
@add_start_docstrings(
|
||
|
"The bare FLAVA Multimodal Model transformer outputting raw hidden-states without any specific head on top.",
|
||
|
FLAVA_START_DOCSTRING.format(config="FlavaMultimodalConfig"),
|
||
|
)
|
||
|
class FlavaMultimodalModel(FlavaPreTrainedModel):
|
||
|
config_class = FlavaMultimodalConfig
|
||
|
# This override allows us to load FlavaMultimodalModel from FlavaModel/FlavaForPreTraining checkpoints.
|
||
|
base_model_prefix = "flava.multimodal_model"
|
||
|
main_input_name = "hidden_states"
|
||
|
|
||
|
def __init__(self, config: FlavaMultimodalConfig, add_pooling_layer=True):
|
||
|
super().__init__(config)
|
||
|
self.config = config
|
||
|
self.use_cls_token = self.config.use_cls_token
|
||
|
if self.use_cls_token:
|
||
|
self.cls_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size))
|
||
|
|
||
|
self.encoder = FlavaEncoder(config)
|
||
|
|
||
|
self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
||
|
self.pooler = FlavaPooler(config) if add_pooling_layer else None
|
||
|
|
||
|
self.post_init()
|
||
|
|
||
|
def _prune_heads(self, heads_to_prune: Dict[int, List[int]]) -> None:
|
||
|
"""
|
||
|
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
|
||
|
class PreTrainedModel
|
||
|
"""
|
||
|
for layer, heads in heads_to_prune.items():
|
||
|
self.encoder.layer[layer].attention.prune_heads(heads)
|
||
|
|
||
|
@add_start_docstrings_to_model_forward(
|
||
|
FLAVA_MULTIMODAL_INPUTS_DOCSTRING.format("batch_size, image_num_patches + text_seq_len")
|
||
|
)
|
||
|
@add_code_sample_docstrings(
|
||
|
checkpoint=_CHECKPOINT_FOR_DOC,
|
||
|
output_type=BaseModelOutputWithPooling,
|
||
|
config_class=_CONFIG_CLASS_FOR_MULTIMODAL_MODEL_DOC,
|
||
|
)
|
||
|
def forward(
|
||
|
self,
|
||
|
hidden_states: torch.Tensor,
|
||
|
attention_mask: Optional[torch.Tensor] = None,
|
||
|
head_mask: Optional[torch.Tensor] = None,
|
||
|
output_attentions: Optional[bool] = None,
|
||
|
output_hidden_states: Optional[bool] = None,
|
||
|
return_dict: Optional[bool] = None,
|
||
|
) -> Union[tuple, BaseModelOutputWithPooling]:
|
||
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||
|
output_hidden_states = (
|
||
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||
|
)
|
||
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||
|
|
||
|
batch_size, seq_length, _ = hidden_states.size()
|
||
|
|
||
|
if self.use_cls_token:
|
||
|
cls_tokens = self.cls_token.expand(batch_size, -1, -1)
|
||
|
hidden_states = torch.cat((cls_tokens, hidden_states), dim=1)
|
||
|
seq_length += 1
|
||
|
|
||
|
if attention_mask is None:
|
||
|
attention_mask = torch.ones((batch_size, seq_length), device=hidden_states.device)
|
||
|
|
||
|
# Prepare head mask if needed
|
||
|
# 1.0 in head_mask indicate we keep the head
|
||
|
# attention_probs has shape bsz x n_heads x N x N
|
||
|
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
|
||
|
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
|
||
|
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
|
||
|
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(
|
||
|
attention_mask, (batch_size, seq_length), hidden_states.device
|
||
|
)
|
||
|
|
||
|
encoder_outputs = self.encoder(
|
||
|
hidden_states,
|
||
|
attention_mask=extended_attention_mask,
|
||
|
head_mask=head_mask,
|
||
|
output_attentions=output_attentions,
|
||
|
output_hidden_states=output_hidden_states,
|
||
|
return_dict=return_dict,
|
||
|
)
|
||
|
sequence_output = encoder_outputs[0]
|
||
|
sequence_output = self.layernorm(sequence_output)
|
||
|
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
|
||
|
|
||
|
if not return_dict:
|
||
|
return (sequence_output, pooled_output) + encoder_outputs[1:]
|
||
|
|
||
|
return BaseModelOutputWithPooling(
|
||
|
last_hidden_state=sequence_output,
|
||
|
pooler_output=pooled_output,
|
||
|
hidden_states=encoder_outputs.hidden_states,
|
||
|
attentions=encoder_outputs.attentions,
|
||
|
)
|
||
|
|
||
|
|
||
|
@add_start_docstrings(
|
||
|
"The bare FLAVA Model transformer outputting raw hidden-states without any specific head on top.",
|
||
|
FLAVA_START_DOCSTRING.format(config="FlavaConfig"),
|
||
|
)
|
||
|
class FlavaModel(FlavaPreTrainedModel):
|
||
|
config_class = FlavaConfig
|
||
|
|
||
|
def __init__(self, config: FlavaConfig):
|
||
|
super().__init__(config)
|
||
|
|
||
|
if not isinstance(config.text_config, FlavaTextConfig):
|
||
|
raise ValueError(
|
||
|
"config.text_config is expected to be of type FlavaTextConfig but is of type"
|
||
|
f" {type(config.text_config)}."
|
||
|
)
|
||
|
|
||
|
if not isinstance(config.image_config, FlavaImageConfig):
|
||
|
raise ValueError(
|
||
|
"config.image_config is expected to be of type FlavaImageConfig but is of type"
|
||
|
f" {type(config.image_config)}."
|
||
|
)
|
||
|
|
||
|
if not isinstance(config.multimodal_config, FlavaMultimodalConfig):
|
||
|
raise ValueError(
|
||
|
"config.multimodal_config is expected to be of type FlavaMultimodalConfig but "
|
||
|
+ f"is of type {type(config.multimodal_config)}."
