220 lines
9.9 KiB
Python
220 lines
9.9 KiB
Python
|
# coding=utf-8
|
||
|
# Copyright 2019-present, Facebook, Inc and the HuggingFace Inc. team.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
""" FSMT configuration"""
|
||
|
|
||
|
|
||
|
from ...configuration_utils import PretrainedConfig
|
||
|
from ...utils import logging
|
||
|
|
||
|
|
||
|
logger = logging.get_logger(__name__)
|
||
|
|
||
|
|
||
|
from ..deprecated._archive_maps import FSMT_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
|
||
|
|
||
|
|
||
|
class DecoderConfig(PretrainedConfig):
|
||
|
r"""
|
||
|
Configuration class for FSMT's decoder specific things. note: this is a private helper class
|
||
|
"""
|
||
|
|
||
|
model_type = "fsmt_decoder"
|
||
|
|
||
|
def __init__(self, vocab_size=0, bos_token_id=0):
|
||
|
super().__init__()
|
||
|
self.vocab_size = vocab_size
|
||
|
self.bos_token_id = bos_token_id
|
||
|
|
||
|
|
||
|
class FSMTConfig(PretrainedConfig):
|
||
|
r"""
|
||
|
This is the configuration class to store the configuration of a [`FSMTModel`]. It is used to instantiate a FSMT
|
||
|
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
||
|
defaults will yield a similar configuration to that of the FSMT
|
||
|
[facebook/wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru) architecture.
|
||
|
|
||
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
||
|
documentation from [`PretrainedConfig`] for more information.
|
||
|
|
||
|
Args:
|
||
|
langs (`List[str]`):
|
||
|
A list with source language and target_language (e.g., ['en', 'ru']).
|
||
|
src_vocab_size (`int`):
|
||
|
Vocabulary size of the encoder. Defines the number of different tokens that can be represented by the
|
||
|
`inputs_ids` passed to the forward method in the encoder.
|
||
|
tgt_vocab_size (`int`):
|
||
|
Vocabulary size of the decoder. Defines the number of different tokens that can be represented by the
|
||
|
`inputs_ids` passed to the forward method in the decoder.
|
||
|
d_model (`int`, *optional*, defaults to 1024):
|
||
|
Dimensionality of the layers and the pooler layer.
|
||
|
encoder_layers (`int`, *optional*, defaults to 12):
|
||
|
Number of encoder layers.
|
||
|
decoder_layers (`int`, *optional*, defaults to 12):
|
||
|
Number of decoder layers.
|
||
|
encoder_attention_heads (`int`, *optional*, defaults to 16):
|
||
|
Number of attention heads for each attention layer in the Transformer encoder.
|
||
|
decoder_attention_heads (`int`, *optional*, defaults to 16):
|
||
|
Number of attention heads for each attention layer in the Transformer decoder.
|
||
|
decoder_ffn_dim (`int`, *optional*, defaults to 4096):
|
||
|
Dimensionality of the "intermediate" (often named feed-forward) layer in decoder.
|
||
|
encoder_ffn_dim (`int`, *optional*, defaults to 4096):
|
||
|
Dimensionality of the "intermediate" (often named feed-forward) layer in decoder.
|
||
|
activation_function (`str` or `Callable`, *optional*, defaults to `"relu"`):
|
||
|
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
||
|
`"relu"`, `"silu"` and `"gelu_new"` are supported.
|
||
|
dropout (`float`, *optional*, defaults to 0.1):
|
||
|
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
||
|
attention_dropout (`float`, *optional*, defaults to 0.0):
|
||
|
The dropout ratio for the attention probabilities.
|
||
|
activation_dropout (`float`, *optional*, defaults to 0.0):
|
||
|
The dropout ratio for activations inside the fully connected layer.
|
||
|
max_position_embeddings (`int`, *optional*, defaults to 1024):
|
||
|
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
||
|
just in case (e.g., 512 or 1024 or 2048).
|
||
|
init_std (`float`, *optional*, defaults to 0.02):
|
||
|
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
||
|
scale_embedding (`bool`, *optional*, defaults to `True`):
|
||
|
Scale embeddings by diving by sqrt(d_model).
|
||
|
bos_token_id (`int`, *optional*, defaults to 0)
|
||
|
Beginning of stream token id.
|
||
|
pad_token_id (`int`, *optional*, defaults to 1)
|
||
|
Padding token id.
|
||
|
eos_token_id (`int`, *optional*, defaults to 2)
|
||
|
End of stream token id.
|
||
|
decoder_start_token_id (`int`, *optional*):
|
||
|
This model starts decoding with `eos_token_id`
|
||
|
encoder_layerdrop (`float`, *optional*, defaults to 0.0):
|
||
|
Google "layerdrop arxiv", as its not explainable in one line.
|
||
|
decoder_layerdrop (`float`, *optional*, defaults to 0.0):
|
||
|
Google "layerdrop arxiv", as its not explainable in one line.
|
||
|
is_encoder_decoder (`bool`, *optional*, defaults to `True`):
|
||
|
Whether this is an encoder/decoder model.
|
||
|
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
||
|
Whether to tie input and output embeddings.
|
||
|
num_beams (`int`, *optional*, defaults to 5)
|
||
|
Number of beams for beam search that will be used by default in the `generate` method of the model. 1 means
|
||
|
no beam search.