|
||
|
)
|
||
|
|
||
|
text_config = config.text_config
|
||
|
image_config = config.image_config
|
||
|
multimodal_config = config.multimodal_config
|
||
|
|
||
|
self.projection_dim = config.projection_dim
|
||
|
self.text_hidden_size = text_config.hidden_size
|
||
|
self.image_hidden_size = image_config.hidden_size
|
||
|
self.mm_hidden_size = multimodal_config.hidden_size
|
||
|
|
||
|
self.text_model = FlavaTextModel(text_config)
|
||
|
self.image_model = FlavaImageModel(image_config)
|
||
|
self.multimodal_model = FlavaMultimodalModel(multimodal_config)
|
||
|
|
||
|
self.image_projection = nn.Linear(self.image_hidden_size, self.projection_dim)
|
||
|
self.text_projection = nn.Linear(self.text_hidden_size, self.projection_dim)
|
||
|
self.logit_scale = nn.Parameter(torch.tensor(self.config.logit_scale_init_value))
|
||
|
|
||
|
self.image_to_mm_projection = nn.Linear(self.image_hidden_size, self.mm_hidden_size)
|
||
|
self.text_to_mm_projection = nn.Linear(self.text_hidden_size, self.mm_hidden_size)
|
||
|
# Initialize weights and apply final processing
|
||
|
self.post_init()
|
||
|
|
||
|
@add_start_docstrings_to_model_forward(FLAVA_TEXT_INPUTS_DOCSTRING.format("batch_size, text_seq_length"))
|
||
|
def get_text_features(
|
||
|
self,
|
||
|
input_ids: Optional[torch.Tensor] = None,
|
||
|
attention_mask: Optional[torch.Tensor] = None,
|
||
|
token_type_ids: Optional[torch.Tensor] = None,
|
||
|
position_ids: Optional[torch.Tensor] = None,
|
||
|
output_attentions: Optional[bool] = None,
|
||
|
output_hidden_states: Optional[bool] = None,
|
||
|
return_dict: Optional[bool] = None,
|
||
|
) -> torch.FloatTensor:
|
||
|
r"""
|
||
|
Returns:
|
||
|
text_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The text embeddings obtained by
|
||
|
applying the projection layer to the pooled output of [`FlavaTextModel`].
|
||
|
|
||
|
Examples:
|
||
|
|
||
|
```python
|
||
|
>>> from transformers import AutoProcessor, FlavaModel
|
||
|
|
||
|
>>> model = FlavaModel.from_pretrained("{0}")
|
||
|
>>> processor = AutoProcessor.from_pretrained("{0}")
|
||
|
|
||
|
>>> inputs = processor(
|
||
|
... text=["a photo of a cat", "a photo of a dog"], max_length=77, padding="max_length", return_tensors="pt"
|
||
|
... )
|
||
|
>>> text_features = model.get_text_features(**inputs)
|
||
|
```""".format(_CHECKPOINT_FOR_DOC)
|
||
|
text_outputs = self.text_model(
|
||
|
input_ids=input_ids,
|
||
|
attention_mask=attention_mask,
|
||
|
token_type_ids=token_type_ids,
|
||
|
position_ids=position_ids,
|
||
|
output_attentions=output_attentions,
|
||
|
output_hidden_states=output_hidden_states,
|
||
|
return_dict=return_dict,
|
||
|
)
|
||
|
|
||
|
pooled_output = text_outputs[0] # last_hidden_state
|
||
|
text_features = self.text_projection(pooled_output)
|
||
|
|
||
|
return text_features
|
||
|
|
||
|
@add_start_docstrings_to_model_forward(FLAVA_IMAGE_INPUTS_DOCSTRING.format("batch_size, image_num_patches"))
|
||
|
def get_image_features(
|
||
|
self,
|
||
|
pixel_values: Optional[torch.Tensor] = None,
|
||
|
bool_masked_pos: Optional[torch.BoolTensor] = None,
|
||
|
interpolate_pos_encoding: Optional[bool] = None,
|
||
|
attention_mask: Optional[torch.Tensor] = None,
|
||
|
head_mask: Optional[torch.Tensor] = None,
|
||
|
output_attentions: Optional[bool] = None,
|
||
|
output_hidden_states: Optional[bool] = None,
|
||
|
return_dict: Optional[bool] = None,
|
||
|
) -> torch.FloatTensor:
|
||
|
r"""
|
||
|
Returns:
|
||
|
image_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The image embeddings obtained by
|
||
|
applying the projection layer to the pooled output of [`FlavaImageModel`].
|
||
|
|
||
|
Examples:
|
||
|
|
||
|
```python
|
||
|
>>> from PIL import Image
|
||
|
>>> import requests
|
||
|
>>> from transformers import AutoProcessor, FlavaModel
|
||
|
|
||
|
>>> model = FlavaModel.from_pretrained("{0}")
|
||
|
>>> processor = AutoProcessor.from_pretrained("{0}")
|
||
|
|
||
|
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
||
|
>>> image = Image.open(requests.get(url, stream=True).raw)
|
||
|
|
||
|
>>> inputs = processor(images=image, return_tensors="pt")
|
||
|
|
||
|
>>> image_features = model.get_image_features(**inputs)
|
||
|
```""".format(_CHECKPOINT_FOR_DOC)
|
||
|
image_outputs = self.image_model(
|
||
|
pixel_values=pixel_values,
|
||
|
bool_masked_pos=bool_masked_pos,
|
||
|
attention_mask=attention_mask,
|
||
|
head_mask=head_mask,
|
||
|
output_attentions=output_attentions,
|
||
|
output_hidden_states=output_hidden_states,
|
||
|
interpolate_pos_encoding=interpolate_pos_encoding,
|
||
|
return_dict=return_dict,
|
||
|
)
|
||
|
|
||
|
pooled_output = image_outputs[0] # last_hidden_state
|
||
|
image_features = self.image_projection(pooled_output)
|
||
|
|
||
|
return image_features
|
||
|
|
||
|
@add_start_docstrings_to_model_forward(
|
||
|
FLAVA_MODEL_INPUTS_DOCSTRING.format("batch_size, image_num_patches + text_seq_len")
|
||
|
)
|
||
|
@replace_return_docstrings(output_type=FlavaModelOutput, config_class=FlavaConfig)
|
||
|
def forward(
|
||
|
self,
|
||
|
input_ids: Optional[torch.LongTensor] = None,
|
||
|
pixel_values: Optional[torch.FloatTensor] = None,
|
||
|
attention_mask: Optional[torch.Tensor] = None,
|
||
|
token_type_ids: Optional[torch.Tensor] = None,
|
||
|
bool_masked_pos: Optional[torch.Tensor] = None,
|
||
|
position_ids: Optional[torch.LongTensor] = None,
|
||
|
image_attention_mask: Optional[torch.Tensor] = None,
|
||
|
skip_multimodal_encoder: Optional[bool] = None,
|
||
|
output_attentions: Optional[bool] = None,
|
||
|
output_hidden_states: bool = True,
|
||
|
return_dict: Optional[bool] = None,
|
||
|
) -> Union[Tuple, FlavaOutput]:
|
||
|
r"""
|
||
|
Returns:
|
||
|
|
||
|
Examples:
|
||
|
|
||
|
```python
|
||
|
>>> from PIL import Image
|
||
|
>>> import requests
|
||
|
>>> from transformers import AutoProcessor, FlavaModel
|
||
|
|
||
|
>>> model = FlavaModel.from_pretrained("facebook/flava-full")
|
||
|
>>> processor = AutoProcessor.from_pretrained("facebook/flava-full")
|
||
|
|
||
|
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
||
|
>>> image = Image.open(requests.get(url, stream=True).raw)
|
||
|
|
||
|
>>> inputs = processor(text=["a photo of a cat"], images=image, return_tensors="pt", padding=True)
|
||
|
|
||
|
>>> outputs = model(**inputs)
|
||
|
|
||
|
>>> image_embeddings = outputs.image_embeddings
|
||
|
>>> text_embeddings = outputs.text_embeddings
|
||
|
>>> multimodal_embeddings = outputs.multimodal_embeddings
|
||
|
|
||
|
>>> outputs.image_embeddings.shape
|
||
|
torch.Size([1, 197, 768])
|
||
|
|
||
|
>>> text_embeddings.shape
|
||
|
torch.Size([1, 7, 768])
|
||
|
|
||
|
>>> multimodal_embeddings.shape
|
||
|
torch.Size([1, 205, 768])
|
||
|
```
|
||
|
"""
|
||
|
|
||
|
return_dict = return_dict if return_dict is not None else self.config.return_dict
|
||
|
if not output_hidden_states:
|
||
|
raise ValueError("FLAVA model requires hidden states to work. Please set `output_hidden_states=True`")
|
||
|
image_embeddings = None
|
||
|
image_states = None
|
||
|
image_mm_projection = None
|
||
|
image_output = None
|
||
|
if pixel_values is not None:
|
||
|
image_output = self.image_model(
|
||
|
pixel_values=pixel_values,
|
||
|
bool_masked_pos=bool_masked_pos,
|
||
|
attention_mask=image_attention_mask,
|
||
|
output_attentions=output_attentions,
|
||
|
output_hidden_states=output_hidden_states,
|
||
|
return_dict=return_dict,
|
||
|
)
|
||
|
image_embeddings, image_states = image_output[0], image_output[2]
|
||
|
# Note that these states don't use final layernorm in the transformer model
|
||
|
image_mm_projection = self.image_to_mm_projection(image_states[-1])
|
||
|
|
||
|
text_embeddings = None
|
||
|
text_states = None
|
||
|
text_mm_projection = None
|
||
|
text_output = None
|
||
|
if input_ids is not None:
|
||
|
text_output = self.text_model(
|
||
|
input_ids=input_ids,
|
||
|
attention_mask=attention_mask,
|
||
|
position_ids=position_ids,
|
||
|
token_type_ids=token_type_ids,
|
||
|
output_attentions=output_attentions,
|
||
|
output_hidden_states=output_hidden_states,
|
||
|
return_dict=return_dict,
|
||
|
)
|
||
|
|
||
|
text_embeddings, text_states = text_output[0], text_output[2]
|
||
|
# Note that these states don't use final layernorm in the transformer model
|
||
|
text_mm_projection = self.text_to_mm_projection(text_states[-1])
|
||
|
|
||
|
multimodal_embeddings = None
|
||
|
multimodal_output = None
|
||
|
if image_mm_projection is not None and text_mm_projection is not None and not skip_multimodal_encoder:
|
||
|
if attention_mask is not None:
|
||
|
batch_size, seq_len, _ = image_mm_projection.shape
|
||
|
if self.multimodal_model.use_cls_token:
|
||
|
seq_len += 1
|
||
|
attention_mask_image = torch.ones(batch_size, seq_len, device=image_mm_projection.device)
|
||
|
attention_multimodal = torch.cat([attention_mask_image, attention_mask], dim=1)
|
||
|
else:
|
||
|
attention_multimodal = None
|
||
|
multimodal_input = torch.cat([image_mm_projection, text_mm_projection], dim=1)
|
||
|
multimodal_output = self.multimodal_model(
|
||
|
multimodal_input, attention_mask=attention_multimodal, return_dict=return_dict
|
||
|
)
|
||
|
multimodal_embeddings = multimodal_output[0]
|
||
|
|
||
|
if not return_dict:
|
||
|
return (
|
||
|
image_embeddings,
|
||
|
image_output,
|
||
|
text_embeddings,
|
||
|
text_output,
|
||
|
multimodal_embeddings,
|
||
|
multimodal_output,
|
||
|
)
|
||
|
|
||
|
return FlavaModelOutput(
|
||
|
image_embeddings=image_embeddings,
|
||
|
image_output=image_output,
|
||
|
text_embeddings=text_embeddings,
|
||
|
text_output=text_output,
|
||
|
multimodal_embeddings=multimodal_embeddings,
|
||
|
multimodal_output=multimodal_output,
|
||
|
)
|
||
|
|
||
|
|
||
|
class FlavaImageCodebookResPath(nn.Module):
|
||
|
def __init__(self, in_size: int, out_size: int, **kwargs):
|
||
|
super().__init__()
|
||
|
hid_size = out_size // 4
|
||
|
|
||
|
path = OrderedDict()
|
||
|
path["relu_1"] = nn.ReLU()
|
||
|
path["conv_1"] = nn.Conv2d(in_size, hid_size, kernel_size=3, padding=1)
|
||
|
path["relu_2"] = nn.ReLU()
|
||
|
path["conv_2"] = nn.Conv2d(hid_size, hid_size, kernel_size=3, padding=1)
|
||
|
path["relu_3"] = nn.ReLU()
|
||
|
path["conv_3"] = nn.Conv2d(hid_size, hid_size, kernel_size=3, padding=1)
|
||
|
path["relu_4"] = nn.ReLU()
|
||
|
path["conv_4"] = nn.Conv2d(hid_size, out_size, kernel_size=1, padding=0)
|
||
|
|
||
|
self.path = nn.Sequential(path)
|
||
|
|
||
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||
|
return self.path(x)
|
||
|
|
||
|
|
||
|
class FlavaImageCodebookBlock(nn.Module):
|
||
|
def __init__(self, in_size: int, out_size: int, num_layers: int, **kwargs):
|
||
|
super().__init__()
|
||
|
|
||
|
self.post_gain = 1 / (num_layers**2)
|
||
|
|
||
|
if in_size != out_size:
|
||
|
self.id_path = nn.Conv2d(in_size, out_size, kernel_size=1, padding=0)
|
||
|
else:
|
||
|
self.id_path = nn.Identity()
|
||
|
|
||
|
self.res_path = FlavaImageCodebookResPath(in_size, out_size)
|
||
|
|
||
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||
|
return self.id_path(x) + self.post_gain * self.res_path(x)
|
||
|
|
||
|
|
||
|
class FlavaImageCodebookLayerGroup(nn.Module):
|
||
|
def __init__(self, num_blocks: int, num_layers: int, in_size: int, out_size: int, use_pool: bool = True):
|
||
|
super().__init__()
|
||
|
blocks = OrderedDict()
|
||
|
for i in range(num_blocks):
|
||
|
if i == 0:
|
||
|
blocks[f"block_{i+1}"] = FlavaImageCodebookBlock(in_size, out_size, num_layers)
|
||
|
else:
|
||
|
blocks[f"block_{i+1}"] = FlavaImageCodebookBlock(out_size, out_size, num_layers)
|
||
|
|
||
|
if use_pool:
|
||
|
blocks["pool"] = nn.MaxPool2d(kernel_size=2)
|
||
|
|
||
|
self.group = nn.Sequential(blocks)
|
||
|
|
||
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||
|
return self.group(x)
|
||
|
|
||
|
|
||
|
# Inspired by DALLE Encoder in https://github.com/openai/DALL-E/blob/5be4b236bc3ade6943662354117a0e83752cc322/dall_e/encoder.py#L42
|
||
|
@add_start_docstrings(
|
||
|
"""
|
||
|
The FLAVA's image codebook model inspired from DALL-E's original encoder. Outputs raw hidden states and can be used
|
||
|
to generate image tokens for an image based on DALL-E's vocab. Used to generate labels for MIM. Use
|
||
|
`get_codebook_indices` to get image tokens for an image.