|
||
|
length_penalty (`float`, *optional*, defaults to 1)
|
||
|
Exponential penalty to the length that is used with beam-based generation. It is applied as an exponent to
|
||
|
the sequence length, which in turn is used to divide the score of the sequence. Since the score is the log
|
||
|
likelihood of the sequence (i.e. negative), `length_penalty` > 0.0 promotes longer sequences, while
|
||
|
`length_penalty` < 0.0 encourages shorter sequences.
|
||
|
early_stopping (`bool`, *optional*, defaults to `False`)
|
||
|
Flag that will be used by default in the `generate` method of the model. Whether to stop the beam search
|
||
|
when at least `num_beams` sentences are finished per batch or not.
|
||
|
use_cache (`bool`, *optional*, defaults to `True`):
|
||
|
Whether or not the model should return the last key/values attentions (not used by all models).
|
||
|
forced_eos_token_id (`int`, *optional*, defaults to 2):
|
||
|
The id of the token to force as the last generated token when `max_length` is reached. Usually set to
|
||
|
`eos_token_id`.
|
||
|
|
||
|
Examples:
|
||
|
|
||
|
```python
|
||
|
>>> from transformers import FSMTConfig, FSMTModel
|
||
|
|
||
|
>>> # Initializing a FSMT facebook/wmt19-en-ru style configuration
|
||
|
>>> config = FSMTConfig()
|
||
|
|
||
|
>>> # Initializing a model (with random weights) from the configuration
|
||
|
>>> model = FSMTModel(config)
|
||
|
|
||
|
>>> # Accessing the model configuration
|
||
|
>>> configuration = model.config
|
||
|
```"""
|
||
|
|
||
|
model_type = "fsmt"
|
||
|
attribute_map = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"}
|
||
|
|
||
|
# update the defaults from config file
|
||
|
def __init__(
|
||
|
self,
|
||
|
langs=["en", "de"],
|
||
|
src_vocab_size=42024,
|
||
|
tgt_vocab_size=42024,
|
||
|
activation_function="relu",
|
||
|
d_model=1024,
|
||
|
max_length=200,
|
||
|
max_position_embeddings=1024,
|
||
|
encoder_ffn_dim=4096,
|
||
|
encoder_layers=12,
|
||
|
encoder_attention_heads=16,
|
||
|
encoder_layerdrop=0.0,
|
||
|
decoder_ffn_dim=4096,
|
||
|
decoder_layers=12,
|
||
|
decoder_attention_heads=16,
|
||
|
decoder_layerdrop=0.0,
|
||
|
attention_dropout=0.0,
|
||
|
dropout=0.1,
|
||
|
activation_dropout=0.0,
|
||
|
init_std=0.02,
|
||
|
decoder_start_token_id=2,
|
||
|
is_encoder_decoder=True,
|
||
|
scale_embedding=True,
|
||
|
tie_word_embeddings=False,
|
||
|
num_beams=5,
|
||
|
length_penalty=1.0,
|
||
|
early_stopping=False,
|
||
|
use_cache=True,
|
||
|
pad_token_id=1,
|
||
|
bos_token_id=0,
|
||
|
eos_token_id=2,
|
||
|
forced_eos_token_id=2,
|
||
|
**common_kwargs,
|
||
|
):
|
||
|
self.langs = langs
|
||
|
self.src_vocab_size = src_vocab_size
|
||
|
self.tgt_vocab_size = tgt_vocab_size
|
||
|
self.d_model = d_model # encoder_embed_dim and decoder_embed_dim
|
||
|
|
||
|
self.encoder_ffn_dim = encoder_ffn_dim
|
||
|
self.encoder_layers = self.num_hidden_layers = encoder_layers
|
||
|
self.encoder_attention_heads = encoder_attention_heads
|
||
|
self.encoder_layerdrop = encoder_layerdrop
|
||
|
self.decoder_layerdrop = decoder_layerdrop
|
||
|
self.decoder_ffn_dim = decoder_ffn_dim
|
||
|
self.decoder_layers = decoder_layers
|
||
|
self.decoder_attention_heads = decoder_attention_heads
|
||
|
self.max_position_embeddings = max_position_embeddings
|
||
|
self.init_std = init_std # Normal(0, this parameter)
|
||
|
self.activation_function = activation_function
|
||
|
|
||
|
self.decoder = DecoderConfig(vocab_size=tgt_vocab_size, bos_token_id=eos_token_id)
|
||
|
if "decoder" in common_kwargs:
|
||
|
del common_kwargs["decoder"]
|
||
|
|
||
|
self.scale_embedding = scale_embedding # scale factor will be sqrt(d_model) if True
|
||
|
|
||
|
# 3 Types of Dropout
|
||
|
self.attention_dropout = attention_dropout
|
||
|
self.activation_dropout = activation_dropout
|
||
|
self.dropout = dropout
|
||
|
|
||
|
self.use_cache = use_cache
|
||
|
super().__init__(
|
||
|
pad_token_id=pad_token_id,
|
||
|
bos_token_id=bos_token_id,
|
||
|
eos_token_id=eos_token_id,
|
||
|
decoder_start_token_id=decoder_start_token_id,
|
||
|
is_encoder_decoder=is_encoder_decoder,
|
||
|
tie_word_embeddings=tie_word_embeddings,
|
||
|
forced_eos_token_id=forced_eos_token_id,
|
||
|
max_length=max_length,
|
||
|
num_beams=num_beams,
|
||
|
length_penalty=length_penalty,
|
||
|
early_stopping=early_stopping,
|
||
|
**common_kwargs,
|
||
|
)
|