|
||
|
""",
|
||
|
FLAVA_START_DOCSTRING.format(config="FlavaImageCodebookConfig"),
|
||
|
)
|
||
|
class FlavaImageCodebook(FlavaPreTrainedModel):
|
||
|
base_model_prefix = ""
|
||
|
config_class = FlavaImageCodebookConfig
|
||
|
main_input_name = "pixel_values"
|
||
|
supports_gradient_checkpointing = False
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
config: FlavaImageCodebookConfig,
|
||
|
**kwargs: Any,
|
||
|
):
|
||
|
super().__init__(config)
|
||
|
|
||
|
self.config = config
|
||
|
self.num_groups = config.num_groups
|
||
|
self.input_channels = config.input_channels
|
||
|
self.num_blocks_per_group = config.num_blocks_per_group
|
||
|
self.hidden_size = config.hidden_size
|
||
|
self.vocab_size = config.vocab_size
|
||
|
|
||
|
num_layers = self.num_groups * self.num_blocks_per_group
|
||
|
|
||
|
output_blocks = OrderedDict()
|
||
|
output_blocks["relu"] = nn.ReLU()
|
||
|
output_blocks["conv"] = nn.Conv2d(8 * self.hidden_size, self.vocab_size, kernel_size=1, padding=0)
|
||
|
|
||
|
blocks = OrderedDict()
|
||
|
blocks["input"] = nn.Conv2d(self.input_channels, 1 * self.hidden_size, kernel_size=7, padding=3)
|
||
|
blocks["group_1"] = FlavaImageCodebookLayerGroup(
|
||
|
self.num_blocks_per_group, num_layers, 1 * self.hidden_size, 1 * self.hidden_size
|
||
|
)
|
||
|
blocks["group_2"] = FlavaImageCodebookLayerGroup(
|
||
|
self.num_blocks_per_group, num_layers, 1 * self.hidden_size, 2 * self.hidden_size
|
||
|
)
|
||
|
blocks["group_3"] = FlavaImageCodebookLayerGroup(
|
||
|
self.num_blocks_per_group, num_layers, 2 * self.hidden_size, 4 * self.hidden_size
|
||
|
)
|
||
|
blocks["group_4"] = FlavaImageCodebookLayerGroup(
|
||
|
self.num_blocks_per_group, num_layers, 4 * self.hidden_size, 8 * self.hidden_size, use_pool=False
|
||
|
)
|
||
|
blocks["output"] = nn.Sequential(output_blocks)
|
||
|
|
||
|
self.blocks = nn.Sequential(blocks)
|
||
|
|
||
|
self.post_init()
|
||
|
|
||
|
if self.config.freeze:
|
||
|
for param in self.parameters():
|
||
|
param.requires_grad = False
|
||
|
|
||
|
def get_codebook_indices(self, pixel_values: torch.Tensor) -> torch.Tensor:
|
||
|
"""
|
||
|
Args:
|
||
|
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
||
|
Pixel values. Codebook pixel values can be obtained using [`AutoImageProcessor`] by passing
|
||
|
`return_codebook_pixels=True`. See [`FlavaImageProcessor.__call__`] for details.
|
||
|
|
||
|
Examples:
|
||
|
```python
|
||
|
>>> from PIL import Image
|
||
|
>>> import requests
|
||
|
>>> from transformers import AutoImageProcessor, FlavaImageCodebook
|
||
|
|
||
|
>>> model = FlavaImageCodebook.from_pretrained("{0}")
|
||
|
>>> image_processor = AutoImageProcessor.from_pretrained("{0}")
|
||
|
|
||
|
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
||
|
>>> image = Image.open(requests.get(url, stream=True).raw)
|
||
|
|
||
|
>>> inputs = image_processor([image], return_codebook_pixels=True, return_tensors="pt")
|
||
|
>>> inputs = dict(pixel_values=inputs.codebook_pixel_values)
|
||
|
|
||
|
>>> outputs = model.get_codebook_indices(**inputs)
|
||
|
```
|
||
|
""".format(_CHECKPOINT_FOR_CODEBOOK_DOC)
|
||
|
z_logits = self.blocks(pixel_values)
|
||
|
return torch.argmax(z_logits, axis=1)
|
||
|
|
||
|
def get_codebook_probs(self, pixel_values: torch.Tensor) -> torch.Tensor:
|
||
|
z_logits = self.blocks(pixel_values)
|
||
|
return nn.Softmax(dim=1)(z_logits)
|
||
|
|
||
|
def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
|
||
|
"""
|
||
|
Args:
|
||
|
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
||
|
Pixel values. Codebook pixel values can be obtained using [`AutoImageProcessor`] by passing
|
||
|
`return_codebook_pixels=True`. See [`FlavaImageProcessor.__call__`] for details.
|
||
|
|
||
|
Examples:
|
||
|
|
||
|
```python
|
||
|
>>> from PIL import Image
|
||
|
>>> import requests
|
||
|
>>> from transformers import AutoImageProcessor, FlavaImageCodebook
|
||
|
|
||
|
>>> model = FlavaImageCodebook.from_pretrained("{0}")
|
||
|
>>> image_processor = AutoImageProcessor.from_pretrained("{0}")
|
||
|
|
||
|
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
||
|
>>> image = Image.open(requests.get(url, stream=True).raw)
|
||
|
|
||
|
>>> inputs = image_processor([image], return_codebook_pixels=True, return_tensors="pt")
|
||
|
>>> inputs = dict(pixel_values=inputs.codebook_pixel_values)
|
||
|
|
||
|
>>> outputs = model(**inputs)
|
||
|
>>> print(outputs.shape)
|
||
|
(1, 196)
|
||
|
```
|
||
|
""".format(_CHECKPOINT_FOR_CODEBOOK_DOC)
|
||
|
if len(pixel_values.shape) != 4:
|
||
|
raise ValueError(f"input shape {pixel_values.shape} is not 4d")
|
||
|
if pixel_values.shape[1] != self.input_channels:
|
||
|
raise ValueError(f"input has {pixel_values.shape[1]} channels but model built for {self.input_channels}")
|
||
|
return self.blocks(pixel_values)
|
||
|
|
||
|
|
||
|
class FlavaPredictionHeadTransform(nn.Module):
|
||
|
def __init__(self, config):
|
||
|
super().__init__()
|
||
|
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
||
|
if isinstance(config.hidden_act, str):
|
||
|
self.transform_act_fn = ACT2FN[config.hidden_act]
|
||
|
else:
|
||
|
self.transform_act_fn = config.hidden_act
|
||
|
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
||
|
|
||
|
def forward(self, hidden_states):
|
||
|
hidden_states = self.dense(hidden_states)
|
||
|
hidden_states = self.transform_act_fn(hidden_states)
|
||
|
hidden_states = self.LayerNorm(hidden_states)
|
||
|
return hidden_states
|
||
|
|
||
|
|
||
|
class FlavaMaskedPredictionHead(nn.Module):
|
||
|
def __init__(self, config, weight=None):
|
||
|
super().__init__()
|
||
|
self.config = config
|
||
|
self.transform = FlavaPredictionHeadTransform(config)
|
||
|
self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
||
|
self.bias = nn.Parameter(torch.zeros(config.vocab_size))
|
||
|
if weight is not None:
|
||
|
self.decoder.weight = weight
|
||
|
|
||
|
# Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
|
||
|
self.decoder.bias = self.bias
|
||
|
|
||
|
def forward(self, x):
|
||
|
x = self.transform(x)
|
||
|
x = self.decoder(x)
|
||
|
return x
|
||
|
|
||
|
|
||
|
class FlavaITMHead(nn.Module):
|
||
|
def __init__(self, config):
|
||
|
super().__init__()
|
||
|
self.config = config
|
||
|
self.pooler = FlavaPooler(config)
|
||
|
self.seq_relationship = nn.Linear(config.hidden_size, 2)
|
||
|
|
||
|
def forward(self, x):
|
||
|
x = self.pooler(x)
|
||
|
x = self.seq_relationship(x)
|
||
|
return x
|
||
|
|
||
|
|
||
|
class FlavaGlobalContrastiveHead(nn.Module):
|
||
|
def __init__(self, config):
|
||
|
super().__init__()
|
||
|
self.config = config
|
||
|
self.global_backprop_contrastive = config.global_backprop_contrastive
|
||
|
|
||
|
def forward(self, image_embeddings, text_embeddings, logit_scale):
|
||
|
temperature = torch.exp(logit_scale)
|
||
|
if not torch.distributed.is_available() or not torch.distributed.is_initialized():
|
||
|
labels = torch.arange(image_embeddings.size(0), device=image_embeddings.device)
|
||
|
image_embeddings_all = [image_embeddings]
|
||
|
text_embeddings_all = [text_embeddings]
|
||
|
else:
|
||
|
local_batch_size = image_embeddings.size(0)
|
||
|
world_size = torch.distributed.get_world_size()
|
||
|
|
||
|
if self.global_backprop_contrastive:
|
||
|
# `torch.distributed.nn.functional.all_gather` does backprop on all active workers
|
||
|
# whereas `torch.distributed.all_gather` does only backpropagates on the current worker.
|
||
|
image_embeddings_all = torch.distributed.nn.functional.all_gather(image_embeddings)
|
||
|
text_embeddings_all = torch.distributed.nn.functional.all_gather(text_embeddings)
|
||
|
else:
|
||
|
image_embeddings_all = [torch.zeros_like(text_embeddings) for _ in range(world_size)]
|
||
|
text_embeddings_all = [torch.zeros_like(image_embeddings) for _ in range(world_size)]
|
||
|
torch.distributed.all_gather(image_embeddings_all, image_embeddings)
|
||
|
torch.distributed.all_gather(text_embeddings_all, text_embeddings)
|
||
|
|
||
|
labels = local_batch_size * torch.distributed.get_rank() + torch.arange(
|
||
|
local_batch_size, device=image_embeddings.device
|
||
|
)
|
||
|
|
||
|
image_embeddings_all = torch.cat(image_embeddings_all)
|
||
|
text_embeddings_all = torch.cat(text_embeddings_all)
|
||
|
|
||
|
logits_per_image = torch.matmul(image_embeddings, text_embeddings_all.transpose(0, 1)) * temperature
|
||
|
logits_per_text = torch.matmul(text_embeddings, image_embeddings_all.transpose(0, 1)) * temperature
|
||
|
|
||
|
return logits_per_image, logits_per_text, labels
|
||
|
|
||
|
|
||
|
@add_start_docstrings(
|
||
|
"""
|
||
|
The FLAVA model for pretraining which outputs losses, embeddings, logits and transformer outputs.
|
||
|
""",
|
||
|
FLAVA_START_DOCSTRING.format(config="FlavaConfig") + FLAVA_PRETRAINING_START_DOCSTRING_EXTRA,
|
||
|
)
|
||
|
class FlavaForPreTraining(FlavaPreTrainedModel):
|
||
|
# Those are linked to xxx.bias
|
||
|
_tied_weights_keys = [
|
||
|
"mmm_text_head.decoder.bias",
|
||
|
"mmm_image_head.decoder.bias",
|
||
|
"mlm_head.decoder.bias",
|
||
|
"mim_head.decoder.bias",
|
||
|
]
|
||
|
|
||
|
def __init__(self, config: FlavaConfig, image_codebook: Optional[nn.Module] = None):
|
||
|
super().__init__(config)
|
||
|
self.flava = FlavaModel(config)
|
||
|
|
||
|
self.image_codebook = image_codebook
|
||
|
if self.image_codebook is None and config.init_codebook:
|
||
|
self.image_codebook = FlavaImageCodebook(config.image_codebook_config)
|
||
|
|
||
|
# Levarage text and image encoder configs to create the masked
|
||
|
# head since it has the right vocab
|
||
|
self.mim_head = FlavaMaskedPredictionHead(config.image_config)
|
||
|
self.mlm_head = FlavaMaskedPredictionHead(config.text_config)
|
||
|
self.itm_head = FlavaITMHead(config)
|
||
|
self.mmm_image_head = FlavaMaskedPredictionHead(config.image_config)
|
||
|
self.mmm_text_head = FlavaMaskedPredictionHead(config.text_config)
|
||
|
self.global_contrastive_head = FlavaGlobalContrastiveHead(config)
|
||
|
|
||
|
self.image_vocab_size = config.image_config.vocab_size
|
||
|
self.text_vocab_size = config.text_config.vocab_size
|
||
|
self.mlm_weight = config.mlm_weight
|
||
|
self.mim_weight = config.mim_weight
|
||
|
self.global_contrastive_weight = config.global_contrastive_weight
|
||
|
self.ce_ignore_index = config.ce_ignore_index
|
||
|
self.itm_weight = config.itm_weight
|
||
|
self.mmm_image_weight = config.mmm_image_weight
|
||
|
self.mmm_text_weight = config.mmm_text_weight
|
||
|
self.skip_unmasked_multimodal_encoder = config.skip_unmasked_multimodal_encoder
|
||
|
|
||
|
self.post_init()
|
||
|
|
||
|
def _resize_to_2d(self, x: torch.Tensor):
|
||
|
if x.dim() > 2:
|
||
|
x = x.view(x.size(0), -1)
|
||
|
return x
|
||
|
|
||
|
@add_start_docstrings_to_model_forward(
|
||
|
FLAVA_PRETRAINING_INPUTS_DOCSTRING.format("batch_size, text_seq_len", "batch_size, image_num_patches")
|
||
|
)
|
||
|
@replace_return_docstrings(output_type=FlavaForPreTrainingOutput, config_class=FlavaConfig)
|
||
|
def forward(
|
||
|
self,
|
||
|
input_ids: Optional[torch.LongTensor] = None,
|
||
|
input_ids_masked: Optional[torch.LongTensor] = None,
|
||
|
pixel_values: Optional[torch.FloatTensor] = None,
|
||
|
codebook_pixel_values: Optional[torch.FloatTensor] = None,
|
||
|
attention_mask: Optional[torch.Tensor] = None,
|
||
|
token_type_ids: Optional[torch.Tensor] = None,
|
||
|
bool_masked_pos: Optional[torch.Tensor] = None,
|
||
|
position_ids: Optional[torch.LongTensor] = None,
|
||
|
image_attention_mask: Optional[torch.Tensor] = None,
|
||
|
skip_unmasked_multimodal_encoder: bool = None,
|
||
|
mlm_labels: Optional[torch.Tensor] = None,
|
||
|
mim_labels: Optional[torch.Tensor] = None,
|
||
|
itm_labels: Optional[torch.Tensor] = None,
|
||
|
output_attentions: Optional[bool] = None,
|
||
|
output_hidden_states: bool = True,
|
||
|
return_dict: Optional[bool] = None,
|
||
|
return_loss: Optional[bool] = None,
|
||
|
) -> Union[Tuple[torch.Tensor], FlavaForPreTrainingOutput]:
|
||
|
"""
|
||
|
Examples:
|
||
|
```python
|
||
|
>>> from PIL import Image
|
||
|
>>> import requests
|
||
|
>>> from transformers import FlavaForPreTraining, AutoProcessor
|
||
|
|
||
|
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
||
|
>>> image = Image.open(requests.get(url, stream=True).raw)
|
||
|
|
||
|
>>> model = FlavaForPreTraining.from_pretrained("facebook/flava-full")
|
||
|
>>> processor = AutoProcessor.from_pretrained("facebook/flava-full")
|
||
|
|
||
|
>>> text = ["a photo of a cat"]
|
||
|
|
||
|
>>> inputs = processor(
|
||
|
... images=[image],
|
||
|
... text=text,
|
||
|
... return_masks=True,
|
||
|
... return_codebook_pixels=True,
|
||
|
... padding=True,
|
||
|
... max_length=77,
|
||
|
... return_tensors="pt",
|
||
|
... )
|
||
|
|
||
|
|
||
|
>>> output = model(**inputs)
|
||
|
```
|
||
|
|
||
|
Return:
|
||
|
|
||
|
"""
|
||
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||
|
return_loss = return_loss if return_loss is not None else self.config.return_loss
|
||
|
|
||
|
skip_unmasked_multimodal_encoder = (
|
||
|
skip_unmasked_multimodal_encoder
|
||
|
if skip_unmasked_multimodal_encoder is not None
|
||
|
else self.skip_unmasked_multimodal_encoder
|
||
|
)
|
||
|
|
||
|
if input_ids_masked is None and input_ids is not None:
|
||
|
logger.warning(
|
||
|
"`input_ids_masked` isn't passed which means MLM loss won't be calculated correctlySetting it to"
|
||
|
" `input_ids` so that model can work. Please pass it if this is unintentional. This is usually OKAY if"
|
||
|
" you are doing inference on unmasked text..."
|
||
|
)
|
||
|
input_ids_masked = input_ids
|
||
|
|
||
|
flava_output = self.flava(
|
||
|
input_ids=input_ids,
|
||
|
pixel_values=pixel_values,
|
||
|
attention_mask=attention_mask,
|
||
|
token_type_ids=token_type_ids,
|
||
|
position_ids=position_ids,
|
||
|
image_attention_mask=image_attention_mask,
|
||
|
# Don't need unmasked multimodal embedding for anything so skip it
|
||
|
# NOTE: ITM uses masked version
|
||
|
skip_multimodal_encoder=skip_unmasked_multimodal_encoder,
|
||
|
output_attentions=output_attentions,
|
||
|
output_hidden_states=output_hidden_states,
|
||
|
# Pass true to have deterministic outputs
|
||
|
return_dict=True,
|
||
|
)
|
||
|
|
||
|
flava_masked_output = self.flava(
|
||
|
input_ids=input_ids_masked,
|
||
|
pixel_values=pixel_values,
|
||
|
attention_mask=attention_mask,
|
||
|
token_type_ids=token_type_ids,
|
||
|
image_attention_mask=image_attention_mask,
|
||
|
bool_masked_pos=bool_masked_pos,
|
||
|
output_attentions=output_attentions,
|
||
|
output_hidden_states=output_hidden_states,
|
||
|
return_dict=True,
|
||
|
)
|
||
|
|
||
|
pos_mask = None
|
||
|
|
||
|
image_embeddings = flava_output.image_embeddings
|
||
|
text_embeddings = flava_output.text_embeddings
|
||
|
image_masked_embeddings = flava_masked_output.image_embeddings
|
||
|
text_masked_embeddings = flava_masked_output.text_embeddings
|
||
|
multimodal_masked_embeddings = flava_masked_output.multimodal_embeddings
|
||
|
|
||
|
total_loss = mim_loss = mlm_loss = mmm_text_loss = mmm_image_loss = gc_loss = itm_loss = None
|
||
|
mim_logits = mlm_logits = mmm_text_logits = mmm_image_logits = None
|
||
|
itm_logits = logits_per_image = logits_per_text = None
|
||
|
|
||
|
# Calculate mim_labels if necessary from the image_codebook
|
||
|
if image_masked_embeddings is not None or multimodal_masked_embeddings is not None:
|
||
|
if mim_labels is None and return_loss:
|
||
|
if self.image_codebook is None:
|
||
|
raise RuntimeError(
|
||
|
"`return_loss` is set to True but the image codebook is not initialized and no `mim_labels` "
|
||
|
" have been passed. Reinstantiate the model with `init_codebook` set to True or "
|
||
|
"pass in your custom `mim_labels`"
|
||
|
)
|
||
|
if codebook_pixel_values is None:
|
||
|
raise ValueError(
|
||
|
"`codebook_pixel_value` are required to generate `mim_labels` if loss is expected. "
|
||
|
"Call `AutoProcessor` with `return_codebook_pixels` set to True"
|
||
|
)
|
||
|
mim_labels = self.image_codebook.get_codebook_indices(codebook_pixel_values)
|
||
|
# Unimodal MIM Loss
|
||
|
# If multimodal embeddings are present, we will calculate MMM loss
|
||
|
if self.mim_weight > 0 and image_masked_embeddings is not None and multimodal_masked_embeddings is None:
|
||
|
sequence_for_image = image_masked_embeddings
|
||
|
|
||
|
if mim_labels is not None:
|
||
|
mim_labels = self._resize_to_2d(mim_labels)
|
||
|
bool_masked_pos = self._resize_to_2d(bool_masked_pos)
|
||
|
mim_labels[bool_masked_pos.ne(True)] = self.ce_ignore_index
|
||
|
|
||
|
sequence_for_image = sequence_for_image[:, -mim_labels.size(1) :, :]
|
||
|
masked_tokens = mim_labels.ne(self.ce_ignore_index)
|
||
|
mim_labels_filtered = mim_labels[masked_tokens]
|
||
|
sequence_for_image = sequence_for_image[masked_tokens, :]
|
||
|
mim_logits = self.mim_head(sequence_for_image)
|
||
|
if return_loss:
|
||
|
mim_loss = nn.functional.cross_entropy(
|
||
|
mim_logits.view(-1, self.image_vocab_size), mim_labels_filtered.view(-1)
|
||
|
)
|
||
|
mim_loss *= self.mim_weight
|
||
|
else:
|
||
|
mim_logits = self.mim_head(sequence_for_image)
|
||
|
|
||
|
# Unimodal MLM Loss
|
||
|
if self.mlm_weight > 0 and text_masked_embeddings is not None and multimodal_masked_embeddings is None:
|
||
|
sequence_for_text = text_masked_embeddings
|
||
|
if mlm_labels is not None:
|
||
|
mlm_labels = self._resize_to_2d(mlm_labels)
|
||
|
sequence_for_text = sequence_for_text[:, -mlm_labels.size(1) :, :]
|
||
|
masked_tokens = mlm_labels.ne(self.ce_ignore_index)
|
||
|
mlm_labels_filtered = mlm_labels[masked_tokens]
|
||
|
sequence_for_text = sequence_for_text[masked_tokens, :]
|
||
|
mlm_logits = self.mlm_head(sequence_for_text)
|
||
|
if return_loss:
|
||
|
mlm_loss = nn.functional.cross_entropy(
|
||
|
mlm_logits.view(-1, self.text_vocab_size), mlm_labels_filtered.view(-1)
|
||
|
)
|
||
|
mlm_loss *= self.mlm_weight
|
||
|
else:
|
||
|
mlm_logits = self.mlm_head(sequence_for_text)
|
||
|
|
||
|
# ITM Loss
|
||
|
if self.itm_weight > 0 and multimodal_masked_embeddings is not None:
|
||
|
itm_logits = self.itm_head(multimodal_masked_embeddings)
|
||
|
|
||
|
if itm_labels is not None:
|
||
|
pos_pairs = itm_labels.ne(0)
|
||
|
pos_mask = torch.where(pos_pairs.any(), pos_pairs, pos_pairs.new([True]))
|
||
|
if return_loss:
|
||
|
itm_loss = nn.functional.cross_entropy(itm_logits, itm_labels)
|
||
|
itm_loss *= self.itm_weight
|
||
|
|
||
|
if multimodal_masked_embeddings is not None:
|
||
|
multimodal_masked_embeddings = multimodal_masked_embeddings[pos_mask]
|
||
|
|
||
|
if mlm_labels is not None:
|
||
|
mlm_labels = mlm_labels[pos_mask]
|
||
|
|
||
|
if mim_labels is not None:
|
||
|
mim_labels = mim_labels[pos_mask]
|
||
|
bool_masked_pos = bool_masked_pos[pos_mask]
|
||
|
|
||
|
# MMM Image Loss
|
||
|
if multimodal_masked_embeddings is not None and self.mmm_image_weight > 0:
|
||
|
sequence_for_image = multimodal_masked_embeddings
|
||
|
end_index = image_masked_embeddings.size(1) - 1
|
||
|
sequence_for_image = sequence_for_image[:, 2 : 2 + end_index, :]
|
||
|
|
||
|
if mim_labels is not None:
|
||
|
mim_labels = self._resize_to_2d(mim_labels)
|
||
|
bool_masked_pos = self._resize_to_2d(bool_masked_pos)
|
||
|
mim_labels[bool_masked_pos.ne(True)] = self.ce_ignore_index
|
||
|
|
||
|
masked_tokens = mim_labels.ne(self.ce_ignore_index)
|
||
|
mim_labels_filtered = mim_labels[masked_tokens]
|
||
|
sequence_for_image = sequence_for_image[masked_tokens, :]
|
||
|
mmm_image_logits = self.mmm_image_head(sequence_for_image)
|
||
|
if return_loss:
|
||
|
mmm_image_loss = nn.functional.cross_entropy(
|
||
|
mmm_image_logits.view(-1, self.image_vocab_size), mim_labels_filtered.view(-1)
|
||
|
)
|
||
|
mmm_image_loss *= self.mmm_image_weight
|
||
|
else:
|
||
|
mmm_image_logits = self.mmm_image_head(sequence_for_image)
|
||
|
|
||
|
# MMM Text Loss
|
||
|
if multimodal_masked_embeddings is not None and self.mmm_text_weight > 0:
|
||
|
sequence_for_text = multimodal_masked_embeddings
|
||
|
sequence_for_text = sequence_for_text[:, -text_masked_embeddings.size(1) :, :]
|
||
|
|
||
|
if mlm_labels is not None:
|
||
|
mlm_labels = self._resize_to_2d(mlm_labels)
|
||
|
masked_tokens = mlm_labels.ne(self.ce_ignore_index)
|
||
|
mlm_labels_filtered = mlm_labels[masked_tokens]
|
||
|
sequence_for_text = sequence_for_text[masked_tokens, :]
|
||
|
mmm_text_logits = self.mmm_text_head(sequence_for_text)
|
||
|
if return_loss:
|
||
|
mmm_text_loss = nn.functional.cross_entropy(
|
||
|
mmm_text_logits.view(-1, self.text_vocab_size), mlm_labels_filtered.view(-1)
|
||
|
)
|
||
|
mmm_text_loss *= self.mmm_text_weight
|
||
|
else:
|
||
|
mmm_text_logits = self.mmm_text_head(sequence_for_text)
|
||
|
|
||
|
# Global Contrastive Loss
|
||
|
if image_embeddings is not None and text_embeddings is not None and self.global_contrastive_weight > 0:
|
||
|
text_embedding = self.flava.text_projection(text_embeddings[:, 0, :])
|
||
|
text_embedding = nn.functional.normalize(text_embedding, dim=-1)
|
||
|
|
||
|
image_embedding = self.flava.image_projection(image_embeddings[:, 0, :])
|
||
|
image_embedding = nn.functional.normalize(image_embedding, dim=-1)
|
||
|
|
||
|
self.flava.logit_scale.data.clamp_(LOGIT_SCALE_CLAMP_MIN, LOGIT_SCALE_CLAMP_MAX)
|
||
|
|
||
|
logits_per_image, logits_per_text, gc_labels = self.global_contrastive_head(
|
||
|
image_embedding, text_embedding, self.flava.logit_scale
|
||
|
)
|
||
|
|
||
|
# Apply ITM negative mask if any
|
||
|
if pos_mask is not None:
|
||
|
logits_per_image = logits_per_image[pos_mask]
|
||
|
logits_per_text = logits_per_text[pos_mask]
|
||
|
gc_labels = gc_labels[pos_mask]
|
||
|
|
||
|
if return_loss:
|
||
|
gc_loss_image = nn.functional.cross_entropy(logits_per_image, gc_labels)
|
||
|
gc_loss_text = nn.functional.cross_entropy(logits_per_text, gc_labels)
|
||
|
gc_loss = (gc_loss_image + gc_loss_text) / 2
|
||
|
gc_loss *= self.global_contrastive_weight
|
||
|
|
||
|
flava_losses = FlavaLosses(
|
||
|
mim=mim_loss,
|
||
|
mlm=mlm_loss,
|
||
|
itm=itm_loss,
|
||
|
global_contrastive=gc_loss,
|
||
|
mmm_image=mmm_image_loss,
|
||
|
mmm_text=mmm_text_loss,
|
||
|
)
|
||
|
|
||
|
if return_loss and not flava_losses.all_none():
|
||
|
total_loss = sum(loss if loss is not None else 0 for loss in flava_losses.values())
|
||
|
|
||
|
if not return_dict:
|
||
|
output = (
|
||
|
image_embeddings,
|
||
|
flava_output.image_output.to_tuple() if flava_output.image_output is not None else None,
|
||
|
text_embeddings,
|
||
|
flava_output.text_output.to_tuple() if flava_output.text_output is not None else None,
|
||
|
flava_output.multimodal_embeddings,
|
||
|
flava_output.multimodal_output.to_tuple() if flava_output.multimodal_output is not None else None,
|
||
|
image_masked_embeddings,
|
||
|
flava_masked_output.image_output.to_tuple() if flava_masked_output.image_output is not None else None,
|
||
|
text_masked_embeddings,
|
||
|
flava_masked_output.text_output.to_tuple() if flava_masked_output.text_output is not None else None,
|
||
|
multimodal_masked_embeddings,
|
||
|
flava_masked_output.multimodal_output.to_tuple()
|
||
|
if flava_masked_output.multimodal_output is not None
|
||
|
else None,
|
||
|
mim_logits,
|
||
|
mlm_logits,
|
||
|
itm_logits,
|
||
|
logits_per_image,
|
||
|
logits_per_image,
|
||
|
mmm_image_logits,
|
||
|
mmm_text_logits,
|
||
|
)
|
||
|
if return_loss and not flava_losses.all_none():
|
||
|
output = (
|
||
|
total_loss,
|
||
|
flava_losses,
|
||
|
) + output
|
||
|
|
||
|
# Filter None as transformer by default won't handle it
|
||
|
return tuple(x for x in output if x is None)
|
||
|
|
||
|
return FlavaForPreTrainingOutput(
|
||
|
loss=total_loss,
|
||
|
loss_info=flava_losses,
|
||
|
image_embeddings=image_embeddings,
|
||
|
image_output=flava_output.image_output,
|
||
|
text_embeddings=text_embeddings,
|
||
|
text_output=flava_output.text_output,
|
||
|
multimodal_embeddings=flava_output.multimodal_embeddings,
|
||
|
multimodal_output=flava_output.multimodal_output,
|
||
|
image_masked_embeddings=image_masked_embeddings,
|
||
|
image_masked_output=flava_masked_output.image_output,
|
||
|
text_masked_embeddings=text_masked_embeddings,
|
||
|
text_masked_output=flava_masked_output.text_output,
|
||
|
multimodal_masked_embeddings=multimodal_masked_embeddings,
|
||
|
multimodal_masked_output=flava_masked_output.multimodal_output,
|
||
|
mim_logits=mim_logits,
|
||
|
mlm_logits=mlm_logits,
|
||
|
itm_logits=itm_logits,
|
||
|
contrastive_logits_per_image=logits_per_image,
|
||
|
contrastive_logits_per_text=logits_per_text,
|
||
|
mmm_image_logits=mmm_image_logits,
|
||
|
mmm_text_logits=mmm_text_logits,
|
||
|
)
|